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ABSTRACT In this study, a static shear energy algorithm is presented for the damage assessment of beam-like
structures. According to the energy release principle, the strain energy of a damaged element suddenly changes when
structural damage occurs. Therefore, the change in the static shear energy is employed to determine the damage locations
in beam-like structures. The static shear energy is derived from the spectral factorization of the elementary stiffness
matrix and structural deflection variation. The advantage of using shear energy as opposed to total energy is that only a
few deflection data points of the beam structure are required during the process of damage identification. Another
advantage of the proposed approach is that damage detection can be performed without establishing a structural finite-
element model in advance. The proposed technique is first validated using a numerical example with single, multiple, and
adjacent damage scenarios. A channel steel beam and rectangular concrete beam are employed as experimental cases to
further verify the proposed approach. The results of the simulation and experiment examples indicate that the proposed

algorithm provides a simple and effective method for defect localization in beam-like structures.
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1 Introduction

During the service period of an engineering structure,
material aging, fatigue, cracking, and other damages can
occur in the structure owing to environmental corrosion
and disaster load. Local damages in a structure reduce the
bearing capacity, affect normal use, and lead to the
collapse of the structure. Therefore, detection of defects
in a structure has attracted significant attention in the past
decades in the field of structural safety. Beam-like
structures are the most commonly used components in
bridges, buildings, and mechanical engineering applica-
tions. To avoid engineering accidents, it is necessary to
develop effective damage assessment methods for beam-
like structures. To this end, many methods have been
developed in recent years to detect structural defects
using changes in structural response parameters [1-3].
Based on the type of data used, structural damage
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diagnosis technology can be classified into two types:
dynamic and static. The dynamic-based approach is more
mature than the static-based technique because the
dynamic test does not affect the normal use of the
structure. Currently, dynamic methods mainly use the
following dynamic characteristic parameters: velocity or
acceleration [4,5], vibration frequency [6-8], mode
shapes [9-16], flexibility matrix [17-20], curvature
[21-23], moving-load responses [24-26], and modal
strain energy [27-29]. Liu et al. [4,5] conducted
acceleration-based parameter identification on an airfoil-
store system and a fractional-order system using the
enhanced response sensitivity algorithm. Messina et al.
[6] used the changes in vibration frequencies to assess the
position and severity of structural defects. Ashokkumar
and Iyengar [7] presented an approach based on partial
eigenvalue assignment for structural damage diagnosis.
Yang and Wang [8] proposed a natural frequency vector
assurance criterion to evaluate the structural damage. In
certain cases, the frequency is not sensitive to local


https://doi.org/10.1007/s11709-022-0903-4

Xi PENG & Qiuwei YANG. Damage detection using static shear energy

defects in a structure because it corresponds to the
vibration characteristic of the entire structure. Therefore,
the mode shape of the structural vibration is also
employed in structural damage diagnosis. Shi et al. [9]
presented an algorithm based on a statistical tool to
determine the defect locations using only partial data of
the vibration eigenvectors. Ghannadi and Kourehli
[10—13] used model reduction and expansion techniques
to solve the incomplete measurement problem of vibra-
tion modes for damage identification. After comparing
various model reduction methods, they concluded that the
system equivalent reduction expansion process (SEREP)
can obtain the most accurate model condensation results
in numerical simulations [10]. Then, they used the
SEREP to expand the measured vibration modes and
further applied an artificial neural network (ANN) [11,12]
or grey wolf optimization algorithm [13] to conduct
structural damage identification. As an alternative, they
also used the least-squares support vector machine (LS-
SVM) [14] to compute the unmeasured vibration mode
data using the measured vibration mode data for
structural damage detection. Zhu et al. [15] presented a
defect-diagnosis technique based on the slopes of the first
vibration mode for damage detection in shear buildings.
Zhang et al. [16] used the square of the vibration mode as
an index to identify the defects in bridge structures. The
structural flexibility matrix was observed to be more
sensitive to structural damage than the vibration
frequency and mode under many conditions. Wu and Law
[17] employed the sensitivity of modal flexibility to
modify a finite element model for structural damage
identification. Di and Law [18] further improved the
modal flexibility sensitivity method using a more
accurate element stiffness model. Yang [19,20] developed
damage  identification  algorithms via  spectral
factorization of the structural global and local flexibility
matrices. Based on the flexibility matrix, Sung et al. [21]
developed a damage diagnosis technique for beam
structures using the curvature of the normalized uniform
load surface. It was concluded that the curvature-based
approach can lead to damage identification via the sole
use of the vibration information of the damaged structure.
Using Fourier spectral analysis, Yang et al. [22]
employed a new curvature-based technique to determine
the defect positions in beam structures. Using the wavelet
transform technique, Xiang et al. [23] extracted the
curvature mode shapes to identify structural defect
positions. For bridge structures, the moving load method
is also widely used because it can utilize the acquired data
when a truck passes through the bridge to perform
damage assessment. Khorram et al. [24] investigated the
performance of moving-load approaches to determine the
beam defect position and extent of damage. The results
showed that cracks, whose length exceeded 10% of the
beam height, can be successfully identified using the
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moving load method. Roveri and Carcaterra [25]
proposed a damage assessment algorithm based on the
traveling load of bridge structures. They determined that
the diagnosis results were affected by the defect position
and load moving speed. Cavadas et al. [26] developed a
data-driven method based on a moving load to determine
defect positions. Their approach was successful in
continuously monitoring bridge structures. The strain
energy distribution in a structure is closely related to the
damage status of the structure. Therefore, energy-based
defect assessment algorithms have attracted widespread
interest in engineering. Xu et al. [27] proposed a defect
assessment method based on strain energy for monitoring
the structural health of a long-span cable-stayed bridge.
Yi et al. [28] extracted wavelet packet component
energies to identify structural damage. Cha and
Buyukozturk [29] observed that modal strain energy is
highly sensitive to structural defects. Recently, novel
optimization algorithms [30-33] have been increasingly
implemented for structural damage identification. It is
expected that various objective functions and optimiza-
tion algorithms will significantly affect the quality of
damage diagnosis. Ghannadi and Kourehli [30] examined
the performance of moth-flame optimization (MFO) in
defect diagnosis using an objective function consisting of
structural flexibility and natural frequency. Ghannadi and
Kourehli [31] investigated the performance of a bio-
inspired optimization termed as a salp swarm in damage
detection using an objective function based on the natural
frequency vector assurance criterion (NFVAC). Ghannadi
and Kourehli [32] employed a multiverse optimizer
(MVO) and two objective functions to solve damage
identification issues. The two objective functions
corresponded to the modal assurance criterion (MAC)
and modified total modal assurance criterion (MTMAC).
Ghannadi and Kourehli first employed the latest methods
of the slime mold algorithm (SMA) and marine predators
algorithm (MPA) to detect defects in large-scale
structures [33]. They also investigated the sensitivity of
these objective functions to MAC, MTMAC, and
NFVAC. It was determined that the combination of SMA
and MTMAC can lead to highly accurate damage
diagnosis results. They further proposed an improved
SMA (ISMA) to strengthen the ability of the original
SMA for diagnosing defects. It has been shown that
ISMA exhibits obvious advantages in solving the overall
optimization issues. The dynamic method is simple when
compared with the static method. However, to date, there
are many challenges with this type of method, which
should be further examined and resolved. Wang et al.
[34] indicated that the main challenges that should be
resolved in the dynamic method are as follows:
(1) structural stiffness, mass, and damping affect the
characteristic vibration parameters of a structure.
However, many dynamic methods assume no damping in
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the structure and that structural damage has no effect on
the mass; (2) for a large structure, it is difficult to
accurately measure the modal parameters of structural
vibration, particularly the vibration mode shape;
(3) certain dynamic damage identification methods
require high-order vibration modes to identify structural
damage. However, in practice, it is difficult to obtain
high-order vibrational modes.

Conversely, the static damage evaluation algorithm
exhibits two advantages. First, static displacement data
are easy to measure and exhibit high accuracy in practice.
Second, the static damage evaluation algorithm is only
related to structural stiffness. Thus, in recent years, static
damage evaluation algorithms have attracted widespread
attention in civil engineering applications. Based on static
displacements, Sanayei and Onipede [35] examined an
iteration-based optimization approach for updating a
structural model. Banan et al. [36,37] compared various
static-based damage assessment methods and indicated
the problems that should be solved. Using static data,
Hjelmstad and Shin [38] developed a combinatorial
optimization technique for calculating elementary
damage coefficients in a structure. Wang et al. [34]
combined vibration frequency sensitivity with static
displacement sensitivity to diagnose the damage state of a
structure. Chou and Ghaboussi [39] developed a genetic
approach for calculating defect coefficients in a structure
by employing static displacement data. Bakhtiari-Nejad
et al. [40] used the optimal calculation approach to
conduct a structural damage assessment by considering
the nonlinear characteristics of the static displacement
between intact and damaged structures. Chen et al. [41]
developed a two-stage defect assessment method based
on static-displacement data. First, the grey system theory
was employed to determine the damage locations.
Second, an optimal approach was used for computing the
defect coefficients. Using static data as input parameters,
Kouchmeshky et al. [42] developed a coordinated evolutio-
nary optimization algorithm to evaluate the structural
defect state more accurately. Abdo [43,44] examined the
connection between the static displacement curvature and
structural defect location and developed a defect
diagnosis approach using the displacement curvature.

The aforementioned static methods are mainly based on
the geometric changes due to damage but do not deeply
explore the relationship between structural damage and
strain energy. In essence, there must be a connection
between structural damage and strain energy because the
occurrence of damage inevitably leads to energy release
in the damaged area. Therefore, damage identification
based on the redistribution of static strain energy is an
effective and feasible method that should be explored
further. To this end, in this study, a static shear energy
method is proposed for the defect diagnosis of beam-like
structures. In contrast to the existing techniques, the
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novelty of the proposed approach is that the static shear
energy is defined and used for structural damage
identification for the first time. As part of the total
energy, the shear energy can be derived from the matrix
spectral factorization of the elementary stifthess and the
deflection variation of the beam structure. The advantage
of using shear energy as opposed to total energy is that
only a few deflection data points of the beam structure are
required in the process of damage identification. This
implies that this new approach can overcome the
disadvantage of using rotational displacement data in
existing total energy methods. According to the energy
release principle, the strain energy of a damaged element
changes suddenly when structural damage occurs.
Conversely, the damage location in a beam can be
determined by searching for the mutation location of
static shear energy. In a specific operation, the shear
energy variation curve and statistical tool can be used to
determine the mutation location visually and quantita-
tively. Based on the theoretical derivation, the proposed
method exhibits another advantage wherein defect diagno-
sis can be performed without establishing a structural
finite element model in advance. This advantage makes
the proposed method very simple and fast in terms of
calculation. Hence, the defect position in a beam can be
determined quickly. A numerical case is used to
investigate the applicability of this new approach in
detecting single, multiple, and adjacent damages in a
beam with and without data noise. Two experimental
examples of steel and concrete beams were employed to
further validate the damage localization ability of the
proposed approach. The general framework of this study
is as follows. In Section 2, the fundamentals and key
formulae of the static shear energy redistribution
approach are described. In Section 3, this new approach is
verified via a numerical beam structure with single,
multiple, and adjacent defect conditions. In Section 4, a
channel steel beam and rectangular concrete beam are
employed as experimental cases to validate the proposed
approach. Finally, several advantages and limitations of
this algorithm for practical engineering applications are
summarized in Section 5.

2 Static shear energy redistribution
method

For an intact beam, the static response relationship of the
structure is as follows.

Ku=f, €))

where K denotes the overall n x n stiffness matrix, u
denotes the static response vector, and f denotes the
vector of static loading. The structural displacement
vector u is measured via a static loading experiment in



Xi PENG & Qiuwei YANG. Damage detection using static shear energy

engineering practice. Static displacement measurement
technology can be classified into two categories: contact
and non-contact measurement. Dial indicators and
resistance displacement sensors are commonly used as
displacement meters for contact measurements. Optical
inspection or optoelectronic scanning is a common tool
for noncontact measurements. This type of advanced
displacement testing equipment includes a high-precision
video test system and laser Doppler displacement meter.
It is expected that the work due to static loading will be
converted into the deformation energy of a structure.
From Eq. (1), the work due to f can be computed as
follows.

W=f"u=uKu. ()

According to the finite element model (FEM), matrix K
denotes the sum of all elemental stiffness matrices K, (i =
1 — N). Thus, Eq. (2) can be rewritten as follows.

W=ul [Z K,-]u Y &)

Q =u"Ku, 4)
where Q. is defined as the strain energy of the ith
element. Next, the elemental strain energy €; is further
decomposed using the spectral decomposition of K, for
damage detection. From FEM theory, K, denotes a rank-
deficient matrix for most elements. For example, K ranks
one for the truss element and ranks two for the plane
beam element. Without loss of generality, the spectral
decomposition process of the elemental stiffness matrix is
described by taking the plane beam element as an
example. As shown in Fig. 1, the stiffness matrix K7 of a
plane beam element under a local coordinate system is as
follows.

12 6L -12 6L

._EI| 6L 41 —6L 21’

K=71 212 261 12 —6L | ©)
6L 20> —6L AI?

where E denotes the Young’s elastic modulus, L denotes
the length of the beam element, and 7/ denotes the inertia
moment.

By performing spectral decomposition of the element
stiffness matrix K, the eigenvalue matrix P and
eigenvector matrix ° can be obtained as follows.

K =nPyp, (6)

6EI(L* +4)
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In Eq. (7), it can be observed that the diagonal
coefficients of the eigenvalue matrix P are related to the
physical parameters £ and /. However, eigenvector
matrix n° is independent of these physical parameters.
Therefore, P changes and 1° does not change when a
defect occurs. According to Eq. (8), the two column
vectors in i° can be considered as the virtual force vectors
applied to the beam element under the local coordinate
system as shown in Fig. 2.

Equation (6) can be rewritten by transforming the local
coordinates to the global coordinates as follows.

N

@®)

R I

K, =nPn', ©

(10)

where 7, denotes the connection matrix between local and
global coordinates. Using Eqgs. (9) and (4), we can obtain
the following.

Q; =( ‘\/P1114T771)2 +( \/PzzuTﬂz)z,

where p,; and p,, denote the diagonal coefficients of P,
n, and 1, denote the first and second column vectors of 7.

n= Tines

(11)

2
N o 1 1
2~ 2 V2~
({1 2F Al 2
N
? L v L

(@) (b)

Fig. 2 Virtual force vectors applied on the plane beam element.
(a) The first column vector of 1°; (b) the second column vector
of n1°.
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From Egs. (11) and (2), the elemental strain energy Q.
can be divided into two parts, which reflect the shear and
bending strain energies. Generally, only the deflection of
the beam structure can be obtained in practice because it
is difficult to measure the angular displacement. Thus,
only the shear strain energy € can be calculated using
Eq. (11) after removing the rotational DOFs as follows.

Q=@éy, (12)

&= Npn-m, (13)

where u, 77, denote the reduced vectors of u, n, after
removing the rotational DOF data, and & denotes the
DOF connected vector of the i-th beam element. Based on
Eqgs. (7), (8), and (13), we obtain the following.

2 [3EI
fi:— T'(0,"-9091,0’_1307"')1-'

(14)

In Eq. (14), the nonzero coefficients 1 and —I
correspond to the translational DOFs of the beam
element. Based on Eq. (14), the DOF-connected vector &;
can be obtained directly from the physical and geometric
parameters of the structure without establishing the FEM.
Particularly, for an equal-section beam with a uniform
mesh, the calculation of the energy damage index is very
simple because all the elements in the beam FEM have
the same E, I, and L. For this special case, coefficient

2 [3EI
N in Eq. (14) can be considered as 1 to further

simplify the calculation because the specific value of

2 [3EI
N does not affect the final damage localization

results.

Based on energy release theory, the strain energy of
each element of the beam must be redistributed before
and after structural damage. Therefore, the strain energy
of the damaged element changes suddenly when the
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damage occurs. Therefore, a change in the shear strain
energy is proposed in this study to determine the
positions with defects in the beam structure. To this end,
the change in the value of the square root of € is used in
damage detection for a further simplified calculation as
follows.

AQ; = ¢ Au, (15)
where AQ? denotes the change in the value of the square
root of €} when a defect occurs, and Au; denotes the
change in beam deflection. Finally, AQ; denotes the
energy damage index associated with the ith beam unit.
Equation (14) can considerably simplify the calculation
of the energy damage index in Eq. (15). Using Eq. (14),
the energy damage index AQ) can also be directly
calculated from Eq. (15) for damage detection without
constructing the structural FEM. By considering the unit
number as the abscissa and damage index as the ordinate,
the defect position in a structure can be identified via the
sudden change in the position of the plotted curve.

The process of the entire algorithm is summarized as
follows. Step 1: For each beam element, calculate the
DOF-connected vector &; using Eq. (14). Step 2: Perform
static testing on the beam structure and calculate the
deflection change Au before and after the damage. Step 3:
The elemental damage index AQ)) is calculated using
Eq. (15). Step 4: Draw the damage index curve and
identify damage. A flow sheet for this new approach is
presented in Fig. 3.

3 Numerical verification of the proposed
method

The concrete beam presented in Fig. 4 is employed as an
example to describe the process and effect of damage
identification using the shear energy technique.
MATLAB software was employed to implement the
presented algorithm for this numerical example on a

calculate the DOF connected vector {; of
each beam element using Eq. (14)

perform static testing on the beam structure
and calculate the deflection change Au

using Eq. (15)

calculate the elemental damage index AQ."

|

draw the damage index cure

|

damage detection

Fig. 3 Flowchart of the static shear energy method.
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Fig. 4 Element and node numbers for the numerical beam.

computer. The material of the model was assumed as
isotropic and linearly elastic. The type of element
corresponded to a two-node Bernoulli-Euler plane beam
element. As shown in Fig. 4, this beam is equally divided
into 20 segments, and each segment length is Ax = 0.1 m.
The main physical and geometric parameters of the beam
structure are as follows. The elastic modulus and density
of the material are £ = 27 GPa and p = 2650 kg/m’,
respectively. The area and inertia moment of the beam
cross-section are 4 = 0.06 m*> and 7 = 4.5 x 107 m4,
respectively. Table 1 lists the six damage conditions
simulated in this example. It is assumed that the vertical
displacements at the nodes in Fig. 4 are measured when a
concentrated force of 200 kN is applied at node 9. In this
example, numerical simulation deflection data are
employed to simulate the actual measured deflection
parameters for damage identification. Using the
deflection variation data due to damage, the values of the
elemental damage index AQ! can be directly calculated
using Egs. (14) and (15). Table 2 and Fig. 5 present the
calculated results for damage cases 14 without data
noise.

According to Eq. (15), the energy damage index AQY
corresponds to 0 because the deflection change Au is zero
for an intact structure with no damage. This implies that
the damage index graph is a horizontal line, i.e., the x-
axis itself, for the intact case. The quantitative damage
assessment is described as follows. From Table 2, it can
be observed that the damage indices of beam elements
1-9 are equal, and the damage indices of beam elements
11-20 are also equal. Only the damage index of element
10 showed a mutation. This implies that the energy
damage index of element 10 significantly differs from
that of the adjacent elements. Therefore, unit 10 can be
determined as a damaged unit according to the sudden
change in the damage index. Furthermore, Fig.5
illustrates more clearly that element 10 is a damaged
element based on the perspective of the curve. As shown
in Fig. 5, the damage index curve corresponding to the
damaged structure is not a horizontal line, but a stepped
broken line. The damage indices form two parallel lines
with the exception of element 10. This implies that
element 10 corresponds to the mutation position of the
energy damage index curve. Thus, segment 10 can be
considered as a defective unit. Additionally, the distance
between the two parallel lines increased as the damage

Table 1 Damage conditions for the beam

damage case element number stiffness reduction

scenario 1 10 10%
scenario 2 10 20%
scenario 3 10 30%
scenario 4 10 40%
scenario 5 6,15 10%, 20%
scenario 6 6, 15 30%, 40%

Table 2 Energy damage indices for damage conditions 1-4 (no noise)
(x107)

element number case 1 case 2 case 3 case 4
1 0.1532 0.3446 0.5908 0.9190
2 0.1532 0.3446 0.5908 0.9190
3 0.1532 0.3446 0.5908 0.9190
4 0.1532 0.3446 0.5908 0.9190
5 0.1532 0.3446 0.5908 0.9190
6 0.1532 0.3446 0.5908 0.9190
7 0.1532 0.3446 0.5908 0.9190
8 0.1532 0.3446 0.5908 0.9190
9 0.1532 0.3446 0.5908 0.9190
10 0.0051 0.0115 0.0196 0.0305
11 —0.1384 —0.3113 —0.5337 —0.8301
12 —0.1384 —0.3113 —0.5337 —0.8301
13 —0.1384 —0.3113 —0.5337 —0.8301
14 —0.1384 —0.3113 —0.5337 —0.8301
15 —0.1384 —0.3113 —0.5337 —0.8301
16 —0.1384 —0.3113 —0.5337 —0.8301
17 —0.1384 —0.3113 —0.5337 —0.8301
18 —0.1384 —0.3113 —0.5337 —0.8301
19 —0.1384 —0.3113 —0.5337 —0.8301
20 —0.1384 —0.3113 —0.5337 —0.8301

extent of element 10 increased. Next, a random noise
level of 1% was added to the deflection parameter to
simulate the actual test error. The equation for simulating
random noise is as follows.

u; = u;-[1+e&-unifrnd(-1,1)], (16)
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where u; denotes the i-th contaminated displacement data,
u; denotes the i-th coefficient of the displacement vector
u, & denotes the level of random noise, and unifrnd (—1,1)
denotes a random number between —1 and 1. Data noise
mainly reflects the adverse effects due to random
fluctuations in the environmental conditions (temperature
and humidity) during the measurement process. It is
important to note that the measured displacement data
must be multiplied by the corresponding correction
coefficient when the temperature or humidity changes
significantly. In this example, only small fluctuations in
the environmental factors in practice were simulated by
data noise. Furthermore, Fig. 6 shows the curves of the
energy damage indices for damage conditions 1-4 with
1% noise. As shown in Fig. 6, the energy damage indices
are slightly affected by the data error, and the defect

damage index
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position (segment 10) can also be determined by
inspecting the abrupt position of the curve of the graph.
When data noise is considered, the mutation of the energy
damage index can also be determined using the following
statistical tool: (1) calculate the mean and standard
deviation of the damage indices for elements 1-9 and
elements 11-20, respectively; (2) calculate the deviations
between the damage index of element 10 and mean
values obtained in step 1; (3) compare the deviations with
the standard deviations and determine whether element
10 has a mutation. The threshold for determining the
mutation was set as three times the standard deviation.
Tables 3 and 4 present the statistical calculation results
obtained in Fig. 6 using the aforementioned steps.

Tables 3 and 4 show that element 10 can be determined
as the mutation location (i.e., damage location) for

T
1 2 3 4 5 6 7 8 9
element number

—=— clement 10 has 10% stiffness reduction
—a— clement 10 has 30% stiffness reduction

10 11 12 13 14 15 16 17 18 19 20

—e— clement 10 has 20% stiffness reduction
—v— element 10 has 40% stiffness reduction

Fig. 5 Energy damage indices when element 10 is damaged (no noise).

15 -
1.0 4
0.5
0.0

0.5 1

-1.0 4

damage index

IS T T T T
1 2 3 4 5 6 7 8 9

— 1T T T T T T T T T 1
10 11 12 13 14 15 16 17 18 19 20

element number

—=— clement 10 has 10% stiffness reduction
—a— clement 10 has 30% stiffness reduction

—e— clement 10 has 20% stiffness reduction
—v— clement 10 has 40% stiffness reduction

Fig. 6 Energy damage indices when element 10 is damaged (1% noise).

Table 3 Deviations between the damage index of element 10 and
mean of the damage indices for elements 1-9 (1% noise)

Table 4 Deviations between the damage index of element 10 and
mean of the damage indices for elements 11-20 (1% noise)

damage mean of the damage ~ standard deviation " 75 damage mean of the damage ~ standard deviation 7=
case indices for elements _ of the damage 10 1= case indices for elements _ ©Of the damage 10 11-20

1-9 (E]_g) indices for elements —3-01_9 11-20 (E] 1220) indices for elements —3-0711-29

1-9 (01-9) 11-20 (0711-20)

scenario 1 0.1478 0.0423 0.0455>0 scenario 1 —0.1305 0.0529 —0.053<0
scenario 2 0.3468 0.0743 0.0451>0 scenario 2 -0.32 0.0783 0.164>0
scenario 3 0.5948 0.0862 0.3322>0 scenario 3 —0.5355 0.0441 0.4072>0
scenario 4 0.9288 0.0879 0.6326>0 scenario 4 —0.8392 0.0649 0.6771>0
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damage cases 2—4 because all the corresponding devia-
tions are greater than 0. For damage case 1, element 10
can also be determined as the most probable mutation
location (i.e., the most probable damage location) because
the deviation between the damage index of element 10
and mean of the damage indices for elements 1-9 is
greater than 0. Notably, the deviation between the
damage index of element 10 and mean of the damage
indices for elements 11-20 is less than zero for damage
case 1. This is mainly due to the fact that the degree of
damage in case 1 is very small (10% stiffness reduction).
Thus, the adverse effect of data noise is relatively large in
this case.

For multiple damage conditions, Figs. 7 and 8 present
the curves of the energy damage indices for damage cases
5 and 6 with and without noise, respectively. As observed
in Fig. 7, the energy damage indices of elements 6 and 15
significantly differ from those of the adjacent elements.
This implies that elements 6 and 15 were damaged
because their corresponding damage indices correspon-
ded to the energy mutation points. When 1% noise is
considered, the curves of the energy damage indices in
Fig. 8 can also approximately indicate the damage
locations (elements 6 and 15) based on the changes in the
curve. Similarly, Tables 5-8 present the statistical
calculation results obtained from Fig. 8.

2.0 -
1.5 -
1.0
0.5 -
0.0

05

-1.0 4

damage index

Tables 5-8 show that elements 6 and 15 can be
determined as the mutation locations (i.e., damage
locations) for damage cases 5-6 because all the
corresponding deviations are greater than 0. It can be
concluded that the proposed approach is robust and
successful in determining the damage position of the
beam structure.

As shown in Figs. 5-8, the degree of mutation of the
energy damage index is more obvious as the degree of
damage increases. This implies that large damage is
easier to detect using the proposed approach. Further-
more, these results demonstrate that the proposed
approach can effectively detect single or multiple defects
in a concrete beam structure. It is important to note that
the presented algorithm can identify the significant
stiffness degradation of beam-like structures. If the defect
does not cause deterioration of the structural stiffness,
then it is difficult to successfully determine the defect
position in the beam structure using this method.

For further investigation, the applicability of the
presented approach is evaluated again via a multiple-
defect scenario when two damaged locations are in the
neighborhood. Without loss of generality, elements 12
and 13 in the beam structure are assumed as damaged
with a decrease in stiffness of 20% and 15%,
respectively. Figure 9 shows the energy damage index

1St T T
1 2 3 4 5 6 7 8 9

— T 1T T T T T T T T 1T
10 11 12 13 14 15 16 17 18 19 20

element number

damage index

—=— clements 6 and 15 have 10% and 20% stiffness reductions
—e— clements 6 and 15 have 30% and 40% stiffness reductions

Fig. 7 Energy damage indices when elements 6 and 15 are damaged (no noise).

2.0 -
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1.0 -
0.5
0.0 -

0.5
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
element number

—=— clements 6 and 15 have 10% and 20% stiffness reductions
—e— clements 6 and 15 have 30% and 40% stiffness reductions

Fig. 8 Energy damage indices when elements 6 and 15 are damaged (1% noise).
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curves for this adjacent damage scenario with and without
1% noise.

In Fig. 9, it can be observed that the damage indices
form two parallel lines, with the exception of elements 12
and 13, when using noise-free data. This implies that only
elements 12 and 13 correspond to the mutation positions

Table 5 Deviations between the damage index of element 6 and
mean of the damage indices for elements 1-5 (1% noise)

damage mean of the damage standard deviation AQ —AQ;_ 5
case indices for elements  of the damage indices 6
1-5 (AQ;_5) for elements 1-5 =305
(01-5)
case 5 0.3892 0.009 0.1512>0
case 6 1.3926 0.0478 0.7871>0

Table 6 Deviations between the damage index of element 6 and
mean of the damage indices for elements 7-14 (1% noise)

standard deviation

damage mean of the damage " _AO
case € indices for elemen%s of the damage indices Al —AQ7-14
7-14 (m7_14) for elements 7-14 —-3-07-14
(07-14)
case 5 -0.0176 0.0558 0.0612>0
case 6 -0.1671 0.0867 0.3692>0

Table 7 Deviations between the damage index of element 15 and
mean of the damage indices for elements 7-14 (1% noise)

standard deviation

damage  mean of the damage " _AOQ
case & indices for elemerllgts of the damage indices ALy = A4
7-14 (E7_14) for elements 7-14 -3-07-14
(07-14)
case 5 -0.0176 0.0558 0.0109>0
case 6 -0.1671 0.0867 0.2392>0

Table 8 Deviations between the damage index of element 15 and
mean of the damage indices for elements 16-20 (1% noise)

standard deviation
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of the energy damage index curve. Thus, elements 12 and
13 can be determined as damaged units. When data noise
is considered, the corresponding curve in Fig. 9 also
approximately indicates that elements 12 and 13 are the
damage locations. Using the statistical tool stated earlier,
Tables 9 and 10 list the statistical deviations of the energy
damage indices for elements 12 and 13. In Tables 9 and
10, it can be observed that elements 12 and 13 can be
determined as the mutation locations (i.e., damage
locations) because all the corresponding deviations are
greater than 0. It can be concluded that the proposed
algorithm is also applicable to the adjacent damage
scenario of the beam structure.

4 Experimental verifications of the
proposed method

4.1 Channel steel beam

An experimental steel beam conducted by Le et al. [45] is
used to verify the proposed approach. This channel steel
beam is subdivided into five eclements, and six
displacement meters are used to acquire the deflection
data under mid-span loading. The overall length of the
steel beam channel was 2475 mm. The damage was
simulated by cutting part of the steel beam, and the
cutting position was 1175 mm away from the left support.
The specific process of the static test and the measured
deflection data of the intact and damaged structures can
be found in Ref. [45].

The MATLAB software was used to implement the
proposed method for this experimental example on a
computer. Using the measured deflection data, the
elemental damage index AQ! can be directly calculated
using Eq. (15) without constructing the beam FEM.
Table 11 presents the calculated values of AQY. The
corresponding damage index curve does not need to be
drawn because this example is very simple. From Table
11, it can be observed that the damage indices of
segments 1 and 2 are very close, and the damage indices

damage  mean of the damage at1o AQ . —AQ
case indices for elements of the damage indices 15 16-20
16-20 (AQ16-20) for elements 16-20  —3-016-20
(016-20)
case 5 -0.3641 0.165 0.1187>0
case 6 —1.0845 0.0233 0.3482>0
1.0 5
0.5 4
5
s
.8
g 0.0+
<
g
g
—0.5
-1.0 T T T T T T T T

1 2 3 4 5 6 7 8 9

T T " T " T " T " T~ T T T "1
10 11 12 13 14 15 16 17 18 19 20

element number

—=&— N0 noise

—e— 1% noise

Fig. 9 Energy damage indices when elements 12 and 13 are damaged.
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Table 9 Deviation between the damage index of element 12 and
mean of the damage indices for elements 1-11 (1% noise)

number standard deviation

mean of the damage " _AQ
indices for elemerﬁs of the damage indices ARy, —AQ1-n
1-11 (AQ_11) for elements 1-11 -3-01-11
(1-11)
element 12 0.3447 0.0408 0.0969 > 0

Table 10 Deviation between the damage index of element 13 and the
mean of the damage indices for elements 14—-20 (1% noise)

number mean of the damage ~ Standard deviation " _AQ
indices for elemengts of the damage indices ALy = Aa-20
14-20 (m14720) for elements 14-20 —3-014-20
(14-20)
element 13 —0.5098 0.0250 0.1164>0

Table 11 Damage indices for the channel steel beam

segment number (left-to-right) damage index

1 0.0015
2 0.0014
3 —0.0002
4 —0.0014
5 —0.0013

of segments 4 and 5 are also very close. Only the damage
index of segment 3 showed a mutation. In other words,
the energy damage index of element 3 is significantly
different from that of the adjacent elements. Therefore, it
can be concluded that segment 3 is damaged. This is in
line with the real situation in which segment 3 has a gap
caused by cutting. It can be concluded that the proposed
algorithm is a simple and practical defect-localization
method.

It should be noted that the damage localization
accuracy of the proposed approach is closely related to
the spacing of the displacement sensors. The smaller the
distance between the displacement sensors, the higher is
the accuracy of damage localization. For this experimen-
tal beam, based on the above judgment that the defect is
located at segment 3, the defect location can be accurately
determined by arranging more displacement sensors only
in segment 3 of the beam. In other words, by adjusting
the position of the displacement sensor step by step, the
proposed method can be operated several times until
satisfactory damage localization results are obtained.
Because the sensor position is not adjusted in Ref. [45],
the proposed method can only detect that the damage is
located in segment 3 at the present stage. In future
research, an improved method based on a step-by-step
arrangement of displacement sensors should be investi-
gated to achieve more precise defect localization results.

4.2 Concrete beam with rectangular cross section

A concrete beam with a rectangular cross-section
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conducted by Lu [46] was used to verify the proposed
method. This concrete beam is subdivided into eight
elements, and seven displacement meters are used to
collect the deflection data under two-point loading. The
actual span of the concrete beam is 2000 mm. The
damage state was simulated by gradually increasing the
static load to crack the concrete beam. The specific
physical properties of the beam and the measured
deflection data of the static test can be found in Ref. [46].
The deflection data of the beam under two loading
conditions (load = 30 kN and load = 45 kN) were
measured in the experiment. When load = 30 kN, the
concrete beam was in the normal working condition.
When load = 45 kN, there was evident crack damage in
the mid-span area of this beam.

Using these deflection data, the damage status of the
concrete beam was evaluated using the proposed
approach. For the calculation of AQ!, the beam deflection
data under a load of 45 kN should be scaled to the data
under a load of 30 kN because Au is the displacement
change for a structure under the same load. The deflection
data transformation from 45 to 30 kN were obtained
according to the load proportion. In other words, the
converted deflection data is calculated by multiplying the
measured data under the load of 45 kN with the load
proportion of 30/45. It is important to note that this
treatment of the data transformation from 45 to 30 kN is a
type of simplification because there is no strict linear
relation between the force and displacement when the
beam is cracked. Subsequently, the elemental damage
index AQ/ can be directly calculated using Eq. (15)
without constructing the beam FEM. Table 12 lists the
calculated values of AQ!. As shown in Table 12, only the
damage indices of segments 4 and 5 exhibited obvious
mutations. Similar to the numerical example, the
mutation of the energy damage index can also be
determined using the statistical calculation results as
shown in Tables 13 and 14. It can be concluded from
Tables 13 and 14 that segments 4 and 5 can be
determined as mutation locations (i.e., damage locations)
because their corresponding deviations are greater than 0.
This is in line with the actual crack locations (segments 4
and 5) observed in the experiment. It can be concluded
that the proposed algorithm is effective for damage
detection in experimental concrete beams.

5 Conclusions

A static strain energy redistribution approach was
developed for defect evaluation of beam-like structures.
The proposed approach uses spectral decomposition of
the elemental stiffness matrix and deflection variation of
a beam. For energy release, the static strain energy of a
beam is redistributed in each beam segment when
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Table 12 Damage indices for the experimental concrete beam (x10™)

segment number damage index

1 0.6853
2 0.6973

3 0.7267

4 —-0.2040
5 —0.1787
6 —-0.5200
7 —0.5960
8 —-0.6107

Table 13 Deviations between the damage index of segment 4 and
mean of the damage indices for segments 1-3 of the experimental
concrete beam

number mean of the damage  standard deviation "=
indices for elemen%s of the damage indices AQ, —AQ 3
1-3 (AQ)_3) for elements 1-3 —3.013
) (01-3)
segment4  7.0311x 107 21264x10°  84332x10°>0

Table 14 Deviations between the damage index of segment 5 and
mean of the damage indices for segments 6-8 of the experimental
concrete beam

number  mean of the damage Standard deviation " =
indices for elemengts of the damage indices AQs - AQ¢-g
6-8 (AQg_3g) for elements 6-8 —3.06g
(06-8)
segment5 57556 x 10°° 4.8668 x 10°  2.5088 x 107°>0

structural damage occurs. This implies that the static
strain energy of the defect in a beam will exhibit a
mutation. Alternatively, the static energy variation can
serve as an index for determining the position of the
defect in a beam. The remarkable advantage of the
developed method is that it can be used for defect
detection with simple calculations and fast operation even
if the structural FEM is not constructed in advance. The
proposed damage-detection approach was validated using
numerical and experimental beam structures. Based on
the calculation results, the following conclusions were
drawn.

1) For an intact structure with no damage, the shear
energy damage index is equal to zero, and the
corresponding damage index graph is a horizontal line.

2) For the damaged structure, the shear energy damage
index suddenly changes at the damage location, and the
corresponding damage index curve corresponds to a
stepped broken line. Based on the obtained results, it can
be concluded that the location of the shear energy
mutation is the exact location of the damaged element in
the beam structure.

3) When the deflection data of the beam are
contaminated, the damage Ilocation can also be
determined using a statistical tool. The threshold to
determine the mutation associated with the damage

Front. Struct. Civ. Eng. 2022, 16(12): 1552-1564

location can be set as thrice the standard deviation of the
energy damage indices.

4) The damage localization precision of this algorithm
is closely related to the spacing between the displacement
sensors. As the distance between the displacement
sensors decreases, the accuracy of damage localization
increases. In practice, the proposed method can be
operated several times by adjusting the position of the

displacement  sensor until  satisfactory = damage
localization results are obtained.
Furthermore, the proposed approach has several

limitations. The precondition for the application of the
proposed method is that the beam structure must exhibit
detectable displacement changes before and after the
damage. This implies that this method is accurate when
the stiffness reduction is significant with a detectable
displacement change. Additionally, this method cannot be
used to determine the severity of damaged elements.
When the damage location is determined by the proposed
method, other parameter identification methods, such as
optimization algorithms, can be further employed to
calculate the degree of damage. In future studies, the
applicability of this approach to other types of structures
can be examined to expand its application scope.
Although this approach has been demonstrated via
numerical and experimental cases, it is still necessary to
conduct further engineering case verification studies in
the future.
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