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ABSTRACT The seismic analysis of a viscoelastic half-space under two-dimensional (2D) oblique incident waves is
carried out by the finite/infinite element method (FIEM). First, the frequency-domain exact solutions for the
displacements and stresses of the free field are derived in general form for arbitrary incident P and SV waves. With the
present formulation, no distinction needs to be made for SV waves with over-critical incident angles that make the
reflected P waves disappear, while no critical angle exists for P waves. Next, the equivalent seismic forces of the
earthquake (Taft Earthquake 1952) imposed on the near-field boundary are generated by combining the solutions for unit
ground accelerations with the earthquake spectrum. Based on the asymmetric finite/infinite element model, the
frequency-domain motion equations for seismic analysis are presented with the key parameters selected. The results
obtained in frequency and time domain are verified against those of Wolf’s, Luco and de Barros’ and for inversely
computed ground motions. The parametric study indicated that distinct phase difference exists between the horizontal
and vertical responses for SV waves with over-critical incident angles, but not for under-critical incident angles. Other
observations were also made for the numerical results inside the text.

KEYWORDS oblique incident waves, critical angle, half-space, finite/infinite element approach, seismic response
analysis

1 Introduction the seismic waves with arbitrary incident angles.

As for theoretical aspect, the elastic wave behavior in

The dynamic response of a site hit by seismic waves with
oblique incident angles is significantly different from
those by vertical incident seismic waves. The irregular
response owing to oblique incident waves cannot be
ignored, which may seriously threaten the normal
operation and life of the affected area. It was pointed out
that oblique incident seismic waves often occur in the
half-space with hard soils, whose effect on structural
responses should be considered in the seismic design [1].
Previously, various theoretical and numerical approaches
have been presented to study the half-space response to
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the half-space with various forms of layer medium was
studied by Ewing et al. [2], and in elastic solids by Graff
[3]. Wolf [4] solved the soil-structure interaction under
incident seismic body waves systematically. Lee and Karl
[5] used the Fourier-Bessel series to analyze the
scattering and diffraction of plane SV waves in an elastic
half-space with underground cavities embedded at
different depths. Yuan and Liao [6] derived the closed-
form solution of two-dimensional (2D) scattering of plane
SH waves for a half-space containing the cylindrical
alluvial valley by the wave functions expansion. Davis
et al. [7] combined the Fourier-Bessel series with a
convex approximation for the free surface of the half-
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space, to present the theoretical transverse response of
unlined cavities in an elastic half-space. Using the same
method, Liang et al. [8] derived the theoretical solution
for the incidence of P waves scattering caused by a
circular-arc canyon with a covering layer.

Due to the lack of versatility of the analytical methods,
various numerical methods were called on to explore the
behavior of wave propagation in half-space with
variations in local topography or underground structures.
In this concern, the half-space is divided into two parts as
the near field, containing the underground structures and
cavities of interest, and the far field that extends to
infinity. Previously, a generalized inverse method for
approximating the boundary conditions was proposed by
Wong [9] to consider the diffraction of P, SV and
Rayleigh waves and wave propagation near the semi-
elliptical canyon. Wong et al. [10] analyzed the dynamic
stress and displacement response of a cylindrical tunnel
embedded in an elastic half-space by using the eigen-
function expansions coupled with the finite element
method (FEM). de Barros and Luco applied an indirect
boundary integral method to examining the diffraction of
oblique incident waves in a half-space induced by a
cylindrical cavity [11] and the response for an infinitely
long cylindrical cavity [12]. Then they performed the
seismic analysis of a layered half-space with an
embedded cylindrical shell [13,14] and expanded it into
the three-dimensional (3D) form [15]. Subsequently,
Stamos and Beskos used the boundary element method
(BEM) to analyze the dynamic response of large 3D
underground structure [16] and the 3D seismic response
of lined tunnels with uniform characteristics along the
direction perpendicular to the cross section in the half-
space [17]. Until now, the BEM-based methods have
been widely used by scholars in dealing with various
half-space problems, including the analysis of shear
deformable plates on elastic half-space, layered or
saturated soils, valley or hill, 2D or 3D waves, see
Shaaban and Rashed [18], Ba et al. [19-22] and Liang
et al. [23], as well as the seismic ground response of the
half-space with the subsurface box-shaped lined tunnel
[24]. Recently, Mostafa Shaaban et al. [25-29] studied
the wave propagation in the frequency domain for
acoustic problems coupled with the boundary integral
equation. Although the BEM has high accuracy in
computation, the selection of proper Green’s functions
depends on the specific problem to be considered.

In the literature, various methods and considerations for
soil dynamic analysis are available. Komatitsch et al. [30]
presented the spectral element method (SEM) to simulate
the elastic wave propagation behavior in 2D and 3D
realistic geological structures. Liu et al. [31,32]
developed the time domain based viscous-spring artificial
boundary for treating the soil-structure interaction. Based
on the scaled boundary finite element method (SBFEM),
Du and Lin [33] proposed an improved time domain
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numerical method to analyze the structure-foundation
interaction problem. Focusing on rational approximation
of the frequency response function, Du and Zhao [34]
proposed an effective method to analyze the temporally
local representation of unbounded soil. Hatzigeorgiou
and Beskos [35] conducted the 3D seismic inelastic
analysis of lined tunnels considering the soil-structure
interaction by combining the viscous absorbing boundary
with the FEM. Yu et al. [36] presented a multiscale
method to analyze long tunnels by combining the coarse-
and fine-scale finite elements, which allows more detailed
response in locations of potential damage or of interest to
be obtained. Zhao et al. [37] proposed a one-dimensional
(1D) finite element artificial boundary method for
simulating the homogeneous plane elastic wave
propagation in a layered half-space caused by the plane
waves with oblique incident angles. Besides, scholars
also used the exponential basis functions to construct and
apply the time-domain based absorbing boundary
conditions to the wave propagation problems [38,39].

In previous soil dynamic analyses, viscous-spring
artificial boundary has often been adopted. For instance,
it was used by Huang et al. [40] in studying the impact of
incident angles of earthquakes on the seismic response of
long lined tunnels, and by Yan et al. [41] in studying the
transverse seismic response of lined circular tunnels
caused by asynchronous oblique P and SV waves. This is
a convenient approach, but the physical properties of
springs and dampers to be imposed on the artificial
boundary require further justification.

Infinite elements have also been used for simulating the
infinite boundary, for their relative ease in implementa-
tion, and for the fact that the parameters involved can be
given in a more rational way. Ungless [42] and Bettess
[43] proposed the concept of infinite elements for solving
problems with infinity spatial domain. Zhao et al. [44]
used the finite/infinite element method (FIEM) to
simulate the scattering of incident P- and SV-waves in
infinite media, and those of canyon topographic and
geologic conditions [45,46], along with an effective wave
input procedure for ground motions [47]. Yang et al. [48]
combined the finite with the infinite elements to analyze
the soil vibration by line loads, in which the key
parameters for analysis using the finite and infinite
elements were clearly given, such as the required element
size, mesh range, and selection of wavenumbers and
attenuation coefficients. Yun and co-workers derived
various frequency-domain infinite elements to simulate
different parts of the far field of a 2D layered half-space
with soil medium [49], and then extended this approach
to the time domain analysis [50].

Concerning the FIEM, Wang et al. [S1] used the FIEM
to study the vertical vibrations in unbounded saturated
composite foundation with the axisymmetrical infinite
elements proposed. Kouroussis et al. [52] studied the
generation and propagation of ground vibrations under
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the action of railway traffic based on the vehicle-track-
soil model. Yang et al. [53] used it to study the 2D
response of an elastic half-space containing a circular
cavity under vertical harmonic P and SV waves, focused
on comparison of the results with previous solutions. For
its versatility, the method was also employed to analyze
the seismic response of single and double tunnels to
vertical P and SV waves, respectively [54,55]. In the
aforementioned studies using the FIEM, the seismic
waves were all assumed to vertically hit the ground. As
was mentioned previously, there are situations where the
effect of oblique incident seismic waves cannot be
ignored. Therefore, it is necessary to expand the FIEM
such that oblique incident seismic waves can be
accommodated, especially for SV waves with arbitrary
incident angles. This requires a revision of the
fundamental theory underlying the method of analysis.

To fill the above gap, the fundamental theory of a
viscoelastic half-space subjected to 2D oblique incidence
of seismic waves will be employed. The paper is organi-
zed as follows. In Section 2, the stresses and displace-
ments of the free field are related to the Helmholtz
potential for P- and SV-wave incidence, and for solution,
the partial differential wave equations are transformed to
the ordinary ones by the Fourier transformation. In
Section 3, the exact solutions of the free-field displace-
ments and stresses in frequency-space domain under
either the oblique incident P or SV waves are derived.
Particularly, the critical angle (above which the reflected
P waves will disappear) for the incident SV waves is
included with no extra effort. In Section 4, for a unit
horizontal and vertical accelerations on the free surface
(for P and SV waves, respectively), the displacements and
stresses are computed for the near-field boundary using
the above exact solutions. Then, the equivalent seismic
forces acting on near-field boundary are calculated using
Zhao and Valliappan’s formula [47] for the spectral
frequencies considered. In Section 5, the finite/infinite
element model under asymmetric seismic waves is
established, the key parameters are selected, and the
seismic analysis procedure in frequency domain is
outlined. In Section 6, the validity of the proposed
procedure is verified against Wolf’s and Luco and
de Barros’ solutions, as well as for inversely computed
ground motions. Finally, in Section 7, a parametric study
for the seismic response of the half-space in frequency
and time domains is carried out, with focus placed on the
response for SV waves with over-critical incident angles.
The last Section 8 is the conclusions.

2 Governing equations of motion for 2D
half-space

A 2D (x-y) homogeneous and isotropic half-space, as
shown in Fig. 1, is considered for the seismic analysis
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under oblique incident P or SV waves. The equation of
motion for an elastic solid in terms of the displacement
field u is [56]:

A+w)VV -u+uViu+pf = pu”, (1)

where A and u denote Lamé’s constants, and p the mass
density and f the body force of the solid, respectively.
The displacement of a generic point u = (u,v) consists of
two components along the horizontal and vertical
directions (x- and y-axes). Through use of the Helmholtz
potential, Eq. (1) can be replaced by a set of equations
that can be easily managed [56]. Namely, the propagation
of the compression waves can be expressed by a scalar
potential @(x,¢), and that of the shear waves by a vector

potential, ¥ (x,r)= (S”XSVV,S”SH), with x denoting the

coordinate vector of the generic point. The displacement
field u can be represented as

uu,v)=Vo(x,H)+Vx¥x,t), (2a)

P = 0. (2b)

The condition %" =0 indicates that no out-of-plane
motion is caused by the incident SH waves. Consequen-
tly, the two components of u can be uniquely determined
from the potentials ¢ and ¥} for the 2D shear waves on
the x-y plane. By neglecting the body force, one can
substitute Eq. (2) into Eq. (1) to obtain the wave
equations in partial differential form [56], i.e.,

1 8*D(x,1)
V2 ==
D(x,1) 2 or (3a)
1 62Y’(x t)
vy
(x,0) = 2 —n (3b)

in which the velocities of the P and SV waves
propagating in the solid, ¢p and cg, respectively, are [56]

cr = N(A+2u)/p, (42)
Cs = VH/p. (4b)
ground o X
soil A A
reflected
P and SV waves
incident
P or SV waves
epicenter ¥
Fig.1 A half-space under oblique incident seismic waves.
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In this study, the soil is regarded as a viscoelastic & PN _
medium. According to Seed and Idriss [57], the Lamé’s a—y2q§(kx,y )+ (ki + k) Pk y,w) =0, (O2)
constants, A and u, are replaced by
= i 0% . .
/l /l] [1 + ZI,BSgIl ((U)] ’ (Sa) ﬁ Syfyv(k;(,y, (,U) + (_k)2( + ké) Y/xSyV(kX’y’ 6()) - 0’ (9b)
y
p= [l +2ifsgn(w)], (5b)

in which A, and y, denote the Lamé’s constants of the
linearly elastic solid, i is the imaginary unit, w is the
circular frequency (rad/s), and S is the hysteretic
damping ratio.

The two displacement components (u,v) of the half-
space can be obtained from Eq. (2) as:

o ovyY

u= a + ay , (63)
o 0P

V= a—y - 6)( . (6b)

Then, one can combine the strain-displacement
relations with Hooke’s law to obtain the stresses of a
viscoelastic half-space, in terms of @ and ¥3, as:

xy

2 2 2 C()ZSUXSVV
0_U:/1(6_+3_)‘D+2ﬂ(8 + ) (7a)

ox>  0y? 0% 0x0y
»* P ro oYY
=A—+—|D+2 -
7 ﬁ(r9y2+r9x2) * “(ay2 50y ) 7
62¢ 82 SI/XS‘V 32 Syfyv
Ty _2#(9)66)) +/1( 3y T o ) (7¢)

The double Fourier transform H, (denoted with “~”) and
its inverse to be adopted for the wave function H, are
defined as follows:

A 1 o oo
Hn kn 5 = Hn 8N
ke, y, w) ony Lo f_w (x,y,1)

exp(ik,x) exp(—iwt)dxdt, (8a)

Hyeyn = [ | Byk.y.0)exp(-ik0expliondk,do,
(80)

where k, denotes the wave number along the x-axis. It is
noted that the term exp(—ik.x) in Eq. (8b) contains the
minus sign in the exponent, but inversely in Eq. (8a). This
condition ensures that the seismic waves will attenuate
along the positive x-axis. With the double Fourier
transformation performed, the wave equations in Eq. (3)
can be converted into the following ordinary differential
equations with the vertical coordinate y as one of the
variables:

Where kp = (U/CP, ks = U)/Cs.

3 Free field under oblique incident seismic
waves

3.1 Exact solution for incident P waves

Based on Snell’s law, both the phenomena of wave
reflection and waveform conversion will occur on the
ground under the action of P-wave incidence (P;) [2,3].
Namely, both the reflected P and SV waves (Pg and SV5y)
are observed as shown in Fig. 2, in which the incident and
reflected angles of the P waves are denoted by 6y and
Oy, respectively, and the reflected angle of the SV waves
by 6ps;. According to Snell’s law, the incident waves have
the same wave number along the x-axis as that of the
reflected ones for incident P waves [2]. For brevity, let us
use k,p to denote the wave numbers of all body waves
along the x-axis under oblique incident P waves, i.e., with
ko = wsinby;/cp.

By letting 12 = k%, — k2, r2 = k%, — k2, the solutions of @

and Si’gvp obtained from Eq. (9) are
@P = L exp (rpy) + Rpexp (—1py), (10a)
73 = Reexp(-r3), (10b)

where I represents the amplitude of the incident P waves
and Ry that of the reflected ones, and Ry is the amplitude
of the reflected SV waves. Meanwhile, the term with I
denotes the waves that propagate and attenuate upward,
which are accounted for by exp (rpy), the term with Rp the
waves downward by exp (—rpy), and the term with Rg by

exp(=7sy).

Subsequently, the transformed displacements and
ground (0] X
soil AW .\\. \.\\4
P A AN
P PPr \ ’
AR
PSr \ " : \
SV P S SV, P,
o
Pl Pl PI

b

Fig. 2 Free surface subjected to oblique incident P waves.
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stresses can be obtained by substituting the potential
functions in Eq. (10) into Egs. (6) and (7), and written in
terms of I, Rp, and Ry as follows:

{21, 9} = [Dp] [Ep] {Ip, Rp, Rs}", (11a)
{60 Oo Tl = [Se][El e, R R, (11b)
where
[Dp] = ) , (11¢)
rp —rp ke
exp (rpy) 0 0
[Ep] = 0 exp (—=rpy) 0 s (11d)
0 0 exp (—rsy)
=2uk, — Aky  =2uk’, — ks 2uikprs
(Spl=| 2uri-—Ak} 2uri— ks —2uikprg
—2uikprp 2uikprp M (rg + kip)
(1le)

The free-field stress boundary conditions on the ground
are:

F,(y=0)=0, (12a)

#.(y=0)=0. (12b)

By substituting Eq. (12) into Eq. (11b), along with the
definition for the wave velocity ratio:

V=cp/cs = \(A+2u)/ u,

one can obtain the amplitude ratios for the case with
oblique incident P waves as:

(13)

R» 8k2,rprs
=— =—-1- x . 14
L A T & [¢ AT R
Hik pry (22, — V22
fog = Rs 1 xPrP( xP P) (14b)

T (R, — k) (2K, — VAR) = 4krers”

in which fyp denotes the amplitude ratio of the reflected P
waves to incident P waves and f;s that of the reflected SV
waves to the incident P waves.

Finally, by substituting the amplitude ratios into
Eq. (11), the free-field responses of displacements and
stresses in frequency and space domain can be solved by
applying the inverse Fourier transformation with respect
to k. The results in single Fourier transform (denoted
with “-”") are
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{it, 9}y = [Dp] [EI{1, for, fos)} Irexp(—ikpx),  (152)

(G es Toys Tuylp = [S eI LEp {1, fops fos) Tp exp(=ik,px). (15b)

The expressions given in Egs. (15a) and (15b) represent
the exact or closed-form solutions for the displacements
and stresses, respectively, in frequency-space domain of
the entire free field subjected to oblique P waves.
Noteworthy is that, for the P waves with a fixed incident
angle in both time and space domains, the wave number
k. remains constant in the process of wave propagation.
Hence, one can multiply the responses in frequency and
wavenumber domain by exp(—ikpx) to obtain the single
inverse Fourier transform with respect to &,p.

3.2 Exact solution for incident SV waves

As revealed in Fig. 3, for oblique SV-waves, the incident
angle of the SV waves is denoted by 6 and the reflected
angle by O, and the reflected angle of the P waves by
Og,. Similar to the case with P-wave incidence,
combining the Snell’s law and the definitions of wave
numbers for incident and reflected waves along x-axis
(k.si> kosprokissr), one can obtain the same relationship
between the wave numbers as the case for oblique
incident P waves, that is, k,; = k.gpr = ks

Let us define k.5 (= wsindy;/cs) as the wave numbers of
all waves along the x-axis for oblique SV-waves, i.c.,
with k. = wsinfs;/cs. The solutions of &g and ?’f“’s in
Eq. (9) are

@5 = Ryexp(—rpy), (16a)
73 = Isexp(rsy) + Ryexp(=rey),  (16b)
where 1 =ki—ki, ri=ki—ki, Is represents the

amplitude of the incident SV waves and Rg that of the
reflected ones, and R; is the amplitude of the reflected P
waves. The direction of propagation of each wave
component is consistent with that of the incident P waves.

Substituting the potential function in Eq. (16) into
Egs. (6) and (7) yields the displacements and stresses in

ground

soil AN AN

N2 NZ

Fig. 3 Free surface subjected to oblique incident SV waves.
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terms of Ry, Is, and Ry in transformed form as:

{1, }s = [Ds][Es]{Re, Is, Rs}", (172)
{é—x,\" 6-)1\"9 ‘?-xy}z = [SS] [ES] {RPs ISsRS}T» (1 7b)
where
(D] —iks rs —rg 7
= s C
R (T S (7
exp (—rpy) 0 0
[Es] = 0 exp (rsy) 0 ,  (17d)
0 0 exp (—rsy)
_zﬂkis - /lklz) _Zﬂikxsrs 2l.likxsrs
[Ss]=| 2ur;—Ak Quik,srs  2uiksrs |, (17€)
2uik,srp ,u(V§ +k)2(s) :U(rg +k,»2rs)

With Eq. (12) substituted into Eq. (17b), the amplitude
ratios caused by oblique incident SV waves can be
obtained as:

f _ & _ —4ikXSrS (Zk)zcs —kg) (18a)
> I (2k)zcs - ké) (2k§s - Vzklza) - 4k;2fsrPrS '
R 8k>
fis == TP . (18b)

S o=
I (2% — k3) (2k%, — V2ky) — 4k rprs

in which fs denotes the amplitude ratio of the reflected P
waves to the incident SV waves and fss the amplitude
ratio of the reflected SV waves to the incident SV waves.

Finally, substituting the amplitudes into Eq. (17),
together with the inverse Fourier transformation with
respect to k., yields the expression of the displacements
and stresses (in single Fourier transform) of the free field
in frequency and space domain:

(@1, ) = [Ds)[Es]{fsp 1, fss} Isexp(=iksx),  (19b)

{O_—xx’o_—yy77_—xy}—£ = [SS] [ES] {fSP’ 1"fSS }TIS exp(_ikxsx)’ (l9b)

Similar to the case with P-wave incidence, the
expressions given in Egs. (19a) and (19b) represent the
exact or closed-form solutions for the displacements and
stresses, respectively, in frequency-space domain of the
entire free field subjected to oblique incident SV waves.

From Fig. 3, it was observed that the reflected angle of
P waves under any condition is greater than that of SV
waves for oblique SV-wave incidence. What is more, a
critical angle 65 exists for the incident SV waves, above
which the reflected P waves will disappear. Under such a
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condition, the reflected P waves caused by incident SV
waves begin to transform from body waves to surface
waves. For instance, by letting sinfgp, = 1, along with the
wave velocity ratio defined as V = ¢p/cs, the critical angle
of the incident SV waves can be obtained from Fig. 3 as:

1
5, = arcsin v

(20)

In the previous works [2,3], the potential functions and
dynamic responses were both given in time domain,
which requires the relevant equations for SV waves to be
divided into two parts for incident angles below or above
the critical one, but not in a unified format. This makes
the implementation of the ground motion input in
numerical modeling more difficult. Such a division is
unnecessary when using the frequency domain solution
method, as will be discussed below concerning the
applicability of the response of free field for the SV
waves in Eq. (19).

Firstly, according to the relationship between the
incident and reflected angles in Fig. 3, for 65 > 6, it is
required that sin g, = 1, where 65, does not really exist in
the geometric space, but should be interpreted as a
complex angle following Lee and Karl [5]. Then, based
on the wave numbers definition k.5 = k,sp, = wSinOsp,/Cp,
one also finds that ks> kp, since sinfgp, =1, and
accordingly 7 > 0 is valid, as indicated below:

2
= AJk -k = \/(Cf) (sinzespr— 1) > 0. 21)
P

Subsequently, for r, >0, the power (—rpy) in the
exponent exp(—rpy) of the potential function of the
reflected P waves in Eq. (16a) becomes positive real for
(—y) (where y is positive downward), which satisfies the
condition of surface waves, in that the wave decays
rapidly with increasing depth as noted by Rayleigh [58].
Thus, the reflected P waves appears as surface waves,
rather than body waves, traveling parallel to the surface
with the amplitude decaying along the depth direction
(y-axis), as shown in Fig. 4. Such a result is consistent
with Lee and Karl [5] using the Fourier-Bessel series in
the polar coordinates. Hence, the potential function in
Eq. (16a) of the reflected P waves Rpexp(—rpy) in
frequency and wavenumber domain can be used for
oblique incident SV waves. Unlike Lee and Karl’s [5]
formulation in the polar coordinates, the dynamic
responses obtained from the potential (see Eq. (19)) in the
Cartesian coordinates in frequency and space domain are
valid for all SV waves with arbitrary incident angles,
including the critical angle. This has made the ground
motion input rather easy and straightforward, as will be
described in Sections 4 and 5 to follow.

The amplitudes (/p,[s) of incident waves involved in
Egs. (15) and (19) will be determined by additional
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ground

soil

SV

Fig. 4 Free surface subjected to SV waves with incident angles
over the critical angle.

boundary conditions in Subsection 4.1 for the
acceleration responses. Moreover, the amplitude ratios in
Egs. (14) and (18) under oblique P- and SV-waves
deduced from the general solutions of the potential
functions in frequency domain in this paper are expressed
only in terms of the wave velocity ratio and wave
numbers, irrelevant of the reflected angles as was the case
with Ewing and Graff’s work [3]. Meanwhile, the
solutions for the reflected angles do not directly apply to
the incidence SV waves beyond the critical angle.

In short, the present formulation for the dynamic
responses of the free field in closed form not only
simplifies the procedure of derivation, but also provides a
rational basis for inclusion of oblique incident P and SV
waves in the soil dynamic analysis. Compared with
previous works, the closed-form solutions derived for 2D
oblique P- and SV-waves are neater in frequency domain,
especially applicable for SV waves with over-critical
incident angles. With the solution presented above, the
frequency-based equivalent seismic forces for use in the
finite/infinite element analysis can be computed in a
straightforward way, as will be shown in the following
section. It should be added that the above procedure for
dealing with oblique incident SV-waves can be applied to
layered soils as well, which is reserved for a future work.

4 Equivalent seismic forces under oblique
incident seismic waves

As schematically illustrated in Fig. 5, two regions are
considered for the half-space, i.e., near field (containing
the part of soil of interest) and the far field (extending to
infinity). For convenience, the near field is taken as a
rectangular region, in the numerical analysis to follow.
The symbols b,,bg, by are used to denote the interfacing
boundaries on the left, right and bottom sides of the near
field, respectively. In this paper, the near field will be
discretized and modeled by finite elements and the far
field by infinite elements, which will be briefed later on.
For numerical analysis, one needs to determine the nodal
load vector or equivalent seismic forces F exerted by
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oblique incident seismic body waves (from the far field)
onto the interfacing boundary b, based on the available
recorded data of the earthquake on the free surface, as
will be presented below.

4.1 Displacements and stresses on near-field boundary

Before the equivalent seismic forces can be calculated,
the displacements and stresses of the near-field boundary
caused by unit ground acceleration should first be
determined. For oblique incident seismic waves, a certain
angle exists between the wave front and the ground. As
shown in Fig. 6, it is assumed that each point on the near-
field boundary is subjected to both incident and reflected
waves. Accordingly, both the incident and reflected
waves should be included in calculation of the responses
for the near-field boundary, in consistence with the
theoretical formula for the free-field response presented
in Subsections 3.1 and 3.2.

The earthquake to hit from the far field is assumed to
have been recorded (and made available) at the origin on
the free-field surface. In order to transform the recorded
seismic data into the response of the near-field boundary,
one needs to determine for each frequency w how a unit
horizontal acceleration of incident SV waves or a unit
vertical acceleration of incident P waves on the ground is

o g ground

\ o soil

/

original deformed

yl‘y shape shape ‘\//
/
[ b near field I\ be
Ny — ™~

— bB ~ — )

far field

A

Fig. 5 Boundaries of near field in rectangular form subjected
to oblique incident seismic waves.

ground

soil /<

— incident waves
- — reflected waves

far field

Fig. 6 Wave field on near-field boundary for oblique incident
seismic waves.
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transformed to the near-field boundary. Namely, consider
the unit accelerations acting at the origin of the free
surface:

-w'uy=0)=1, (22a)

-wDy=0)=1. (22b)

Accordingly, the displacements (horizontal or vertical)
on the ground in frequency and wavenumber domain for
incident SV or P waves, respectively, are

a(y=0)=-1/w’, (23a)

Py =0)=-1/w’. (22b)

For incident P waves, one can substitute the
displacement ¥ into Eq. (11a), and for incident SV waves,
the displacement ## into Eq. (17a), along with the
amplitude ratios in Eqs. (14) and (18), respectively, to
obtain the amplitudes of the two incident waves in
frequency-wavenumber domain as:

L = ~[w (’”P_VPfPP"‘ikxPﬁns)]_l, (24a)

IS = —[(,L)z (_ikxsf‘SP + rs - rsfss)]_l. (24b)

Subsequently, for each point (x,y) on the near-field
boundary in Fig. 5, one can substitute the amplitudes of
the incident waves in Eq. (24) into the general solutions
in Eqgs. (15) and (19) for P- and SV-waves, respectively,
to obtain the free-field displacements u] and stresses o7
in frequency and space domain for each unit acceleration
of frequency w. Such a procedure can be looped over for
all the spectral frequencies covered by each seismic
record, to generate the corresponding displacements u!
and stresses o7} on the near-field boundary. Based on this,
the equivalent seismic forces can be calculated, as will be
presented in the section to follow.

200
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4.2 Equivalent seismic forces on near-field boundary

The equivalent seismic forces imposed on the near-field
boundary nodes will be calculated from the displacements
u! and stresses of (mentioned in Subsection 4.1) for a
given free field seismic record. For illustration, the
acceleration history of the Taft Earthquake recorded at
No.1095 station in Lincoln University in 1952 with the
sampling interval Ar= 0.02 s will be adopted. The
horizontal acceleration with peak ground acceleration
(PGA) of 155.7 gal in Fig. 7(a) is chosen as the one for
incident SV waves, and the vertical acceleration with
peak ground acceleration (PGA) of 104.9 gal in Fig. 7(b)
for incident P waves. Subsequently, by performing the
fast Fourier transform (FFT), the acceleration frequency
spectra for both directions were plotted in Fig. 8, where
the horizontal axis denotes the circular frequency in Hz
(= 2z rad/s). In general, to ensure proper resolution in
frequency domain, the total number N, of frequency
increments of the FFT should be equal to the number of
sampling points for the acceleration time histories.
According to Nyquist’s theorem, since the frequency
range from 0 to 1/ (2A¢) is the one valid for sampling, the
total number of frequency increments selected for
generating the spectrum is half of the total number N
mentioned above, denoted by N, namely, the frequency
increment used for generating the spectrum in the FFT is:
Aw =1t/ [At (N — 1)] rad/s.

As can be seen from Fig. 8, the earthquake excitation is
concentrated mainly in the low frequency part, namely, it
become negligible for frequencies over 25 Hz. Thus, only
frequencies up to 25 Hz will be included for the ground
motion input.

After obtaining the acceleration spectra in Fig. 8, the
equivalent seismic forces F., for each frequency w can be
related to the boundary displacements ] and stresses o7
following Zhao and Valliappan [47]. Accordingly, the
equivalent seismic forces F,, on the left boundary b, are

F. =S.u.— Ao, (252)
150 ' '
PGA = 104.9 gal
100 b
E
z 50h
e
i
20
3
B
=50
_100 1 : 1 1 1
0 10 20 30 40 50
time (s)
(b)

Fig. 7 Acceleration histories of Taft Earthquake: (a) horizontal; (b) vertical.
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and those on the right and bottom boundaries (bg, bg) are
F. =Squl + Ao, (25b)

where S, is the dynamic impedance matrix of the infinite
elements used to represent the actual effect of the far field
on the boundary (to be elaborated in Section 5), and A4 the
area matrix for transforming the surface tractions into
nodal forces. Since the nodal stresses generated by
seismic waves on the left boundary are in the opposite
direction to those on the right and bottom with respect to
the x-axis, the surface tractions Ao in Egs. (25a) and
(25b) differ by a negative sign. In the numerical analysis
to follow, the equivalent seismic forces F., given in
Egs. (25a) and (25b) will be imposed as the external loads
on the near-field boundary.

5 Seismic analysis by finite/infinite
element method

In this section, the procedure for simulating the half-
space under oblique seismic waves by the FIEM will be
given. In this case, the oblique incident seismic waves
hitting the near field are asymmetric with respect to the

amplitude (m/s?)

0 5 10 15 20 25
circular frequency (Hz)

(a)

vertical central line. For convenience, the origin O is set
on the left-top corner of the finite/infinite element mesh,
see Fig. 9. The finite elements will be adopted to simulate
the near field and infinite elements the far field. In this
study, the infinite elements have been arranged to have
oblique infinite boundaries consistent with the wave
propagation directions for treating the oblique incident
seismic waves, as shown in Fig. 9. The width and depth
of the near field (i.e., finite element mesh) are taken as 60
m and 30 m along the x- and y -axes, respectively. Here,
the observation points (OP-1-OP-6) in Fig. 9 are the ones
to be referred to in the numerical analyses.

5.1 Equation of motion by finite/infinite element method

The elements adopted are the quadratic 8-node (Q8) finite
element and the degenerated 5-node (Q5) infinite element
[48]. For brevity, only the shape functions for the
displacements of the Q5 infinite elements (see Fig. 10)
will be briefed as:

m-1
N, = %P(g), (26a)
N,==m-1D@+1DP&), (26b)
0.045
0.036 ¢
£ 0027}
3
£ 0018}
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g
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(b)

Fig. 8 Acceleration frequency spectra of Taft Earthquake: (a) horizontal; (b) vertical.
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Fig. 9 Finite/infinite element mesh.
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Fig. 10 QS5 infinite element: (a) global coordinates; (b) local coordinates.

_nm+D

N; >

P(£), (26¢)

P(f) — efmfefikuf’ (27)

where P (&) represents the wave propagation function in
the local coordinates, @, denotes the amplitude decay
factor with the decaying function e ¢ representing the
radiation damping induced by waves propagating to
infinity, and k, the wave number with e™¢ representing
the effect of wave oscillation. The function P(¢) in
Eq. (27) satisfies the Sommerfeld radiation condition, in
that it can represent the decay of outward traveling waves
to zero at infinity [59]. Selection of the parameters @, and
k, are crucial to the employment of infinite elements,
which will be briefed in Subsection 5.2. The
transformation of the wave propagation function from the
local coordinates to the global ones is available in Ref.
[48], which will not be recapitulated herein.

Consider that the external forces and displacements of
the nodes are of the harmonic form. According to the
standard procedure of the FEM, the motion equations for
the half-space can be established for each frequency w as:

(K-w*M)U=F, (28)

where K and M denote the stiffness and mass matrices,
respectively [48], for the discretized half-space shown in
Fig. 5, U is the nodal displacements vector, and F the
nodal load vector in the global coordinates. The matrix
(K — w*M) is also known as the impedance matrix S (w).

In soil dynamic analysis, one may divide the impedance
matrix S (w) into two parts related to the near field (n) and
boundary () and recast Eq. (28) as follows:

Snn ((,t)) Snb (LL)) Un ((,l)) _ O (29)
Sen (W) Sy (W) + 8 (W) || Uy (w) F(w) |’

where F. (w) is exactly the equivalent seismic forces
obtained in Section 4 for a unit ground acceleration,
Sin (W), 8 (W), Sy (W), Sy, (w) represent the near-field
impedance matrices and interfacing boundary, and
U,(w),U,(w) are the near-field displacements and
boundary, respectively, in frequency and space domain.

It is worth noting that infinite elements serve to absorb
the scattered waves generated by any excitation imposed
on the near field, including the equivalent seismic forces
F ., imposed on the near-field boundary. The capability of
the infinite elements in dealing with the geometry
radiation of the far field for waves propagating toward
infinity has been fully verified with the key parameters
specified in Ref. [48], which will be modified for the
problem below.

5.2 Amplitude decay factors @; and wave numbers k;

The key parameters of the numerical elements need to be
discussed to ensure the accuracy of calculation. First, let
us talk about the amplitude decay factor a; used for the
infinite elements in Eq. (27). For seismic waves with
incident angles in the range 0 < 6; <90, both P and SV
waves will propagate in near field, and Rayleigh (R)
waves will also occur on the ground due to the
interference of body waves. The present problem for
seismic waves with incident angles oblique to the half-
space with symmetrical near-field region is similar to the
wave propagation problem led by a line load acting at the
center point C of the near-field ground in Fig. 11, in
which Q denotes the distance between the center point C
of the ground and the near-field boundary. According to
Ref [48], for the regions where the body waves (i.e., P
and SV waves) are dominant, the amplitude decay factor
a, can be taken as 1/2Q, and for the regions where R
waves are dominant, «, is taken as zero for the 2D
problem considered. The above treatment remains valid
for the case for SV waves with incident angles over the
critical one.

Next, let us discuss the selection of wave numbers used
for the infinite elements in Eq. (27). Two different
partitioning schemes need to be considered. For the case
with P waves and SV waves with incident angles below
the critical angle, the R- and SV-wave numbers, k; and
ks, respectively, are used for the infinite elements in the
region near and below the ground on two sides, and P-
wave number kp for the region at deep bottom, as shown
in Fig. 11(a) [48]. But, for the case with SV waves with
incident angles over the critical angle, the SV-wave
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Fig. 11 Selection of wave numbers for: (a) incident P waves and SV waves with incident angles below the critical angle; (b) SV waves

with incident angles over the critical angle.

number ks is used for both the region below the ground
on two sides and at deep bottom, due to absence of P
waves. The accuracy of the above selection of wave
numbers will be confirmed in the numerical verification.

5.3 Procedure of analysis for oblique incident seismic
waves

The seismic analysis procedure for oblique incident body
waves, especially the transformation of the solutions from
frequency to time domain by the inverse fast Fourier
transform (IFFT), will be outlined in this section.

Firstly, the range of frequencies considered, i.e., 25 Hz
(see Fig. 8), for the earthquake is divided into a number
of increments for frequency domain calculation. Here, an
increment of Aw= 0.1 Hz (= 0.6283 rad/s) has been
proved to be sufficient for the accuracy of calculation
[54], and will be adopted throughout. It should be added
that the frequency increment used for generating the
earthquake spectra in Fig.8 wusing the FFT is
approximately 0.015 Hz.

Then, for each frequency w within the range, the
equivalent boundary forces F.,(w) can be computed by
Eq. (25). The displacements U (w) of the near field and
boundary can be solved from Eq. (29), and multiplied by
—w* to yield the acceleration responses U”(w). By
Hooke’s law, one can also calculate the stresses o (w) for
all nodes of the near field in frequency and space domain.
The set of component responses for the displacements,
accelerations and stresses are those obtained for the
frequency w. The procedure can be repeated for the next
frequency w+ Aw. It should be noted that each set of
component responses has a corresponding spectral
amplitude in the earthquake spectra of Fig. 8.

Next, by multiplying the above set of component
responses for each frequency w by the corresponding
spectral amplitude of the earthquake spectra in Fig. 8, one
can obtain the set of spectral responses contributed by
each frequency component w of the earthquake for the
horizontal (SV) or vertical (P) motion in Fig. 7.

There are two integrals for the IFFT in Eq. (8b). For the
integral with respect to the wavenumber (k, or k), it

was done in calculating the theoretical solutions of the
displacement and stress responses of the near-field
boundary (see Egs. (15) and (19)) used in the equivalent
seismic forces computation in Eq. (25). Hence, after
obtaining the near-field responses in frequency and space
domain (see Eq. (29)), only the integral with respect to
frequency w in Eq. (8b) needs to be implemented. In
practice, this is actually performed by replacing the
integral by the summation of all the spectral responses for
all frequencies falling within the range of consideration
for each earthquake [54]. In other words, by looping over
the frequency w from 0 to 25 Hz with the increment Aw
(rad/s) for the IFFT, one can sum up all the spectral
responses to obtain the total time-history responses of the
whole region of interest, including near field and
boundary, for which the time increment At is identical to
the one adopted in creating the time-hisotry records for
the earthquake. The numerical procedure for seismic
analysis is implemented by the MATLAB software
herein.

In this paper, the analysis of seismic response based on
the frequency-domain superposition method saves the
tedious computation for the step-by-step analysis in time
domain. Using the present method, the calculation
efficiency is also improved for analysis of the dynamic
response of the site and underground structures
considered herein under the action of oblique incident
earthquakes.

6 Verification of seismic analysis
procedure

6.1 Verification of frequency domain solution with Wolf’s

In the numerical verification, the finite element size L is
set to be 1 m X 1 m, and the mesh range of O = 30 m is
selected for the model in Fig. 9. To compare the present
solutions with Wolf’s [4], the physical properties of the
soil adopted are: elastic modulus £, = 100 MPa, Poisson’s
ratio v = 0.33, the density p, = 2000 kg/m>, for both P-
and SV-wave incidence. Hysteresis damping was not
considered in Wolf’s work [4]. For comparison, it will be
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neglected here too, but will be included in subsequent
numerical analyses. According to Eq. (20), the critical
angle of the SV waves is 30°.

For the earthquake spectra shown in Fig. 8, the range of
frequency considered is up to 25 Hz. By applying a unit
vertical or horizontal acceleration of incident P or SV
waves at the origin (see Fig. 9) for each frequency w (see
Subsection 4.1), the normalized horizontal and vertical
ground displacement amplitudes [u/Usl,[v/Usl|,[u/Usl,
and |v/Ug|, computed by present method, along with those
in Wolf’s were plotted in Figs. 12 and 13, for both P- and
SV-waves, respectively. Here, Up and Us are the total
ground displacement amplitudes caused by upward P and
SV waves, respectively.

As can be observed from Figs. 12 and 13, all the
numerical solutions agree excellently with the analytical
solutions of Wolf for incident angles from 0° to 90°. Of
interest is the drastically changing behavior of the soil
around the critical angle of 30° in Figs. 13(a) and 13(b). It
is confirmed that the infinite elements adopted for the
near-field boundaries (b, ,bg,by) can absorb adequately
the inhomogeneous surface waves generated by the SV
waves incident waves around the critical angle of 30°.
Besides, it is inferred that the element size and mesh
range selected herein (L = 1 m, Q = 30 m) are adequate,

25

— Wolf’s sol.
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as the requirement of L < Ag/5 has been met [55].
Consequently, the same element size and mesh range will
be used in the subsequent simulations for the sake of
accuracy.

6.2 Verification of frequency domain solution with Luco
and de Barros’

For the half-space containing a cylindrical cavity (see
Fig. 14), the present solutions will be compared with
de Barros and Luco’s [11] to verify the capability of
infinite elements in absorbing the scattering waves
generated by both P- and SV-waves. Following Ref. [11],
the embedment depth is H = 10 m, and radius of cylin-
drical cavity is @ = 5 m. The other properties of the soil
are: Poisson’sratio v = 0.33, elastic modulus £, = 100 MPa,
density p, =2000 kg/m3 , hysteresis damping 5 =0.01.
For comparison with de Barros and Luco’s solutions
[11], the dimensionless frequency i = 2a/A; is taken to be
0.5. The unit vertical or horizontal acceleration of
incident P or SV waves, both with incident angle 45°, is
applied at the point (30,0) in Fig. 14. Using the same
mesh range Q and finite element size L in Subsection 6.1,
the normalized horizontal and vertical ground
displacement amplitudes [u/Us|,|[v/Us|,[u/Us|, and [v/Us|

2.5 T . T
— Wolf’s sol.
2 4 o present sol. (OP-1) J
* present sol. (OP-2)
15} A present sol. (OP-3)
5
=
= 1
0.5
0
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(b)

Fig. 12 Normalized ground displacement amplitudes subjected to incident P waves: (a) horizontal; (b) vertical.
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Fig. 13 Normalized ground displacement amplitudes subjected to incident SV waves: (a) horizontal; (b) vertical.
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computed by present method, along with those of
de Barros and Luco’s [11], were plotted in Figs. 15 and
16, for P- and SV-waves, respectively. As can be seen,
the present solutions agree excellently with those of
de Barros and Luco’ for P- and SV-waves. This has
verified the capability of the infinite elements in
absorbing the scattered waves generated by oblique P-
and SV-waves. On the whole, the use of finite/infinite
elements makes it easy not only to simulate the far field
with high accuracy, but also the half-space containing

| 60 m |
O x (30.0) '
- ground motion input
T T

aadddddd

Fig. 14 Half-space containing a cylindrical cavity.
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Fig. 15 Normalized ground displacement amplitudes of the
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underground structures in a simple way [53-55], which
are the advantages over the other methods.

6.3 Verification of time domain solution

Unless otherwise specified, the hysteretic damping ratio
is taken as B= 0.02, Poisson’s ratio as v= 0.25, the
density as p, = 2000 kg/m’, and the elastic modulus as
E,= 100 MPa for the following numerical analysis.
Aimed at verifying the accuracy of the treatment for
transformation of the solutions from the frequency to time
domain for oblique incident seismic waves, as presented
in the preceding section, the incident angles 6y and 6
(see Figs.2 and 3) are set to 50°. Point OP-1 (on the
surface) in Fig. 9 was taken as the observation station,
which was also the point where the Taft Earthquake was
originally applied for analysis.

Both the inversely computed and original time-histories
of the Taft Earthquake (see Fig. 6 for original) at point
OP-1 for the SV- and P-waves were, respectively, plotted
in Figs. 17(a) and 17(b). The excellent agreement
between the two sets of earthquake data is an indication
that the procedure adopted for the IFFT for computing the
time-history soil responses is accurate.

35
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half-space containing a cylindrical cavity under P-wave incidence:
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Fig. 16 Normalized ground displacement amplitudes of the half-space containing a cylindrical cavity under SV-waves: (a) horizontal;

(b) vertical.
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7 Parametric study of half-space

7.1 Frequency domain responses of half-space for P-wave
incidence

Using the same numerical model in Fig. 9 and the data
previously given, the normalized horizontal and vertical
displacement amplitudes ([u/Us|,[v/Uy|) obtained for the
free surface were plotted against frequency in Fig. 18,
and those at specified depths along the vertical central
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line of the soil model in Fig. 19. For oblique incident P
waves, one observes from Fig. 18 that the ground
attenuations (|u/Uy|,|v/Uy|) are more obvious along the x-
axis for increasing frequency, implying that the ground
responses far from the epicenter are mainly controlled by
lower frequency seismic waves. However, from Fig. 19, it
is observed that the underground displacements
(lu/Us|,[v/Uyp|) fluctuate with increasing frequency,
revealing some local maxima and minima due to the soil
resonance effect. Moreover, the number of resonant
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Ground acceleration time histories of point OP-1: (a) horizontal (SV waves); (b) vertical (P waves).
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Fig. 18 Normalized displacement amplitudes on free surface subjected to oblique incident P waves: (a) horizontal; (b) vertical.
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Fig. 19 Normalized displacement amplitudes on vertical central line subjected to oblique incident P waves: (a) horizontal; (b) vertical.
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frequencies increases with respect to increasing depth,
which agrees with Wolf’s conclusions [4].

With regard to the effect of incident angle at different
depths, the analysis was focused on the displacement
amplitudes ([u/Us|,|[v/Up|) of the observation points
along the vertical central line for incident angles 6y
varying from 0° to 90° under f = 25 Hz. As can be
observed from Fig. 20, there exist several local maxima
and minima with the wunderground displacement
amplitudes (Ju/Us|,[v/Us|) for increasing incident angle
at different depths, and the fluctuation appears to be more
obvious at larger depth, different from the ground
responses in Fig. 12. It is concluded that the displacement
responses at larger depth are more sensitive to the change
in incident angle.

To further investigate the spatially irregular responses
of the half-space, the horizontal and vertical displacement
amplitudes (Ju/Usl,[v/Us|) along x- and y-axes fixed at
certain frequency and incident angle, i.e., f= 25 Hz, 6y =
50°, were plotted in Fig. 21. Here, to show the responses
along the depth direction more clearly, the horizontal axis
in Fig. 21(b) represents the normalized horizontal or
vertical displacement amplitudes, which will also be
adopted in the next sections. From Fig.21(a), it is
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observed that both the horizontal and vertical
displacement amplitudes (Ju/Us|,[v/Up|) monotonously
decrease along the horizontal direction of propagation for
incident waves. As for the horizontal and vertical
displacement amplitude ([u/Us|,[v/Up|) shown in
Fig. 21(b), they appear to be fluctuating synchronously
along the depth direction with little attenuation and the
displacement amplitudes at some certain depths are
greater than those on free surface.

7.2 Frequency domain responses of half-space for SV-
wave incidence

For oblique SV-wave incidence, the critical angle
calculated of homogeneous soil is 35.26° by Eq. (20).
With the incident angle 65, = 50°, the normalized
horizontal and vertical displacements ([u/Us|,[v/Us|) on
free surface and at specified depths on vertical central
line in frequency domain were, respectively, plotted in
Figs.22 and 23. As can be seen, the trends of
displacement amplitudes (Ju/Us|,[v/Us|) on free surface
and at specified depths for increasing frequency are
similar for incident P waves. One distinct difference is
that the vertical displacement amplitudes (|v/Us|) are
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significantly higher than the horizontal ones ([u/Us|)
especially on the ground for SV waves with over-critical
incident angles, which is consistent with the phenomenon
revealed in Fig. 13.

Subsequently, the underground displacement ampli-
tudes (Ju/Us|,[v/Us|) on the vertical central line of the
soil model for incident SV waves with incident angle 6s;
varying from 0° to 90° for = 25 Hz plotted in Fig. 24.
Clearly, the same trend in responses as the one for
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incident P waves can be observed. But the fluctuation of
displacement amplitudes ([u/Us|,[v/Us) with angle
variation are significantly greater than that for incident P
waves, indicating that the responses of displacement
amplitudes have higher sensitivity to the change of
incident angle under incident SV waves. Moreover,
abrupt changes in both horizontal and vertical
displacement amplitudes occur near the critical angle (see
red lines), but they are not as obvious as the ground
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Fig. 22 Normalized displacement amplitudes on free surface subjected to oblique incident SV waves: (a) horizontal; (b) vertical.
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response in Fig. 13.

In addition, for 6s; = 50° and /= 25 Hz, the horizontal
and vertical displacement amplitudes (ju/Us|,[v/Us|)
along the free surface and the vertical central line of the
soil model were, respectively, plotted in Figs. 25(a) and
25(b). As can be seen, except for the same trend as for P-
wave incidence, the deviation between the vertical and
horizontal displacement amplitudes ([u/Us|,[v/Us|) under
SV waves with over-critical incident angles is signifi-
cantly larger than that for incident P waves in Fig. 21(a).
Moreover, with increasing depth, the overall trend of
horizontal and vertical displacement amplitudes
(lu/Us|,v/Ug|) in Fig. 24(b) differs by half a period of
fluctuation, also different from the case for incident P
waves in Fig. 21(b).

For SV waves with under-critical incident angles, the
trend of displacement amplitudes for increasing frequen-
cy and the trend for those along different directions has
nothing special, compared with the case for incident P
waves. Thus, analysis will not be presented for this part.

7.3 Time domain responses of half-space for P-wave
incidence

The purpose of the following two sections is to analyze
the responses of acceleration for oblique incident seismic
waves in time domain using the Taft Earthquake
mentioned in Subsection 4.1.
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Assume that the P-wave vertical acceleration time
history given in Fig. 7(b) for point OP-1 (see Fig.9)
remains unchanged. But three different incident angles,
15°, 50°, 85° will be considered in the analysis. All the
other parameters of the model are identical to those used
in Section 6.3. The horizontal and vertical ground
acceleration time histories (a,,a,), respectively, at diffe-
rent ground observation points were plotted in Figs. 26
and 27. Obviously, for both the horizontal and vertical
acceleration time histories (a,,a,), the increase in incident
angle has resulted in more pronounced phase delay
becomes, as well as in amplitude attenuation. Besides,
one observes that the horizontal ground acceleration time
history (a,) at point OP-1 varies for different incident
angles, but the vertical ground acceleration time history
remains unchanged.

Subsequently, to investigate the influence of incident
angle on time domain response, the maximum values of
horizontal acceleration time histories (d,.,,) on the free
surface and along the vertical central line of the soil
model caused by P waves with different incident angles
were analyzed for the vertical acceleration time history
(a,) imposed at point OP-1. As can be observed from
Fig. 28, the contribution of seismic waves to the
horizontal acceleration responses (a,) increases with
increase in incident angle under the P-waves. In this
regard, one can also infer that the vertical acceleration
responses (a,) decrease with increasing incident angle of
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Fig. 25 Normalized horizontal and vertical displacement amplitudes subjected to oblique incident SV waves along: (a) x-axis; (b) y-axis.
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Fig. 26 Horizontal acceleration time histories on free surface subjected to P waves with incident angle of: (a) 15°; (b) 50°; (c) 85°.
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incidence P waves.

To visualize the trend of acceleration response along
the horizontal and depth directions, the maximum values
of the horizontal and vertical acceleration time histories
(@maxs and @) along the x- and y-axes, respectively,
under incident P waves for the incident angle 6 = 50°
were studied and plotted in Figs. 29(a) and 29(b).
Besides, the horizontal axis in Fig. 29(b) represents the
maximum values of acceleration time histories, which
will also be adopted in the next sections. From Fig. 29,
one observes that the maximum values of the horizontal
and vertical acceleration time histories (@, and dym.)
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uniformly attenuate in the form of fluctuation along the
horizontal direction, but irregularly attenuate along the
depth direction. Moreover, the maximum horizontal and
vertical acceleration responses (&ma. and a,,,) attenuate
more sharply near the ground along the depth direction,
but not so serious for greater depth.

7.4 Time domain responses of half-space for SV-wave
incidence

Similar to the analysis for the P-wave incidence, the
horizontal and vertical ground acceleration time histories

a, (m/s?)
a, (m/s?)

a, (m/s?)

8.0 8.5 9.0 95
time (s)

(a)

10.0 8.0 8.5

9.0 9.5 10.0
time (s) time (s)
(b) (©)

Fig. 27 Vertical acceleration time histories on free surface subjected to P waves with incident angle of: (a) 15°; (b) 50°; (c) 85°.
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Fig. 28 Maximum values of horizontal acceleration time histories subjected to P waves with different incident angles on: (a) free surface;
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(a.,a,), respectively, at the surface observation points
caused by SV waves with different incident angles were
plotted in Figs. 30 and 31, subjected to the horizontal
acceleration time history shown in Fig. 7(a) for point OP-
1 given in Fig.9(a). As can be seen, except for the
characteristics of ground responses similar to those
caused by incident P waves, the phase delay and
amplitude attenuation on the free surface along the x-axis
are more obvious, by comparing the peak deviation in
time history curves under two types of waves with the
same incident angle.

Next, the maximum values of the vertical acceleration
time histories (a,m,) on the free surface and vertical
central line of the soil model, respectively, were plotted
in Figs. 32(a) and 32(b), subjected to the horizontal
acceleration time history (a,) of point OP-1 given in

Front. Struct. Civ. Eng. 2022, 16(12): 1530-1551

Fig. 9(a). Of interest is that for increasing incident angle,
the maximum vertical acceleration response (dymax)
reaches a peak at the critical angle and then drops to
values higher than those prior to the critical angle. The
fact that the incidence of SV waves over critical angle can
result in generally larger peaks in the vertical responses
should be given more attention in practice.

Finally, the maximum values of both the horizontal and
vertical acceleration time histories (@, and d,,,,) along
the horizontal and depth directions, respectively, for SV
waves with incident angle 65 = 50° were plotted in
Figs. 33(a) and 33(b). Clearly, the trends of maximum
values of acceleration time history (&, and a,,,,) along
the horizontal direction are similar to those for incident P
waves, as was revealed in Fig. 33(a), but with more
fluctuations in the responses. All the maximum vertical
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Fig. 30 Horizontal acceleration time histories on free surface subjected to SV waves with incident angle of: (a) 15°; (b) 50°; (c) 85°.
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Fig. 31 Vertical acceleration time histories on free surface subjected to SV waves with incident angle of: (a) 15°; (b) 50°; (c) 85°.
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Fig. 32 Maximum values of vertical acceleration time histories subjected to SV waves with different incident angles on: (a) free surface;

(b) vertical central line.
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Fig. 33 Maximum values of horizontal and vertical acceleration time histories subjected to oblique incident SV waves along: (a) x-axis;

(b) y-axis.

acceleration responses (d,.,) are much larger than the
horizontal ones (a,m.), Which once more confirms the
dramatic amplification effect of the vertical response
induced by incidence of SV waves over the critical angle,
as shown in Figs. 13, 22, 23, 25(a), and 32.

However, the trends of maximum values of acceleration
time history (@uma, and a,,,,) in two directions show
obvious differences along the depth direction in
Fig. 33(b). That is, the maximum vertical acceleration
response (dyn,,) reach the peak on the ground, but
attenuate obviously with increasing depth, and fluctuate
for greater depth, while those of the horizontal ones
(ams) tend to increase generally along the depth
direction. Moreover, significant phase difference exists
between the overall horizontal acceleration response
(@.max) and vertical ones (dym,,), Which is consistent with
the trend of the response in frequency domain revealed in
Fig. 25(b). It can be explained that the absence of
reflected P waves and the occurrence of surface waves
induce the nonsynchronous motion of particles in the x-
and y-axes directions. But for the case where SV waves
incident with angles less than the critical one, the trends
of maximum acceleration time history are similar to those
for incident P waves.

8 Conclusions

This research presents the fundamental theory for the 2D
dynamic analysis of a viscoelastic half-space response to
oblique incident seismic waves (P or SV waves). Based
on the exact solutions in frequency-space domain for the
free-field displacements and stresses and the earthquake
spectrum, the equivalent seismic forces imposed on the
near-field boundary are calculated. Subsequently, using
the (asymmetric) finite/infinite element model, the
seismic responses of the half-space in frequency and time
domains are solved by using the MATLAB software. The
reliability of the proposed approach has been verified
against Wolf’s and Luco and De Barros’ solutions, as

well as for inversely computed ground motions.

Based on the theory, model, material parameters, and
earthquake data adopted, some conclusions for the half-
space under the 2D oblique incident seismic waves are
drawn below.

1) Frequency domain: (a) for both incident P and SV
waves, the responses of displacement at larger depth are
more sensitive to the change in incident angle; (b) for SV
waves with critical incident angle, abrupt change in
ground or underground displacement amplitudes occurs.

2) Time domain: (a) the increase in incident angle
results in more pronounced phase delay of the accelera-
tion time history, as well as in amplitude attenuation,
especially for SV waves; (b) for incident P waves, the
maximum horizontal acceleration response of the half-
space increases with increasing incident angle, but
conversely the vertical response; (c) for incident SV
waves, the maximum vertical acceleration response
shows a distinct peak value at the critical angle and then
drop to values higher than those prior to the critical angle.

3) Spatial irregularity in frequency domain: (a) for both
incident P and SV waves, the horizontal and vertical
displacements monotonously decrease along the horizon-
tal direction; (b) as for the depth direction, the horizontal
and vertical displacements fluctuate synchronously for
incident P waves, but there exists half a period of
fluctuation for SV waves with over-critical incident
angles, both with little attenuation.

4) Spatial irregularity in time domain: (a) for both
incident P and SV waves, the maximum accelerations in
two directions attenuate and fluctuate along the horizontal
direction; (b) for the depth direction, the maximum
horizontal and vertical accelerations attenuate sharply
near the ground for incident P waves, while significant
phase difference exists in the overall acceleration
responses for two directions for SV waves with over-
critical incident angles.

5) Effect of frequency for both P and SV waves: (a) the
seismic waves with low-frequency mainly dominate the
ground responses for the earthquake considered; (b) the
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underground responses fluctuate for increasing frequency
with little attenuation owing to the soil’s resonance effect.

Further studies will be conducted to deal with the

dynamic responses of the viscoelastic half-space for the
3D oblique incidence of seismic waves, including those
of the underground structures.
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