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Increasing CO; levels in the atmosphere due to the
consumption of large amounts of fossil fuels is
exacerbating global climate change, which seriously
threatens sustainable human development. As a
responsible and respectable country, China has
announced remarkable goals of reaching a carbon
emission peak and achieving carbon neutrality, which
are challenging missions with enormous contributions
to the world. As a strategic support, disruptive and
transformative energy technologies are urgently required
to develop new green and low-carbon energy industries.
Renewable energy sources such as wind and sun, which
can generate zero-carbon electric power, have been
rapidly developed in recent years. In China, the
cumulatively installed capacity of renewable clean energy
power generation had reached 1.06 billion kW by the end
0f 2021, accounting for nearly 44.8% of the total installed
capacity [1]. However, owing to the intrinsic inferiorities
of instability and anti-peak-load regulation, the power
from these renewable energy sources cannot be integrated
well into the electric grid, resulting in substantial waste
and further development restrictions [2].

Employing intermittent renewable electricity to power
the reduction of CO; to fuels is a new transformative
energy and negative carbon technology that cannot only
reduce CO, emissions through the utilization of CO; as
feedstock but can also store renewable energy as fuel.
Powered by renewable electricity, CO, can be reduced to
various synthetic fuels such as CO, HCOOH, CH;0H,
C,HsOH, and C,H4. These renewable synthetic fuels can
be consumed for power transportation directly or to
produce other fuels via the Fischer-Tropsch synthesis
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process to reduce our dependency on fossil fuels, and the
released CO; can be recycled to form a carbon-neutrality
cycle (Fig. 1).

In contrast to thermal catalysis under harsh conditions,
electrocatalytic CO; reduction can be performed at room
temperature and atmospheric pressure with a low energy
demand and facility requirement, which makes it
economically viable for practical applications. More
importantly, the reaction of CO, electroreduction under
ambient conditions is highly controllable with a well-
defined electroactive component, and the products vary
and depend on distinct active sites with different
potentials. By employing CO, electroreduction
technology, renewable synthetic fuels, such as CO [3-5]
and HCOOH [6-8], have been selectively synthesized
with Faradaic efficiencies usually above 90%, and the
current densities related to the conversion rate need
improvement. The production of multi-carbon renewable
fuels, such as ethylene, ethanol, and acetate, is much
inferior in terms of selectivity and activity and is
currently being improved by regulating catalysts and
electrolytic systems.

Although impressive progress has been made, the low
CO; solubility in aqueous electrolytes (34 mmol/L at
25°C and 1 atm) [9] and long mass transfer distance
hinder CO; mass transport, resulting in a very limited
current density of tens of mA/cm? [10-13], which is far
below the requirement for industrial applications. One
strategy for addressing this issue is to construct gas-
diffusion electrodes (GDEs) by coating highly active
catalysts on microporous layers decorated with
superhydrophobic polytetrafluoroethylene and conductive
carbon particles [14-17]. Such GDEs integrated with
flow cells or membrane electrode assemblies could
promote the rapid diffusion of CO, to the active sites,
thus enabling the reaction to operate at an industrial-scale
current density (= 200 mA/cm?) [18-22]. However, in
this system, CO; inevitably reacts with OH™ to generate
carbonate/bicarbonate species that can block the mass
transfer channels, and GDEs must also provide sufficient
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hydrophobicity to prevent frequent flooding [23,24].
Furthermore, the integrated polymer binder may age and
loosen during long-term electrolysis, which deteriorates
the stability and performance. All of these imperfections
limit the potential of GDE systems for industrial
applications. Therefore, designing and constructing a new
type of functional electrode configuration is essential for
achieving excellent selectivity and stability for CO,
electroreduction at an industrial-scale current density.

A three-dimensional hollow fiber porous material with
a compact structure can serve as a self-supported
electrode without any additives and exhibits promising
potential for efficient and high-rate CO; electroreduction
due to enhanced mass transport. The self-supported
hollow fiber electrode fabricated by a facile and scalable
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method (Fig.2) consisted of only a single active
component with an abundant surface area and tunable
pore structure. The rich hierarchical porous structure of
the hollow fibers provided convenient mass transfer
channels for CO, electroreduction reactions (Fig. 3(a)).
With the end of the hollow fiber sealed, gaseous CO, can
be forced to penetrate the porous channels to make good
contact with the catalyst and electrolyte, promoting CO,
electroreduction at the gas-catalyst-liquid three-phase
boundary. This type of electrode configuration is termed
“gas penetration electrode (GPE)” and with its greatly
enhanced mass transfer ability, it displays substantial
potential in CO, electroreduction for industrial
applications.

Research on hollow-fiber GPEs for synthesizing
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Fig. 1 Roadmap of renewable fuel production and the carbon cycle via electrocatalytic CO; reduction powered by renewable energy.
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Fig. 2 Schematic illustration of the preparation of Cu hollow fibers using the coextrusion/coaxial spinning method.
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Fig. 3 Schematic illustrations of hollow fiber gas penetration electrodes.

(a) The hollow fiber electrode with a hierarchical micro/nanostructure for CO, electroreduction to various products; (b) the large-scale CO;

electroreduction engineering on basis of the hollow fiber array.

renewable fuels has been increasing, and the huge
advantages of hollow-fiber GPEs have already been
reported. Kas et al. obtained CO yields at least one order
of magnitude higher using Cu hollow fibers for CO,
electroreduction compared to nanocrystalline Cu
electrodes [25]. Subsequently, Chen et al. constructed
freestanding Cu-Sn alloy hollow fibers for selective
formate formation from CO, electroreduction with a
Faradaic efficiency of 91% by suppressing hydrogen
evolution [26]. Additionally, Yuan et al. adopted an
electrodeposition method to decorate Cu hollow fibers
with controlled Sn [27,28] or Bi [29] surfaces. The highly
rough surfaces provide more catalytically active sites for
CO; electroreduction, resulting in a higher formate partial
current density, outperforming other Cu-based GDEs.
However, these hollow fiber eclectrodes have not been
working to their full penetrating effect and thus deliver
very limited current densities (< 200 mA/cm?), which is

insufficient to afford viable CO,
electrochemical conversion.

Recently, our group fabricated Cu hollow fiber GPEs
using a phase-inversion/sintering method (Fig. 2), which
can stably synthesize formate from CO, electroreduction
at a high current density of 210 mA/cm? with yields of
approximately 16 and 30 times those of Cu foam and Cu
foil, respectively [30]. We also fabricated a hierarchical-
micro/nanostructured hollow fiber electrode composed of
only metallic Ag for CO, electroreduction, which
achieved the efficient formation of CO at ampere-level
current density (> 1 A/cm?) [31]. Surprisingly, the CO,
conversion rate on this Ag hollow fiber GPE exceeded
50% at a high space velocity of 31000 mL/(gcsh) under
ambient conditions. The large current densities
(~1.26 A/cm?2) and high CO Faradaic efficiencies (~93%)
remained quite stable in a continuous test for a long

lifespan. Hollow fiber GPEs with an enhanced and

economically
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oriented mass transfer function enable the continuous
transport of CO; to the catalyst surface and promote the
generation of a three-phase interface between gaseous
CO,, the electrode, and the electrolyte, thus achieving an
ultrahigh current density, outperforming state-of-the-art
hollow-fiber electrodes (Table 1). These insightful
studies confirmed that hollow-fiber GPEs exhibit
compelling performance for stable CO; electroreduction
at industrial-scale current densities.

Hollow fibers are generally fabricated using the
coextrusion/coaxial spinning method with a phase
inversion and sintering process [26—33] (Fig.2). The
spinneret used in this method consisted of at least two
coaxial tubes. The core solution, normally water, is
injected into the central tube to form the hollow fiber.
Meanwhile, the sample solution, including the target
material, polymer, and organic solvent mixed by ball
milling, is excluded from the other tube to generate the
shell of the hollow fiber. The shell of the hollow fiber is
solidified by inverting the organic solvent with an
inorganic solution. The removal of the polymer and final
sintering gives rise to a mechanically strong hollow fiber
with a finger-like porous structure on the shell. Such a
method can be wused to fabricate hollow fibers
continuously with high flux and uniform structures,
making it facile and compatible with existing large-scale
production processes. More importantly, the inner and
outer diameters of the hollow fibers can be easily
adjusted by tuning the flow rate of the core and shell
solutions or the diameter of the spinneret, respectively, to
optimize the three-phase interface reaction kinetics of
CO; electroreduction. Moreover, the hollow fiber
electrode configuration can be expanded from one-
layered to multilayered hollow fibers and from one-
component to multicomponent hollow fibers to achieve
synergistic electrocatalytic CO, reduction, which may
significantly promote the formation of multicarbon
renewable synthetic fuels.

The hollow fiber configuration is suitable for large-
scale applications because of its high surface/volume-
specific ratio, controllable fabrication process, low cost,
and suitability for industrial modules. In particular, the
higher surface/volume ratio enables hollow fibers to be
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easily assembled and scaled up. That is, the single hollow
fiber on the working electrode can be expanded to an
array of multiple well-arranged hollow fibers (Fig. 3(b)),
making it viable to scale up CO, electroreduction to
renewable synthetic fuels. Therefore, the electrode area
can be enlarged from a few square centimeters at the
laboratory level to thousands of square centimeters at the
industrial level. Accordingly, the electrode arrangement
and layout of the electrolytic cell must be optimized to
meet the amplification requirements of the electronic,
gas, and electrolyte flow paths. That is, the hollow fiber
array arrangement, including the spacing, length, amount,
and size of the current conductor and the electrolytic cell,
must be compatible with each other, which is a great
challenge. The rules of electrode amplification and
electrolysis cell design are underway to construct a
perfectly suited electrolyzer to overcome the most critical
bottleneck in engineering amplification of electrocatalytic
CO; reduction. In addition, metal selection for producing
target renewable fuels, construction of hierarchical
micro/nanostructures on hollow fibers for enhancing
mass transfer, and a thorough investigation of the
reaction mechanism and the kinetic process of CO;
electroreduction should be focused upon in future
research.

The electrocatalytic CO, reduction route for producing
renewable synthetic fuels wusing hollow-fiber gas
penetration electrodes has huge market potential. In the
future, an energy system will be established using
renewable energy as the main body. Hollow-fiber
integrated electrolytic units powered by zero-carbon
electricity are feasible for producing renewable synthetic
fuels from CO, and water. Large-scale synthesized
renewable fuels, such as syngas with controllable ratios,
can be combined with the Fischer-Tropsch synthesis
process to produce long-chain hydrocarbons and other
fuels [34]. The released CO, from the consumption of
these fuels can be recycled to form a negative carbon
cycle. The advantages of high power output, low
fabrication costs, and easy engineering amplification of
hollow-fiber gas penetration electrodes make them
potentially promising for industrial applications. In
addition to the electrocatalytic CO, reduction route,

Table 1 Performance comparison of CO, electroreduction on the current hollow-fiber electrodes

Catalysts Electrolyte Potential/(V vs. RHE) Products Jioal/(MA-cm~2) FE/% Ref.
Cu hollow fiber 0.5 mol/L KHCO3 -1.1 Formate 210 80 [30]
Activated Ag hollow fiber 0.5 mol/L KHCO3 —0.83 Cco 1262 93 [31]
Cu hollow fiber 0.3 mol/L KHCO3; -0.4 CcO ~10 72 [25]
Cu-Snysg, hollow fiber 0.5 mol/L KHCO3; -0.75 Formate 66 91 [26]
Cu-Sn hollow fiber 0.5 mol/L KHCO3 -1.2 Formate 88 78 [27]
CugSns hollow fiber 0.5 mol/L KHCO3 —-1.1 Formate 136 89 [28]
CuBi,05 hollow fiber 0.5 mol/L KHCO; -1.0 Formate 141 85 [29]
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hollow-fiber gas penetration electrodes that efficiently
produce renewable synthetic fuels can also be achieved
through the routes of photoelectrocatalytic CO;
reduction, electrocatalytic CH4 oxidation, photoelectro-
catalytic CHs oxidation, and electrocatalytic N,
reduction. These are also promising for industrial
applications, even though they are still in the early stages.
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