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Abstract Electrothermal metasurfaces have garnered
considerable attention owing to their ability to dynamically
control thermal infrared radiation. Although previous
studies were mainly focused on metasurfaces with infinite
unit cells, in practice, the finite-size effect can be a critical
design factor for developing thermal metasurfaces with
fast response and broad temperature uniformity. Here, we
study the thermal metasurfaces consisting of gold
nanorods with a finite array size, which can achieve a
resonance close to that of the infinite case with only
several periods. More importantly, such a small footprint
due to the finite array size yields response time down to a
nanosecond level. Furthermore, the number of the unit
cells in the direction perpendicular to the axis of nanorods
is found to be insensitive to the resonance and response
time; thus, providing a tunable aspect ratio that can boost
the temperature uniformity in the sub-Kelvin level.
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sub-Kelvin
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1 Introduction

Metasurfaces, comprising an array of subwavelength
scatters, such as metallic nanorods [1-3], graphene
nanoribbons [4,5], and dielectric gratings [6], have
emerged as a promising platform to actively control
thermal infrared radiation [7-12]. The coupling among
these thermal scatters or infrared antennas provides
multiple degrees of freedom for controlling thermal
emission, including its spectrum, directionality, and
polarization. The resulting metasurface thermal emitters
have become excellent alternatives to semiconductor-
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based infrared light sources (e.g., infrared lasers or
LEDs) in the lighting [13—15], sensing [16], imaging
[17], and energy harvesting [18,19] applications because
of their high tunability and low-cost.

However, there still exist substantial challenges for
dynamically controlling the thermal infrared emission
using active thermal metasurfaces, such as slow temporal
response [13,20-22], poor temperature uniformity
[23-25], and low emission power. Previous designs for
thermal metasurfaces have been mainly focused on the
infinite array of subwavelength scatters, which is
beneficial for experimental procedures with excellent
optical properties [1,3,6] but leads to a slow response
speed and non-uniform temperature distribution.

In this study, we investigate the effect of electrothermal
metasurface size by designing gold nanorod array (GNA)
based metasurfaces with a nearly perfect narrowband
emission, shown in Fig. 1(a). The resonance intensity
from the finite GNA can be significantly converged to a
value comparable to that occurring in the infinite case.
The resulting small footprint allows the metasurface
thermal emitters to respond at a nanosecond timescale.
More importantly, this strong resonance is, to some
extent, insensitive to the aspect ratio of the nanorod array,
which serves as a new degree of freedom to achieve a
temperature uniformity of less than 1 K. Therefore, the
comprehensive analysis presented in this study provides a
guideline for designing high-performance thermal
infrared metasurfaces. A detailed benchmark discussion
presented in the Appendix shows that even state-of-the-
art active thermal metasurfaces can benefit from our
finite-size and aspect-ratio analyses.

2 Modeling methods

The optical response of the metasurface was modeled
using ANSYS Lumerical finite-difference time-domain
solutions. Then, electrothermal simulations were
conducted in COMSOL Multiphysics. The GNA was
positioned on the multilayer consisting of a Si substrate,
300 nm thick layer of SiO, insulation layer, 200 nm thick
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Al reflector, and 100 nm thick dielectric spacer made of
ALO3;, as shown in Fig. 1(b). The Al reflector also
functioned as a heater, where a current is passed through
to heat the GNA.

In the optical simulations, the GNA and substrate
underneath were illuminated by a plane wave source
polarized in the x-direction, as indicated by the blue
arrow in Fig. 1(b). A reflective power monitor was placed
above the source to capture the reflective energy and thus
the GNA resonance feature.

The thermal simulation combined an electric current
module, governed by the electric current equations, with
a 3D heat conduction module, governed by heat diffusion
equations. In the electric current module, a fixed current
of Iy = 250 mA passed through the Al reflector, and the
calculated volumetric Joule heat generation was set to be
the heat source in the heat conduction module. The
bottom surface of the silicon substrate was fixed to
achieve a constant temperature of 7y = 293.15 K. The
transient simulation started with the overall initial
temperature of Ty, and the temperature profiles were
captured within 0 to 2000 ns.

ALO;: 100 nm

Al: 200 nm

Si0,: 300 nm

Si substrate

(b)

Fig. 1 Device design and simulation setup.

(a) Schematic of a metasurface based on gold nanorod arrays.
(The AlyOs spacer is hidden to reveal the Al reflector beneath,
which also functions as the heater (Joule heating is applied via a
fixed current /p). P, and P, represent the periodicities in the x-
and y-directions, respectively.) (b) x-z view of the simulated
device. (The dimensions of each gold nanorod are 700 nm x 50
nm X 50 nm in the x, y, and z directions, respectively. The size
and location of the reflective power monitor (dashed line) is
fixed throughout simulations.)

3 Results and discussion
3.1 Optical simulations

To analyze the finite size effect on the metasurface, we
first simulated the reflective spectrum of an infinite GNA
as a reference. Typically for an infinite GNA, the
resonance frequency in the reflective spectra is
determined by the localized surface plasmon resonance
(LSPR) of the single gold nanorod resonator [26], while
the resonance strength is governed by both the LSPR and
packing density (periodicity) [27]. Here, we designed the
GNA with a single nanorod sized 700 nm x 50 nm % 50 nm
in the x-, y-, and z-directions, where the periodicities were
set to P, = P, = 800 nm. The simulated spectrum is
plotted as the black line in Fig. 2(a) and features a first-
order resonant peak centered around a wavelength of
1046 nm. Figure 2(b) illustrates the |E]?> profile at the
resonance frequency, which indicates a longitude LSPR
mode [26]. The high-order mode at around 870 nm in
Fig. 2(a) corresponds to the weak periodic brightness
near the center of the nanorod depicted in Fig. 2(b).
Subsequently, the effect of the finite array size on the
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Fig.2 Optical simulations for finite-size analysis.
(a) Simulated reflectance spectra for different array sizes; (b)
simulated |E|? profile of a single unit cell in the infinite array at
the resonance wavelength of 1046 nm.
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GNA metasurface is investigated with a different finite
number of N X N arrays from N =1 to N =9, shown in
Fig. 2(a). However, for simulations involving finite-size
arrays, it is inherently impossible to eliminate the
absorption effect of the simulation boundaries (perfectly
matched layer) [28], which will inevitably result in an
underestimation of the reflectance. Thus, in all finite
array size simulations, we fixed the monitor size (fully
covered the 9 x 9 arrays) and distance between the
monitor and metasurface. By doing so, we could mimic
the real experimental condition where the arrays were
measured by the same spectrometer. Hence, the
reflectance spectra are comparable, and spectral
emissivity of those finite-size metasurfaces can be
inferred based on Kirchhoff’s law.

From Fig. 2(a), we can observe that the finite array
preserves the narrowband feature of the infinite one, and
the first-order resonance starts to saturate when N = 7,
which corresponds to a metasurface with an approximate
area of only 2.2 um?. This enabled the device to have a
thermal response down to the nanoseconds level, as
discussed later in electrothermal simulations. Compared
with the case of infinite array size, a red shift in the
resonance wavelength could be clearly observed. This
shift depends on the packing density or periodicity of the
nanorod array, as described by the tight binding model
[27]. With an increasing number of nanorods, the dipole
moment could be effectively elongated, causing a longer
resonance wavelength.

The influence of the GNA arrangement on the
reflectance spectra is also studied. To achieve this, we
kept the total number of unit cells around 49, which
corresponds to a 7 x 7 array marking the resonance
saturation, but vary the aspect ratio N,/N, of the array
(i.e., number of unit cells along the axial direction (x-
direction) divided by the number along the other (y-
direction)). For arrays with different aspect ratios, the
contrast ratio C; of the reflectance spectrum was
evaluated, which is defined as:

C, =[1-min(R)]/[1 — mean(R)], €))
where min(R) represents the minimum value in the
reflectance spectrum and mean(R) represents the spectral
average of the reflectance spectrum. Hence, the contrast
ratio physically represents to which degree the resonance
feature stands out compared with the spectrum baseline.
Therefore, a large C; value is targeted.

From Fig.3(a), for NN, > 1, the resonance can
maintain its intensity even with only a small number of
arrays in the perpendicular direction (y-axis) owing to the
highly polarized nature of the GNA resonance. However,
the arrays with an aspect ratio N,/N, < 1 exhibit a
significantly decreased contrast ratio. A detailed
comparison is presented in Fig. 3(b), where N,/N, = 16/3
almost keeps the same resonance intensity as that of the
unbiased case N,/N, = 7/7, while the peak height of N,/N,
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Fig. 3 Optical simulations for aspect ratio analysis.

(a) Contrast ratios C; of finite GNAs with different aspect ratios;
(b) simulated reflectance spectra for aspect ratios N,/N, = 16/3,
7/7 and 3/16, respectively.

= 3/16 is almost halved and broadened. Relaxing the
requirement for the number of arrays in the direction
perpendicular to polarization is found to significantly
improve the temperature uniformity of the GNA when
considering the electrothermal active emission. Thus, it is
a valuable factor in design, especially at the nanoscale
where the controlling parameters are limited.

3.2 Thermal simulations

The GNA is electrically heated, and its emission is
analyzed in both transient and steady-states. We first
simulate the response time (defined as 90% of the rise
time when responding to the on-switch current injection)
for the device under different array sizes and aspect
ratios. With an increased array size, the response time
increases dramatically, shown in Fig. 4, because a larger
size induces a larger thermal mass, which significantly
reduces the cutoff modulation frequency. This underlines
the importance of determining the minimal size of the
finite metasurface showing enough resonance contrast.
For our device, with a saturation size of N = 7, we can
achieve a response time of approximately 600 ns, which
outperforms the majority of current tunable metasurface
designs (see Appendix).
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Fig.4 Response time for arrays with different sizes N (blue
diamonds) and aspect ratios N,/N, (green stars).

With an array size of approximately N = 7, containing
49 unit cells, we further study the influence of the aspect
ratio. Even under an extremely large aspect ratio change
(Ny/N, = 4/12 — 12/4), we can keep the device response
time down to nanoseconds, with a fluctuation of only
around 100 ns (red-dashed box). Combined with our
previous discussion that a large N,/N, has less influence
on the resonance contrast of the x-polarized metasurface,
the aspect ratio can provide a stable performance to the
metasurface both optically with a narrowband, which
indicates nearly perfect emission, and electrothermally
with an ultrafast response.

Therefore, under a certain window, the aspect ratio can
be set freely to benefit other characteristics of our device
performance, among which the temperature uniformity of
the metasurface is fundamentally important. A reliable
thermal emission typically favors a stable and uniform
temperature, which also simplifies the design processes.
Even when pursuing advanced nonequilibrium emissions
[29], controlling the temperature uniformly in a small
local area is a prerequisite for most cases.

The temperature uniformity of the GNA metasurface is
illustrated by 2D normalized isothermal contours, shown
in Fig. 5(a), along with the geometry of the arrays and
electrodes. The GNA with a larger N,/N, is found to have
much sparser isothermal contours, indicating a smaller
temperature gradient. To specify the details, we also
define the temperature difference (7yax — Tmin) inside the
array area enclosed by black-dashed boxes depicted in
Fig. 5(a). The temperature difference for both axes in
Fig. 5(b) decreases with increasing N,/N, because of the
thermal conduction from the electrode, which
substantially modifies the temperature profile of the
metasurface. Another indication of the impact from the
electrode is that the decrease in temperature difference
along the y-axis is faster than that along the x-axis due to
the more effective heat conduction through the electrode
metals. With N,/N, increasing up to about 3, the
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Fig.5 Temperature uniformity for arrays with different aspect ratios.

(a) From top to bottom: normalized isothermal contours for
arrays with aspect ratios N/N, = 12/4, 7/7, and 4/12,
respectively; (b) temperature difference along x-axis AT, and
along y-axis AT, for arrays with different aspect ratios.

temperature difference can even reach sub-Kelvin levels
along the y-axis while keeping a high resonance contrast
ratio of 1.8 and a fast response time of 720 ns. Note that
here we only consider a common trapezoidal electrode,
whose material and shape can be further optimized based
on the GNA aspect ratio to enhance the temperature
uniformity. Finally, the degree of freedom in aspect ratio
tuning can also improve the power injection into the
metasurface via impedance matching based on the
maximum power transfer theorem.

4 Conclusions

In summary, we designed a thermal metasurface based on
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a finite-size gold nanorod array, which can achieve a
nearly perfect narrowband emission close to that of the
infinite case with only several unit cells. Because of its
small volume, the metasurface could achieve a fast
response down to a nanosecond level. Moreover, the
aspect ratio of this finite array could be tuned to greatly
enhance the temperature uniformity to a sub-Kelvin
temperature difference, while maintaining the high
resonance contrast ratio and nanosecond-level response
time. The analysis methodology could be extended to
polarization-independent metasurfaces, such as the
crossbar array that exhibited better emission efficiency in
sensing applications [16,30-33]. Furthermore, our
analysis could also be extended to handle inhomogeneous
temperature cases based on the framework of a local
Kirchhoff ’s law [34]. While our current conclusions are
drawn only considering the normal direction, more
physical characteristics can be revealed if the angle
dependence of the metasurfaces is included [35,36]. With
these extensions, the analyses regarding the size and
aspect ratio of the finite-size metasurfaces pave the way
for optimizing the electrothermal infrared devices.
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Appendix

The modulation of thermal radiation by a metasurface can
be achieved by two mechanisms, namely, temperature
and emissivity modulation, both of which can benefit
from our finite-size and aspect-ratio analyses. To the best
of our knowledge, we have summarized state-of-the-art
active thermal metasurface practices in Table Al.

The emissivity modulation by MEMS [20,37],
semiconductor carrier injection [22, 13, 38], and
graphene gating [39-42] are pure electrical processes
whose response times are limited by the electrical device
RC time constant. This also holds for the temperature
modulation by hot electrons [43], which corresponds to
non-resonant emission when electrons and phonons are in
non-equilibrium. Therefore, their response times are
generally much shorter than our electrothermal approach.
Nevertheless, for the optical part of our conclusions, the
fast resonance convergence of finite-size array and
resonance insensitivity to aspect-ratio, are applicable to
these devices to reduce the response time by further
eliminating the electrical parasitic capacitance.

The response time for the emissivity modulation by
phase-change materials [23-25] is limited by the set
pulse, which needs to be long enough for the GeTe-based
materials to fully crystallize. This mechanism is
particularly suitable for our guidelines regarding both the
optical and thermal parts. The response time can be
further decreased; accordingly, the temperature
uniformity improves as the array size decreases.

The temperature modulation by heat diffusion [34, 21,

Year Mechanism Medium Wavelength Response time Ref
2013 Emissivity MEMs 6.2 um 30 kHz (33.3 pus) [20]
2017 Emissivity MEMs 8.9 um 100 kHz (9.1 ps) [37]
2014 Emissivity GaAs/AlGaAs 9.17 pm 600 kHz (1.7 ps) [13]
2018 Emissivity InAs 7.3 um 4.8 MHz (208.3 ns) [22]
2019 Emissivity GaN/AlGaN 4 um 50 kHz (20.0 ps) [38]
2013 Emissivity Graphene 7.8 um 40 MHz (25.0 ns) [39]
2014 Emissivity Graphene 6.9 um 20 GHz (0.05 ns) [40]
2016 Emissivity Graphene 8 um 2.6 GHz (0.38 ns) [41]
2018 Emissivity Graphene 8.5 um 7.2 GHz (0.14 ns) [42]
2021 Emissivity GSST 1.43 pm 500 ms [23]
2021 Emissivity GST-326 755 nm 21 ps [24]
2022 Emissivity GST-225 1.64 pm 200 ps [25]
2019 Temperature Hot electrons 1.59 uym 350 ps [43]
2015 Temperature Heat diffusion 4.26 um, 3.95 um 20 Hz (50 ms) [21]
2018 Temperature Heat diffusion 4.2 pm, 7 pm 100 kHz (10 ps) [44.,45]
2021 Temperature Heat diffusion 5.1 um 20 MHz (50 ns) [34]
2022 Temperature Heat diffusion 1046 nm 600 ns This study
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44-45] is our ideally targeted case. Our research focuses
on the metasurface design to handle the tradeoffs between
the optical and thermal performances, such as the tradeoff
between the infinite-array requirement in optical
responses and high speed in thermal responses. However,
the response time is a systematic result not only
concerning the metasurface layer but also the whole
device including the electrode design for heat generation
and substrate for heat dissipation. Thus, it is
understandable that Ref. [34], after careful optimization
of all these factors, has achieved a response time of 20 ns.

Although the temperature uniformity is not
comprehensively measured from the reference mentioned
above, it remains fundamentally important because most
metasurface-based thermal radiation control implicitly
assumes that Kirchhoff ’s law is valid [13,20-25,37-45].
Otherwise, a generalization of Kirchhoff ’s law [34] or
some inhomogeneous direct emission computations [29]
must be included, both of which increase the difficulties
in design. The temperature uniformity is particularly
critical in the phase-change-based modulation, which
requires the heat pulse not only appropriate in the time
domain but also active in optically functional areas in the
space domain.
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