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ABSTRACT This paper proposes a framework for critical element identification and demolition planning of frame
structures. Innovative quantitative indices considering the severity of the ultimate collapse scenario are proposed using
reinforcement learning and graph embedding. The action is defined as removing an element, and the state is described by
integrating the joint and element features into a comprehensive feature vector for each element. By establishing the
policy network, the agent outputs the Q value for each action after observing the state. Through numerical examples, it is
confirmed that the trained agent can provide an accurate estimation of the Q values, and handle problems with different
action spaces owing to utilization of graph embedding. Besides, different behaviors can be learned by varying
hyperparameters in the reward function. By comparing the proposed method and the conventional sensitivity index-based
methods, it is demonstrated that the computational cost is considerably reduced because the reinforcement learning
model is trained offline. Besides, it is proved that the O values produced by the reinforcement learning agent can make
up for the deficiencies of existing indices, and can be directly used as the quantitative index for the decision-making for
determining the most expected collapse scenario, i.e., the sequence of element removals.

KEYWORDS progressive collapse, alternate load path, demolition planning, reinforcement learning, graph embedding

1 Introduction of one or multiple structural elements. The critical ele-
ments, after whose failure the ALP can hardly be
established, can be quantitatively identified by sensitivity

indices that characterize the effect of loss of the element

In the process of designing building frames, safety
against various loads, including self-weight, live loads,

seismic excitation, and wind loads, is considered. Further-
more, if more critical events leading to total collapse are
to be considered, safety against progressive collapse may
be another important aspect of the design process, as it
significantly threatens the safety of human lives and
properties. Thus, the anti-progressive collapse design has
been extensively studied in the recent two decades, where
the alternate load path (ALP) method [1] is a well-
accepted approach to evaluate the redundancy of the
structure under local failure [2—5]. Specifically, the ALP
method modifies the structural system assuming the loss
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on the total strength and difficulty in the internal force
redistribution of the frame. Most commonly-used sensiti-
vity indices are determinate ones based on the bearing
capacity [7—10], deformation [11], dimensionless total
damage [12], or energy [13,14]. Another typical enginee-
ring practice sharing the same mechanism is demolition
planning (DP) [15—17], which aims at safely demolishing
the whole structure by eliminating structural elements
using controlled explosions or mechanical demolition
[18]. Apart from the internal force redistribution severity,
the DP also takes the cost and efficiency into considera-
tion. Correspondingly, Isobe [19] proposed the key
element index to estimate the contribution of the
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structural elements to overall collapse for a successful
demolition.

However, two main difficulties arise when the sensiti-
vity indices mentioned above are used to conduct critical
element identification (CEI) or DP. The first is that the
calculation of indices requires structural analysis for the
damaged structure corresponding to each scenario of
element removal at each step of collapse or demolishing
analysis. Hence, the computational cost can be conside-
rable if all possible scenarios are traversed, as structures
with high redundancy will collapse under multiple-
element loss instead of single-element loss. The other
difficulty is that, as these indices cannot consider the
outcome of the ultimate collapse and the sequence of the
element loss (or the collapse process), they cannot be
directly applied to make decisions for determining the
most expected collapse scenario [20], and human
inference or optimization methods are necessary, which
can be laborious.

Regarding the first difficulty, the methods called exact
or approximate reanalysis can be utilized instead of
carrying out analysis for the frame corresponding to each
removal scenario. Ohsaki [21] proposed an exact
reanalysis method for truss structures, and complicated
matrix operations to calculate the inverse stiffness matrix
of the modified structure are avoided in the process of
topology optimization. Makode et al. [22] used the virtual
distortion method and reduced the order of matrix
equations for the reanalysis of rigidly jointed frames.
However, some approximation errors inherently exist for
rigidly jointed frames.

As for the second difficulty, although stochastic
sensitivity indices considering the failure probability
[23,24], risk [25,26], and reliability [27,28] are proposed
and are of theoretical significance, they are not friendly to
practical engineers in the initial design process since
additional computational cost of probability analysis is
brought in. Nonetheless, it is evident that a certain
relationship exists between the element(s)-loss scenarios
and the properties of the damaged frames because the
structural properties are determined by the locations and
properties of members, and they can be intuitively
estimated by the experienced structural designers and
engineers. Besides, different element(s)-loss scenarios
can be characterized by different Markov Decision
Processes (MDPs) [29], where the sequence of element
loss and the outcome of the final collapse can be naturally
considered. Hence, the machine learning techniques are
promising in utilizing the existing data/experience to
reduce the computational cost [30] for CEI and also for
optimizing the DP, as well as resolving the shortcomings
of existing sensitivity indices.

In recent years, supervised learning (SL) and reinforce-
ment learning (RL) have been extensively applied in the
field of structural engineering, as recent progress is
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summarized in literature [31,32]. Specifically, SL can
effectively handle static regression problems and learn
experience from the training data by means of establi-
shing neural networks. Hence, problems in structural
engineering that involves high non-linearity and large
computational cost can be solved by establishing
surrogate models based on SL. For instance, Zhu et al.
[33] utilized the artificial neural networks and the support
vector machine to estimate the non-linear buckling
capacity of imperfect reticulated structures, and the
computational time of non-linear buckling analysis was
significantly reduced. Besides, problems related to time
history can also be handled by SL. Xue et al. [34]
established a surrogate model using the convolutional
neural networks to predict the time history response of
transmission towers under complex wind inputs. On the
other hand, RL deals with problems that involve
interaction between the task and the environment by
characterizing the task into MDPs, e.g., optimizing the
structure with respect to its mechanical performance,
arranging members to form a reasonable structure, etc.
With the outstanding regression performance of neural
networks, deep neural networks (DNNs), where multiple
neural networks are incorporated, are extensively used
[35—40]. Some researchers also combined DNNs with RL
to form deep RL. For example, Li et al. [41] developed a
deep RL-based shape optimizer using the recurrent neural
networks, which is able to provide optimal shapes for
wind-sensitive buildings with low computational cost.
NP-hard combinatorial optimization problems can also be
well handled using deep RL. Hayashi and Ohsaki [42]
proposed a topology optimization method for 2D truss
structures where an RL agent instead of commonly-used
iterative algorithms is used to eliminate the members.
Zhu et al. [43] also trained an RL agent that is able to
generate machine-specified ground structures that are
random yet reasonable for topology optimization. It is
notable that the graph embedding (GE) technique [44,45]
was adopted in studies [42,43] so that the trained agent
can be applied to different-sized problems without re-
training. The GE technique better fits for extracting
features of discrete structures, including trusses, building
frames, and reticulated shells, as the joints and elements
can be abstracted as nodes and edges in a graph. By
establishing fully-connected neural networks, the global
feature of the whole graph, namely the whole structure,
can be integrated into nodes or edges as requested. A
more specific description of the GE technique can be
found in Subsections 3.2 and 3.3 in this paper.

Since RL has successfully been adopted to distinguish
vulnerable joints in large-scale cyber systems [46] and
identify key players in complex networks [47], this paper
proposes a method incorporating RL and GE for reducing
the computational cost of reanalysis in the CEI and the
DP process. The main motivation of the proposed method
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is to make up for the two shortcomings of sensitivity
indices mentioned above. The paper is organized as
follows: Section 2 describes two tasks and the
corresponding aims in detail. Section 3 introduces the key
points of the proposed RL framework, including the state,
action, reward function, the policy network, and the
learning method. Section 4 exhibits three numerical
examples illustrating the application and advantage of the
proposed method for building frames. Section 5
summarizes the conclusions obtained in this paper.

2 Task and aim
2.1 Task 1: CEI against progressive collapse

The ALP method removes one or several structural
elements to simulate the damage of the structure and
evaluates the structural robustness by calculating the
element sensitivity index defined as

&i
v '1 &
where v, is the sensitivity index of the ith element (i = 1,
2,...,n,); n, is the total number of removable elements; &,
and &; are the global responses of the original structure
and the remaining structure with the ith element removed,
respectively. The global response can be the maximum
stress ratio [8], total strain energy [14], determinant of the
stiffness matrix [48], etc. If the element response is to be
used, Eq. (1) is rewritten as
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where the subscript j indicates the response corresponds
to the jth element, and Q. is the set of indices of the
remaining elements that can be removed.

Generally speaking, critical elements can be defined as
those with high sensitivity indices since the loss of these
elements leads to a more significant internal force
redistribution than that of other low sensitivity elements.
Nonetheless, the sensitivity index defined in Eq. (1) or (2)
cannot reflect the importance of the element considering
the ultimate collapse scenario [20]. Besides, it is indicated
that progressive collapse may not be triggered even if
considerable initial damage occurs [49]. Therefore, the
importance of each element should be evaluated when the
total collapse state is achieved after several steps of the
element removal process. That is to say, the impact of
multiple-element loss also needs to be investigated,
although the number of removed elements should be
limited because total collapse with a smaller number of
elements indicates higher importance of the removed
elements. Thus, the sensitivity index is proposed to be
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evaluated at each step of the sequential removal process
as follows [19]:

&
(i)
0,

, 3)

Yit = ll

where v, is the sensitivity index of the ith element at the
tth element removal step; &, and &, are the global
responses of the structure at the #th element removal step
before and after the loss of the ith element, respectively.
Similarly, if the element response is used, Eq. (2) is

rewritten as

) (j#iandieQ,). (4)

Nonetheless, it is evident that y;, is only related to the
responses at time steps ¢ and ¢—1, and it cannot evaluate
the impact of the ultimate collapse scenario.

Therefore, a framework for CEI against progressive
collapse based on a quantitative index is expected to have
the following properties:

1) sequence of removal of multiple elements is
considered;

2) the sensitivity indices of the remaining elements can
be computed with a low computational cost;

3) the ratio of the collapsed part to the whole structure
is considered to quantify the severity of the ultimate
collapse scenario;

4) the number of elements removed before the ultimate
collapse is incorporated.

2.2 Task 2: Structural DP

Conventional methods of the demolition of building
structures often involve nonexplosive demolition agents,
which are costly and time-consuming [19]. However, the
DP of controlled explosives or mechanical demolition
requires a certain level of engineering expertise.
Demolition of a structure expects an overall collapse, i.e.,
the ratio of the collapsed part to the overall structure
should account for a higher percentage than the CEI of
against progressive collapse. Besides, a successful
demolition should also take safety and cost into
consideration. For example, it can be dangerous to
remove a ground-floor column in a frame at the first step.
Nonetheless, it is notable that the definition of safety and
cost should be subjective.

Therefore, a framework for DP of structures based on a
model-dependent index is expected to be proposed. The
index should have the following properties:

1) severity of the ultimate overall collapse scenario is
considered;

2) safety and cost of the removal of elements are
considered;
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3) Different importance of the two aspects mentioned
above, specified based on engineering judgment, can be
incorporated.

Notably, the indices that satisfy the requirements
proposed in Subsections 2.1 and 2.2 exist and are of signi-
ficance to the corresponding tasks, because theoretically
there should be a deterministic most disadvantageous
ultimate collapse scenario for each task. However, they
cannot be obtained based on existing methods, and
Section 3 proposes a feasible framework to resolve this
problem using RL.

3 RL framework

Both tasks described in Section 2 involve element
removal, which can be regarded as an interaction between
an agent and the environment in the framework of RL.
Besides, since the scenario of removing multiple elements
is considered in both tasks, the number of possible states
of the environment, which can be defined as the
combination of removed/existing elements, becomes so
large that it is computationally expensive to prepare the
labeled training data for SL. However, scenarios of
removing process of multiple elements can be formulated
as MDPs in RL. Therefore, RL is selected as the
technique to obtain approximate optimal sequences of
element removal for both CEI and DP in a single
framework using different hyperparameters.

Generally, the interaction between an RL agent and the
environment is performed through the following steps:

1) in the th step, the agent observes the current state of
the environment s,;

2) by observing s,, the agent takes action a, according to
a policy m which is usually established using the neural
networks, namely

a, =m(s,); ®)

3) the state transfers from s, to s,,, due to the action a,,
and the agent receives a reward r,.; from the environ-
ment;

4) repeat from 1) with the state being s, ;.

The training/learning of the agent is aimed at
maximizing the cumulative reward by updating the policy
n based on the sequence of data (s,, a,, 7,,,, S,,;). Various
learning methods have been proposed, including Q-
learning [50], REINFORCE [51], PPO [52], etc.,
corresponding to the value-based, policy-based, and the
actor-critic framework, respectively. Therefore, the key
components in a typical process of RL include the action,
state, reward function, policy (network), and learning
method.

3.1 Action

Since both tasks 1 and 2 in Section 2 involve element
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removal, the action of the RL problem is determined as
element selection. Hence, the action space is
n).

A={1 2 3 (©6)

3.2 State

The structural features of frames can generally be
classified into two types, i.e., the joint and element
features. However, not all structural features need to be
integrated into the state for the agent to observe. Hence,
the input data size can be decreased to reduce the
computational cost for training.

1) Joint feature vector

Considering the aims of the two tasks, the necessary
joint features include the joint coordinates and the support
condition. Therefore, the feature vector of the ith joint v,
(i=1,23,...,n,), where n, is the number of joints in the
structure, is constructed as

- T
viz{)_cf yi d; Fi} > (7
where %; and y; are the normalized horizontal and vertical
coordinates of the ith joint in the x and y directions,
respectively, calculated by

_ x;—min(x)
YT hax(Ax,Ay)’ .
_ y-min(y) ®

YT nax (Ax, Ay)’

where x; and y; are the actual coordinates of the ith joint
in the x and y directions, respectively; x and y are the sets
of horizontal and vertical joint coordinates, namely

X = {xl Xy X3 Kitn }»

9
ol ©)

y={)’1 Y2 V3

where Ax and Ay are the range of the horizontal and
vertical joint coordinates, respectively, calculated by

Ay = max (y) — min(y), (10)

{ Ax =max (x) —min(x),
d; is the normalized distance between the ith joint and the
nearest support, calculated by the following equation if
the joint number of the nearest support is supposed to be
k:

di= & -5+ G-, an
F, is the downward concentrated load at the ith joint. Note
that F; can be omitted if there are no concentrated loads at
joints, i.e., the size of vector v, is reduced to 3.
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2) Element feature vector

Considering the aims of the two tasks, the necessary
element features include the geometric dimensions,
material properties, existence/nonexistence, and the
structural response. Since the target of incorporating RL
involves a reduction in the computational cost, the
calculation of the structural response should avoid
multiple times of reanalysis. Therefore, the feature vector
of the jth element m; (= 1,2,3,...,n,) is constructed as

T
m_j:{lj Selj qj f;/,j Aj Iz’j Cj RCJ} > (12)

where the subscript j indicates the value of the jth
element; Se/; = 0 and 1 indicate the nonexistence and
existence, respectlvely, of the element; lj, Aj, and 1,; are
the length, cross-sectional area, and moment of inertia
about the strong axis, respectively; f, . is the yield strength
of the material; C; is the strain energy, R is the strain
energy ratio, calculated by
C.

Rc; = CJ , (13)

where C,, is the maximum strain energy of a single
element out of the n, elements; g; is the intensity of the
downward distributed load per unit length of the beam.
Note that g; can be omitted if there is no distributed load
on the beam, i.e., the size of vector m, is reduced to 7.

3) Comprehensive feature vector

Here we notice that the size of the action space A
equals the number of elements, and we expect a
quantitative index for each element. Therefore, it is
reasonable to integrate the joint and element features into
elements as the comprehensive feature. Let . denote the
comprehensive feature vector of the jth element with a
size of n;. Note that n; is a hyperparameter that should be
greater than the sizes of v, and m,.

The edge-embedding technique in GE [45] is used to
calculate g through an iteration process as

u? =0, (14)

" =ReLU Ry +hy+ B + B, (15)
where " is the comprehensive feature vector of the jth
element at the Tth iteration. ReLU is an activation
function defined for a real value x as

ReLU(x) = max {0, x}. (16)

When the ReLU function is applied to a matrix, we
assume the element-wise application of Eq. (16) for
simplicity. hy, hy, h{", and A}’ are intermediate vectors
calculated as

hl 201m (17)
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2
h, = 6, ZReLU (0.7, (18)
i=1
B = 04;1(” (19)
B = HGZReLU 0 Z |, (20)
ked;;

where v, is the joint feature vector of the ith (i € {1,2})
end of the Jth element; @, is the set of element indices

connected to the ith end of the jth element except for the
Jjth element itself; 6,—6, are the weight matrices of the
fully-connected neural network layers in the GE network
for the comprehensive feature vector, whose sizes are
tabulated in Table 1, where n, and n, are the sizes of the
joint and element feature vectors, respectively. A simple
illustration of the iteration process of Egs. (14) and (15)
consisting of 6 nodes and 5 edges can be found in Fig. 1.
It is notable that the embedding indicated by the arrows in
Fig. 1(b) is realized by weight matrices 6,—6;.

Let T, denote the maximum number of iterations in

max
the embedding process, and let f and u; denote g and
ah =

(T respectively, for simplicity, where
TSR pfp} is the comprehensive

m
s
feature matrix at the Tth iteration. Obviously, the larger
T...x 15, the features of further joints and elements can be
integrated into the comprehensive feature vector of a
single element; however, the computational cost will also
increase. Hence, T, is also a hyperparameter to be
tuned.

By adequately selecting the values of n; and 7., the
elements in j1 are expected to contain the joint and
element features of the whole structure. Thus, it is

reasonable to adopt f to describe the state of the
structure.

3.3 Policy network

Here we state again that tasks of CEI and DP aim at
exploring the deterministic set of elements that yield the

Table 1 Sizes of the neural network layers

layers for the comprehensive feature
vector

layers for the DQN

weight matrix size weight matrix size

9, ne X ny, 6, £ g
6, neXn, 0, ¢ X ng
0, ng X ng 0, 1 % 2n;
6, 1 X ng _ _
6 ne X ng — —

6 ng X ng - -
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most severe ultimate collapse scenario. Hence, the value-
based framework of RL, which establishes a deterministic
quantitative index for the value of actions, is more
suitable. Based on the state ji, the quantitative index O,
representing the value of the jth action, is expected to be
estimated by the following deep Q network (DQN):

; (e2))

Q; =(u;) = 6;ReLU [03;1,-; 6, Zﬂ.f

J=1

where 7 (-) indicates the output of the DQN; operator (-;-)
denotes that two vectors are concatenated in the column
direction; 6,6, are the weight matrices of the neural
network layers in the DQN, whose sizes are tabulated in
Table 1. Notably, the structure of the DQN is determined
by the property of the RL task, as we are expecting the
output, i.e., the quantitative indices for elements, with a
size of n_ % 1. It can be seen from Table 1 that the sizes of
the weight matrices are independent of the number of
joints and elements, i.e., n, and n_, by incorporating the
edge-embedding technique. Thus, the trained agent is
expected to handle different-sized problems, i.e., frames
with different numbers of joints and elements.

Note that the O value is available for each action, and
the final action a is yet to be selected according to the
following policy network:

a=n(Q)=n[n(@)],
where Q={ 0 0, 0s 0. } is the set of Q

values of actions; « is the policy of selecting an action
based on @, which will be introduced in Subsection 3.5.

(22)

3.4 Reward function

If the following criterion is satisfied for every beam
element in the structure, the structure can be regarded as
satisfying the anti-progressive collapse requirement
[53,54]:

¥, < @im = 0.0213 -0.000124, (23)
where ¢, is the plastic rotation of beam element (rad) and
¥ 18 the corresponding upper limit (rad); % is the height
of the cross-section of the beam (cm).

Let A4, (> 0) (i = 1,2,3,4) denote the hyperparameters in
the reward function, and define an episode as the process

7
1

——- embed m to u™V

h (N
\/1/< - .
——- embed y” to u*H

(b)

Illustration of edge-embedding. (a) Numbering of nodes and edges; (b) iteration process.

of removing elements in a structure until the anti-
progressive collapse requirement is violated. In the tth
step, the reward r,, of action @, in an episode is
determined as follows:

1) If there is an isolated part that is not connected to
any support, the structural analysis will not be performed,
and the reward of the current action is

Vi1 = /10/11Rb,0, (24)
where Rb,o is a ratio defined as
n
Ryp=—=, (25)
ny

where n,,, is the number of isolated beams, and ny, is the
total number of beams. Note that 4, can be taken as 1 to
indicate the isolated part is equ1valently regarded as
collapsed; 4, can also be taken as a negative value to
indicate the isolated part is not favored and prevent
locally isolated parts that can often exist in the training
process. The episode will be terminated at the current
step;

2) If there is no isolated part in the structure, conduct
the structural analysis to check criterion Eq. (23) and
calculate the strain energy for m;. Note that the structural
analysis is carried out only once at each step. Then, the
reward of the current action is

rt+l={

where R is the reduction factor of the cost of removing an

element, which can vary with the internal force level of

the element as described in the numerical examples; k., ,

is the strain energy sensitivity index of the action in the

current step defined as

max Cia=Cio ,
j Cio

_/lzRe_/likscn.u — /14’
_/lzRe*/lescn.“ — /14 + /lle,e’

if requirement is satisfied,
if requirement is violated,
(26)

ksena = (J#aand jeQ) ,  (27)

where G, and C, are the strain energy of the jth element
after and before executlon of the action, i.e., removal of
element a, respectively. R, _ is a ratio defined as

Npe

Rb,e = - B
ny,

(28)

where n,  is the number of beams violating Eq. (23). The
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episode will be terminated at the current step if the
following requirement is satisfied:

Rb,e > AR»
Rb,e > /lRy

for Az > 0,
for g =0, (29)
where Ay is a hyperparameter indicating the lower limit
of R, to terminate the episode. Note that different values
of Ay are used for CEI and DP.

Notably, the aims described in Section 2 have been
considered by the reward function. The positive rewards
in Egs. (24) and (26) incorporate the severity of the
ultimate collapse. As the term —A, in Eq. (26) can
represent the constant cost of demolishing an element, the

can serve as the importance of the
element, since kg, , reflects the severity of the internal
force redistribution after the loss of the element. In
addition, hyperparameter Ap is used to adjust the
requirement of the severity of the ultimate collapse to
terminate the episode. A small value close to 0 is given
for Task 1, and a large value close to 1 is given for Task
2. Hence, agents with different behaviors corresponding
to the two tasks can be trained with a unified reward
function.

3.5 Learning method

The typical value-based learning method Q-learning [50]
is used to update the network parameters. The general
aim of Q-learning is to minimize the difference between
the estimated Q value and the observed reward, i.e., the O
value at the tth step is updated as

Q(snaz) — Q(S1aa1)+a'[rt+l +7m2}XQ(Sz+1,a/) - Q(Sl’al):| >
(30)

where « is the learning rate that controls the variation
amplitude of the network parameters and is closely
associated with the convergence of the training process; y
is the discount factor on the future reward within the
range of [0,1]. Notably, the value of y indicates the
percentage of future reward to be included in the
estimated Q value produced by the trained agent, where
v = 0 expects the final Q value to be close to the instant
reward and y = 1 expects the final Q value to be close to
the sum of the instant and future rewards. Since the Q
value is the output of the DQN 7, the update process of
Eq. (30) can be realized by solving the following
optimization problem:

find @
1 . 2
min L(8) = 3| + ymax 0 (5,1,:6) - 05,4 0)|
G1)

where @ = {60,,0,,...,0,} is the set of network parameters,
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and O is the most recent set of network parameters, i.e.,
O contains the values in @ at the last optimization step,
which has been proved to facilitate the convergence [55];
L(O) is the loss function describing the difference
between the O value and the actual reward.

Optimization problem (31) can be solved using the
typical error back-propagation method [56], and the
RMSprop optimizer [57] which can adjust the gradient
adaptively according to the momentum is recommended.
However, solving problem Eq. (31) using the batch
containing every sampled record of (s,, a,, 7., 5,.;) Will
be computationally expensive. Hence, the prioritized
experience replay (PER) method [58] is adopted to
sample a batch of records with higher priority from the
set of records D, which is also called the experience
replay buffer. Let n, denote the capacity of D, i.e., the
maximum number of records. The size of the batch n,, is
generally smaller than nj. The priority of a record is
evaluated according to the temporal-difference error 9,
i.e., the loss function L, since the following relation
holds:

O (81 @y a1y Spat) = Ty +7ma§1X O(s,.1,a)—0(s,,a,)= V2L.
(32)

A record with a higher 6 indicates a greater error
between the Q value and the actual reward; thus, the
record should have a higher priority to be learned more
frequently. Besides, the latest record added to D will be
assigned the highest priority to ensure that every record
can be learned at least once. Hence, the adoption of PER
can accelerate the training by utilizing the records that
induce more changes in the trainable parameters.

In order to achieve the best performance, the agent
trained by Q-learning can take actions according to the
greedy policy [29]:

a=mn(Q) =argmax Q,. (33)

a’eQ,

However, the greedy policy can be poor at exploring
unknown states for better policies if used in the training
process. This is because the records tend to be repetitive
once the policy network converges at a local optimum. In
other words, only the Q values of the optimal actions will
be accurate. Since a more accurate quantitative index is
preferred, the epsilon-greedy policy [29] is adopted in the
training process for sampling the actions:

argmax Q,, p=1-¢,
a= 7'[(Q) = a’eQ, (34)
random a’ € Q., p =g,

where p is the possibility of adopting the policy, and & is
the exploration rate within the range of [0, 1]. Note that
the value of & can be either a constant or a variable
depending on the number of episodes.
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From the update method in Eq. (30), the Q value of the
action q, at state s,, i.e., O(s,, a,) will converge at

0(5,@) = ri +ymax Q(supn@).  (39)
As discussed in Section 3.4, the reward function has
fulfilled all aims of the tasks; therefore, the Q values are
expected to serve as an improved sensitivity index for the
tasks.
The flow chart of the proposed deep RL framework is
plotted in Fig. 2.

4 Numerical examples

4.1 Numerical model
A 4 x 5 planar steel frame shown in Fig. 3 is used to train
the agent as a numerical example. The structural
information is shown as follows:

1) span: 4 x 8 =32 m;

2) height: 5 x 4 =20 m;

3) distributed beam load intensity: g
(downward);

4) support condition: fixed support at the ground joints;

5) elastic modulus of the steel: £ =2.06 x 10° MPa;

6) yield strength of the steel: fy =235 MPa.

Note that only the vertical load is considered as the load
case according to the anti-progressive collapse design
guides/codes [53,59]; besides, only the columns can be

32 kN/m
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removed, i.e., €, is the set of remaining columns. The
cross-sections of the structural elements are specified by
circled numbers (D-@), where all the beams share the
same cross-section (1), and the columns in the same story
have the same cross-section specified on their left.

The numerical model of the structure is established in
the general finite element analysis software package
ANSYS [60]. The BEAM188 element is used to model
the beams and columns. Both geometric and material
non-linearities are considered, and the ideal elastic-plastic
constitutive model is used for the steel material. The arc-
length method [61,62] is used to perform the non-linear
analysis.

4.2 Training

The training of the agent is conducted in Python 3.8.8
environment, and the interaction between Python and
ANSYS is realized using the PyMAPDL library [63]. The
hyperparameters of both Tasks 1 and 2 are identical
except for those in the reward function, as tabulated in
Table 2, where n, indicates the total number of episodes
and e is the episode number. Hyperparameters regarding
the GE network, i.e., T, and ng, are selected according
to the recommendations in literature [42,43]; vy is selected
as 1 in order to fully consider the influence of the future
states; n,, ny,, and « are selected based on trial and error.
Note that two different values of 4, are selected for Task
2 to represent different importance of safety and cost. The
two values, i.e., 10 and 5, are denoted as the high-cost

input structural information,
hyperparameters, and rotation limits

initialize arrangement of the
structure used for training

initialize arrangement of the

| initialize an empty experience replay buffer D |

|

structure used for testing

compute the state

compute the state

| initialize DQN with random wights @ |

—DI compute Q for remaining elements |

|

—DI compute O for remaining elements |

assign a very small elastic modulus
to a removed member chosen by
epsilon-greedy policy

assign a very small elastic modulus
to a removed member chosen by

|

greedy policy

| observe reward and next state I l

episode = episode + 1

l

| observe reward and next state I

| add record (s, a,, 7.y, S;.) to D I

true
episode % 10 ==0?

l

update @ using 1, records from
D selected by the PER method

Terminal state?

test
false
Max episode?
true

| output optimized parameters @ |

Terminal state?

Best total
reward?

save current @

true

Fig. 2 Flow chart of the proposed RL framework.
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Fig.3 A 4 x 5 planar frame.
Table 2 Hyperparameters of the numerical example 2 10*
general parameters reward parameters reward parameters 0F
of Task 1 of Task 2 ~ E
S 2k H 10
symbol value symbol value symbol value . — reward
My 5000 A 1 A 1 g - i — loss 10
s _F
ng 100 [42,43] A 200 4 200 g ° : [ 107
@ 1x10° 4 100 A 100 SE
3 4 710:'"‘I'I"ll'|'l'["|"" 0
Mha 64 4 5x10 4 1x10 0 100 200 300 400 500
o 4[42,43] A 0 Ay 10,5 recorded episode
Y ! A& 0 AR 100% Fig. 4 Training history of Task 1.
. 1- 6;090%% e<2000 . Nl
10% e > 2000 max (IND 2 101
1}
parameter A,,, and the low-cost parameter A, ~ ol 10°
respectively. In order to consider the higher costs of 2 | i 1108
removing columns with higher internal force levels, the % H ‘ — reward
reduction factor R is taken as the ratio of |V | to max(|N|) g =2 J P‘ Ml — loss 410
in Task 2, where N, is the axial force of the column to be 23 .
removed by action q, at the current step #, and N is the set —4 0
of axial forces of elements in Q.. B N A A R BT B
The training history of Tasks 1 and 2 are plotted in 0 100 200 300 400 500
. . recorded episode
Figs. 4 and 5, respectively, where the value of the loss @)
function is plotted by the logarithmic scale. Notably, the Y
reward and loss function of a half-trained agent needs to : ‘ e
be evaluated using the greedy policy to reflect the best 0 lT ‘ ( ™ 10¢
behavior, i.e., the additional computational cost is £
introduced. Therefore, the reward and the loss function x — reward  110°
are evaluated every 10 episodes in order to accelerate the e K — loss 10
training process. The training of the agent takes about 53
14.8 and 37.9 h on a laptop computer with a CPU of " 10°
Intel(R) Core(TM) i7-7700 @3.60 GHz and a GPU of | . . .
- L L L1 L L 0
NVIDIA GeForce GTX 1080 for Tasks 1 and 2, 50 100 200 300 400 5000

respectively. Both the CPU and GPU have participated in
the computation. It can be observed in Figs. 4 and 5 that
the reward gradually increases and converges at a high
value after 2000 episodes; besides, the loss function is
almost 0 after about 400 episodes.

recorded episode

(b)
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loss

loss

Fig. 5 Training history of Task 2. (a) With high-cost parameter
A4 355 (b) with low-cost parameter 4 .
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4.3 Testing

Let n;, m,,,, and 7, denote the policies with the highest
recorded reward in Figs. 4, 5(a), and 5(b), respectively.
This section tests their behavior on the 4 x 5 frame used
for training, a smaller-sized 3 x 4 frame, and a larger-
sized irregular frame shown in Fig. 6 without re-training.

a) Task 1—policy =,

The states, including the estimated Q values provided
by the trained agent with policy =, are plotted in Figs.
7-9 for the 3 different-sized frames. The greedy policy is
adopted to remove the column with the highest O value.
In each step, the column to be removed is highlighted in
red. For comparison, the states of a human-specified
policy that exchanges the sequence of steps 1 and 2 of
policy =, are shown in Fig. 10. The reward parameters of
the steps in Figs. 7 and 10 are tabulated in Table 3.

From Figs. 7-10 and Table 3, the following conclu-
sions can be drawn:

1) By utilizing the GE technique, the agent is able to
handle different-sized structures without re-training, as
expected in Subsection 3.3. If GE is not employed, the
size of the neural network parameters should be

Front. Struct. Civ. Eng. 2022, 16(11): 1397-1414

associated with the number of removable elements 7., and
the trained agent cannot deal with structures with a
different value of n, since the matrix multiplication
cannot be performed;

2) The agent provides a higher Q value for the ground-
floor column on the right side of Fig. 9(a). As the internal
force distribution of the irregular frame is significantly
different from that of the 4 x 5 symmetric frame used for
training, it can be concluded that the agent has learned
robust knowledge to adapt to both different-sized and
irregular structures;

3) Although no information on symmetry has been
introduced in the training process, the Q values provided
by the trained agent are symmetric in symmetric
structures, which indicates that the Q values are accurate
for all elements. Besides, it can also be concluded that the
PER method and the epsilon-greedy policy are effective
in training a robust agent for the task.

4) The Q values will vary after the transition of the
state. For example, the Q value of the column right above
the removed column becomes smaller, as shown in
Fig. 7(b). This is because removing this column in the
next step may violate the anti-progressive collapse

©) D @
® E
(D H550 x 240 x 8 x 12
© : @ H250x250 x 9 x 14
©) 2| ® H300x300% 1015
= @ H350 x 350 x 12 x 19
g
@ <
7777 TTTT
(a)
©) ©) 0) o)
g
@ <
=
@ <t
® | (D H550x240 x 8 x 12
L @ H250x250x9 % 14
® El ® H300x300x 1015
- @ H350%350 x 12 x 19
@ <t
=
@ <t
7777 T

(b)

Fig. 6 Different-sized frames for testing. (a) Smaller-sized 3 x 4 frame; (b) larger-sized irregular frame.
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Fig. 7 States when testing the agent with policy n;‘ on the 4 x 5 frame. (a) Step 1; (b) Step 2; (c) Step 3.
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Fig. 9 States when testing the agent with policy n’f on the irregular frame. (a) Step 1; (b) Step 2; (c) Step 3.
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(a) (b)
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1026 —-82.1 878 200 1342

109.0 541 953 331 1275

-67.9 1026 713 447 1201

199.7 612 978

. .

Fig. 10 States when using a human-specified policy on the 4 x 5 frame. (a) Step 1; (b) Step 2; (c) Step 3.

Table 3 Comparison of reward parameters under different policies adopted in the 4 x 5 frame for Task 1
step Kena T14 Ry
| human-specified ™ human-specified ) human-specified
1 69.63 67.07 —70.60 -71.51 0 0
2 545.64 25.90 —6.53 —87.85 0 0
3 942.35 942.35 —-0.90 + 200 —0.90 + 200 100% 100%
sum - - 121.97 39.74 - -

requirement by the adjacent beams; however, the majority
of the remaining structure is intact, namely local collapse
occurs, and the final positive reward is low because R, , is
close to 0. Therefore, the trained agent is adaptive to the
transition of different states, and the Q values can serve
as a model-dependent index for the identification of
critical elements;

5) By comparing policy =, and the human-specified
policy generated by exchanging the sequence of the first
two actions, it can be seen that the final states are
identical, and the final R, , of both policies equals 100%.
Nonetheless, the sensitivity indices of actions taken by
the agent with policy =, are higher, resulting in a higher
total reward. This is because the element removing
sequence can significantly influence the internal force
redistribution of intermediate states. As we expect a
higher severity of the internal force redistribution for a
specific state when identifying critical elements, it is
reasonable to conclude that policy = is superior to the
human-specified policy. In other words, the agent with
policy =, has successfully learned to predict the future
consequences of the removal of an element; thus, the
critical elements can be identified in sequence by the
trained agent.

Notably, the structural analysis is conducted only once
for evaluating the Q values of all columns. Therefore, the
computational cost has been significantly reduced since
evaluating the sensitivity index for all columns requires

n, times of structural analysis. A more specific
comparison of computational efficiency is given in
Subsection 4.4.

b) Task 2—m; ,; and ;.

The states, including the estimated Q values provided
by the trained agent with policies x,,, and n;, are plotted
in Figs. 11 and 12 for the 4 x 5 frame, respectively. As
policies m; and w,, both lead to a final R, of 100%,
Table 4 tabulates k., ,, 7;,;, and R under policies x; and
m,,; for comparison. Note that reward 7, is calculated
based on the high-cost hyperparameters of Task 2.
Figures 13 and 14 show the behavior of the agent with
policies m,, and m;,; on the irregular frame without re-
training. Note that only the sequence of removed columns
is given in Fig. 14 since the number of actions is large.

From Figs. 11-14 and Table4, the following
conclusions can be drawn.

1) By introducing a non-zero constant cost A, and a
non-zero reduction factor concerning the internal force
level R, the trained agent for Task 2 behaves differently
compared to that for Task 1, and policy =, is superior to
n, for Task 2 with respect to the total reward.
Specifically, the agent with policy @, only removes
ground-floor columns since their sensitivity indices are
quite high. However, since the reduction factor R is
included in Task 2, the agent with policies =, and =,
tend to remove the columns with a lower internal force
level, e.g., Steps 1-3 in Fig. 11, or remove an upper-floor
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Table4 Comparison of kg, , and r,,, under different policies adopted in the 4 x 5 frame for Task 2
step ksena R [
";,H “;,L RT “;,H “;,L TET “;,H TFT
1 67.07 67.07 69.63 45.24% 45.24% 96.16% —54.93 —105.49
2 25.90 75.68 545.64 49.31% 20.02% 23.26% —59.18 -32.02
3 40.58 8.83 942.35 13.35% 27.31% 100.00% —23.30 —101.01 + 200
4 0.12 296986.90 - 1.13% 100.00% - ~11.13 _
5 195129.11 - - 100.00% - - ~10.00 + 200 _
sum - - - - - 41.45 —38.52
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Fig. 14 Behavior of agent with policy n;’L for Task 2 on the
irregular frame.

column in order to increase the sensitivity index of the
next action, e.g., Step 4 in Fig. 11;

2) The symmetric Q values in symmetric states shown
in Figs. 11(a), 11(d), and 11(e) also indicate that the
training process is robust and the Q values for all actions
are accurate;

3) The trained agents can produce reasonable results for
different-sized and irregular structures without re-
training, as shown in Figs. 13 and 14. As the internal
force distribution of the irregular frame is significantly
different from the symmetric 4 % 5 frame used for
training, it can be concluded that the agents have also
been trained robustly;

4) Agents with different behaviors, i.e., agents with
policies m,,; and m,;, can be trained by adjusting

hyperparameter 4,. Although the number of actions in the
4 x 5 frame is similar for both agents, as shown in
Figs. 11 and 12, the difference in behavior is more
evident in the irregular frame, i.e., Figs. 13 and 14. While
agent m,, only demolishes the ground-floor columns,
agent 7, tends to demolish more upper-floor columns to
reduce the axial force level of the ground-floor columns
with a low sensitivity index at the initial stage; besides, it
also removes the columns on both sides in order to
increase the sensitivity index of the ground-floor columns
to be removed. Hence, the different importance of safety
and cost in Task 2 can be reasonably considered by
varying hyperparameter A,.

We need to emphasize again that the behavior of the
agent will be sensitive to the hyperparameters in the
reward function. Nonetheless, according to the favorable
performance of the trained agent which can be applied to
different-sized structures without re-training, the
hyperparameters of the reward function tabulated in
Table 2 are recommended for studies with the same aim
described in Section 2.

4.4 Comparison of computational efficiency and decisions
In order to illustrate the advantage of the proposed

method, this section compares the computational
efficiency of the proposed deep RL-based method and the
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existing sensitivity index-based ALP method, i.e., the
indices are calculated based on Eq. (27).

For the 4 x 5 planar frame in Fig. 3, Fig. 15 shows the
sensitivity indices of the columns when all the columns
are traversed. The data in Fig. 15 require 26 (n, = 25)
non-linear analyses, and takes about 26.61 s on the same
laptop computer used for training the RL agent.
Meanwhile, the data shown in Figs. 7(a), 11(a) or 12(a)
only require single non-linear analysis, which takes only
about 1.37 s with the trained agent. Table 5 tabulates the
computational time of the Q values calculated by the
proposed method and the sensitivity index calculated by
the conventional method, i.e., Eq. (27), for the original
state of the 3 numerical examples. By comparing the
increase rate of computational efficiency /R and n,, it can
be concluded that the computational efficiency of the
proposed method is increased by approximately n,
100% with respect to the conventional method. In
Table 5, the offline training time of the RL agent is also
given. However, we need to note again that the trained
agent can be applied to different-sized problems without
re-training.

Besides, as criticized by Jiang et al. [20] that the indices
shown in Fig. 15 are short-sighted and cannot be directly
used for decision-making for determining the most
expected collapse scenario of CEI and DP. For example,
although the corner columns at the top floor have the
highest index of 112.2, a local collapse will occur if either
of them is removed, and only 1 of the 20 beams will
exceed the rotational limit specified by Eq. (23). On the
other hand, by tuning the hyperparameters in the reward
function, the proposed deep RL-based method can train
agents with different behaviors, i.e., agents producing
different Q values, for different tasks, including CEI and
DP. Note that the Q-values have taken the ultimate

112.2 76.9 55.7 76.9 112.2
36.3 80.0 59.0 80.0 36.3
41.0 76.7 60.6 76.7 41.0
57.1 83.4 67.0 83.4 57.1
67.1 83.6 69.6 83.6 67.1
n n n n n

Fig. 15 Sensitivity index evaluated by the conventional ALP
method.

Table 5 Computational time of the numerical examples

training  proposed  conventional

numerical n 0
example ° time (h) method (s)  method (s) IR/100%
4 x 5 frame 25 14.8 1.37 26.61 18.42
3 x 4 frame 16 1.07 15.13 13.14
irregular frame 34 1.63 76.65 46.02
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collapse scenario into consideration, as discussed in
Subsection 3.5 and validated in Subsection 4.3.

5 Conclusions

This paper proposes a framework for CEI and DP of
frame structures. Innovative quantitative indices for
elements characterizing their importance with respect to
the ultimate collapse scenario are proposed using RL and
GE. Through numerical examples, the following conclu-
sions are obtained.

1) In the training process of the numerical examples,
the agent can converge at a high total reward and a loss
function close to zero, indicating that the formulation of
the RL task is feasible.

2) The trained agent can also handle environments with
different-sized action spaces, i.e., structures with different
number of elements, owing to the utilization of the GE
technique.

3) The PER method and the epsilon-greedy policy are
proved to be effective in training robust agents.

4) By adequately setting the hyperparameters in the
reward function, the O values provided by the trained
agent can serve as quantitative indices for CEI and DP of
frame structures. For both tasks, the O values have
considered the impact of the ultimate collapse scenario,
the sensitivity index of the removed element, and the
sequence of removed elements. For DP of frames, the
importance of the severity of collapse can be increased by
adjusting the hyperparameter A in the reward function in
order to ensure an overall collapse. Besides, different
human-defined importance of safety and cost in the task
of DP can be incorporated by adjusting the hyperpara-
meter A, in the reward function.

5) The computational efficiency of the proposed deep
RL-based method is significantly increased by about n, x
100% compared with the conventional sensitivity index-
based method. Besides, the proposed indices, i.e., the Q
values obtained by the RL agent, are shown to be superior
to existing short-sighted indices and can be directly used
for decision-making in the tasks.

Acknowledgments The authors gratefully acknowledge the financial
support provided by the China Scholarship Council (CSC) during a visit of
Shaojun Zhu to Kyoto University (No. 201906260152). The second author
acknowledges the support of JSPS KAKENHI (Grant No. JP20H04467).
The third author acknowledges the support of Grant-in-Aid for Young

Scientists (Start-up) (Grant No. JP21K20461).

Notations

n.: total number of removable elements
&, global response of the original structure with the ith
element removed
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¢&;: global response of the remaining structure with the
ith element removed

&;¢: response of the jth element without any element
removed

& response of the jth element with the ith element
removed

Q,: set of indices of the remaining elements that can be
removed

Y;, sensitivity index of the ith element at the 7th
element removal step

(): structural global response at the rth eclement

removal step before the loss of the ith element

&, structural global response at the #th element
removal step after the loss of the ith element

‘. response of the jth element at the 7th element

removal step before the loss of the ith element

&, response of the jth element at the sth element
removal step after the loss of the ith element

s, current state of the environment

a,: action at the tth step

7: policy

r,: reward at the 7th step

A action space

v;: feature vector of the ith joint

n,: number of joints in the structure

X;: normalized horizontal coordinate of the ith joint in
the x direction

¥;: normalized vertical coordinate of the ith joint in the
y direction

x;: actual coordinate of the ith joint in the x direction

v;: actual coordinate of the ith joint in the y direction

x: set of horizontal joint coordinates

y: set of vertical joint coordinates

Ax: range of the horizontal joint coordinates

Ay: range of the vertical joint coordinates

d;: normalized distance between the ith joint and the
nearest support

F;: downward concentrated load at the ith joint

m: feature vector of the jth element

Sel;: existence/nonexistence index of the jth element

[+ length of the jth element

A;: area of the jth element

I ;: moment of inertia about the strong axis of the jth
element

fy?].: yield strength of the material of the jth element

C;: strain energy of the jth element

R strain energy ratio of the jth element

C,x: Maximum strain energy of a single element out of
the n, elements

q;: intensity of the downward distributed load per unit
length of the jth element

#: comprehensive feature vector of the jth element

ny: size of the comprehensive feature vector

T . : maximum number of iterations in the GE process

max*
u": comprehensive feature vector of the jth element at

Front. Struct. Civ. Eng. 2022, 16(11): 1397-1414

the rth iteration

hy, hy, b, h{": intermediate vectors

v, - Joint feature vector of the ith end of the jth element

@, ;: set of element indices connected to the ith end of
the jth element except for the jth element itself

0,—0,: weight matrices of the fully-connected neural
network layers in the GE network for the comprehensive
feature vector

n,: size of the joint feature vectors

n,,: size of the element feature vectors

A7 comprehensive feature matrix at the #th iteration

0 quantitative index for each action

7(-): output of the DQN

0,—6,: weight matrices of the neural network layers in
the DQN

¢, plastic rotation of beam element

¢y, upper limit of the plastic rotation of beam element

h: height of the beam cross-section

A;: hyperparameters in the reward function

ny, o: number of isolated beams

n,: total number of beams

R: reduction factor of the cost of removing an element

kyen o' Strain energy sensitivity index of the action in the
current step

C, o: strain energy of the jth element before execution of
the action

G, ;- strain energy of the jth element after execution of
the action

ny .. number of beams exceeding the plastic rotation
upper limit

Ag: @ hyperparameter to terminate the episode

@: set of network parameters

O: the most recent set of network parameters

L(0): loss function describing the difference between
the ¢ value and the actual reward

¢: temporal-difference error

D: set of records

np: maximum number of records

ny,: size of the batch

p: possibility of adopting the policy

&: exploration rate

n,: total number of episodes

e: episode number

N,: axial force of the column to be removed by action a,
at the rth step

N: set of axial forces of elements in the remaining
columns

RL: reinforcement learning

GE: graph embedding

ALP: alternate load path

DP: demolition planning

CEL: critical element identification

MDP: Markov decision process

SL: supervised learning

DQN: deep Q network
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