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ABSTRACT This article aims to propose a finite element formulation based on Quasi-3D theory for the static bending
analysis of functionally graded porous (FGP) sandwich plates. The FGP sandwich plates consist of three layers including
the bottom skin of homogeneous metal, the top skin of fully ceramic and the FGP core layer with uneven porosity
distribution. A quadrilateral (Q4) element with nine degrees of freedom (DOFs) per node is derived and employed in
analyzing the static bending response of the plate under uniform and/or sinusoidally distributed loads. The accuracy of
the present finite element formulation is verified by comparing the obtained numerical results with the published results
in the literature. Then, some numerical examples are performed to examine the effects of the parameters including
power-law index k and porosity coefficient £ on the static bending response of rectangular FGP sandwich plates. In
addition, a problem with a complicated L-shape model is conducted to illustrate the superiority of the proposed finite

element method.
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1 Introduction

Functionally graded materials (FGMs) were first studied
by Japanese scientists in 1984 at Sendai Institute. These
materials are made of two or more component materials,
usually ceramic and metal in which material properties
vary smoothly and continuously from one surface to the
other one. They have many outstanding features com-
pared to traditional materials, such as high-temperature
resistance, good corrosion resistance, etc. Therefore,
FGMs have been applied in high-tech fields such as
aerospace engineering, nuclear power, biology and so on.
The outstanding characteristics of FGMs can eliminate
stress concentration and delamination phenomena which
often occur in laminated composite materials. The initial
studies on behavior analysis of structures using FGMs
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can be summarized as those involved with beams [1-4],
plates [5-25] and shells [26-28]. Functionally graded
porous (FGP) material is a form of FGMs including many
pores that develop in the process of making the material.
This material possesses several outstanding mechanical
properties such as low density, excellent energy-
absorbing capability, great thermal resistant properties,
etc. They have been widely applied in various fields
including aerospace, automotive industry, and civil
engineering. Some works on the mechanical behavior of
structures using FGP are as follows. Rezaei and Saidi
[29,30] used the exact solutions to analyze the vibration
of porous-cellular plates. Zhao et al. [31,32] employed an
improved Fourier method to examine the bending and
dynamical response of FGP doubly-curved panels and
shells. Li et al. [33] analyzed the free vibration and
dynamic buckling behavior of sandwich FGP plate
reinforced GPL for nonlinear problems, and Sahmani


https://doi.org/10.1007/s11709-022-0891-4

1600

et al. [34] studied large-amplitude vibrations of FGP
micro/nano-plates. Gou et al. [35,36] used the deep colloca-
tion method based on neuron architecture search-and-
transfer learning for heterogeneous porous materials.
Readers can see the application of artificial intelligence
(A]) in scientific and mechanical problems for plate and
shell structures in [37-39]. In general, almost the above
works are based on analytical solutions, so they are limi-
ted in terms of models, loads and boundary conditions.

Sandwich structures are basically fabricated by
attaching two thin skins to a thick lightweight core.
Recently, sandwich structures have been used popularly
in aerospace vehicles due to their outstanding bending
rigidity, low mass density, good noise cancellation and
insulation. However, they are highly susceptible to failure
due to stress concentration at load areas, and due to
geometrical and material discontinuities of sandwich
plates. Some researchers have studied the static bending,
buckling and free vibration behavior of the functionally
graded material (FGM) plates, employing refined plate
theories. Specifically, Zenkour et al. [40-49] uses
analytical solutions with many improvements in plate
theory to obtain accurate results in the problems of
analyzing bending and stress [40,41], mechanical and
thermal bending [42—45], free vibration and buckling
[46,47], and the effect of porosity [48,49]. Thai et al. [50]
used a new first-order shear deformation theory (FSDT),
while Sid Ahmed Houari et al. [51] refined a higher-order
shear deformation theory (HSDT). Nguyen et al. [52,53]
developed a smoothed finite element method for the
mixed interpolation of tensorial components technique of
triangular elements (MITC3). Li et al. [54,55] employed
the Navier approach, while Tounsi et al. [56] developed a
refined trigonometric shear deformation theory. In
addition, Tlidji et al. [57] used an analytical method to
study behavior of FGM sandwich plates. Using Quasi-3D
theory, some typical works can be mentioned as follows.
Zaoui et al. [58] used two different shear deformation
theories (2D, Quasi-3D) and Navier solutions to analyze
the vibrations response of FGM plate on elastic
foundation. Neves et al. [59] used a meshless technique
based on sinusoidal Quasi-3D deformation theory to
study the static bending, free vibration, and stability of
FGM sandwich plate. Farzam-Rad et al. [60] used Quasi-
3D shear deformation theory and isogeometric analysis
for the static and free vibration analysis of FGM
sandwich plate with attention to the physical neutral
surface position. Vafakhah and Navayi Neya [61]
proposed an accurate solution for the static bending
problems of simple support rectangular FGM thick plates
with 3D model.

Use of the quadrilateral (Q4) element is straightforward
and achieves initial results in analyzing the mechanical
behavior of structures. However, using only five degrees
of freedom (DOFs) per node based on the Lagrange
interpolations with a shear correction factor still does not
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satisfy the stress-free condition at the upper and lower
boundaries of plates. In addition, the above-mentioned
literature reveals that there is still a research gap for
proposing new effective finite element formulations for
analysis of FGP sandwich plates. The work is therefore
conducted to fill in this research gap by proposing a new
finite element formulation using the Q4 element with nine
DOFs per node based on the combination of the Lagrange
interpolations and the Hermit interpolations to establish
the governing equation of FGP sandwich plates. Then, a
few examples are examined to explore the accuracy and
reliability of the proposed method. Moreover, the
numerical and graphical results help to demonstrate the
effect of geometrical parameters and material properties
on the static bending of FGP sandwich plates.

This article is organized as follows. Section 1 presents a
general introduction and literature review. Sections 2 and
3 provide the finite element formulations based on Quasi-
3D theory for static bending analysis of FGP sandwich
plates. Section 4 demonstrates the numerical results and
discussion. Finally, Section 5 gives major conclusions.

2 The functionally graded porous sandwich
plate

In this paper, the FGP sandwich plate as shown in Fig. 1
is considered.

In Fig. 1, a, b, and h are the length, width, and
thickness dimensions of sandwich plates, respectively.
The sandwich plate structure consists of the FGP core
layer, a bottom layer of homogeneous metal, and a fully
ceramic top layer. The ceramic volume fraction
Vi (n=1,2,3) in the layers, i.e., the bottom layer, the
core layer and the top layer are determined according to
power-law function [48]:

—h
V!(z) =0, ze [T;hl],
Z_hl ¢
ch(z) = (l’lz—hl) b z€e [hl;hZ]s (1)
h
Vf(z) =1, ZE [hz; 5},

where k represents the power-law index; z is the integral
variable according to the plate thickness.

The metal volume fraction in the layers is inferred by
the formula:

Vi) =1-V(2). )

The core layer is made by FGP material with uneven
porosity distribution expressed by the rule of the mixture
as follows:

Pz(z)=p;+(p§_1>;)v3_§(1_%

e, o
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where P represents the effective material properties such
as elastic modulus £, mass density p, and Poisson’s ratio
v; subscripts ‘m’ and ‘c’ denote the metal and ceramic
constituents, respectively; & is the porosity coefficient.
Besides, Fig.2 plots the effective elastic modulus
through thickness with different values of & and thickness
ratio between the bottom layer, the core layer and the top
layer (so-called scheme h,-h.-h) with mechanical
properties as shown in Table 1. Herein, scheme 0-1-0
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corresponds to the case of isotropic FGP plates.

3 Theoretical formulation

3.1 The Quasi-3D theory for functionally graded porous
sandwich plates

According to Quasi-3D theory, the displacement field of
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Fig. 1 The schematic diagram for the geometry of the FGP sandwich plate.

0.50
025t
3 0.00
025t
-0.50 ;
0 100 200 300 400
e (GPa)
(a)
0.50
025t
3 0.00 f
) —— k=05
025} ) ——k=1
{ —— k=2
} —— k=4
) —~— k=10
-0.50 - : ;
0 100 200 300 400
E (GPa)
(©)

0.50
025t
S 0.00f
-0.25t
-0.50 : -
0 100 200 300 400
Fr (GPa)
(b)
0.50
025t
S 000
-0.25t
—— k=10
-0.50 d— : ;
0 100 200 300 400
L, (GPa)
(d)

Fig. 2 Effective elastic modulus of FGP sandwich plates through the thickness (¢£=0.1). (a) Scheme 0-1-0; (b) scheme 1-1-1;

(c) scheme 2-1-2; (d) scheme 1-4-1.



1602

Table 1 Mechanical properties of the constituent materials
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material properties Young’s moduli (GPa)

mass densities (kg/m3) Poisson’s ratio

E. =380
E,=170

alumina (Al,O;) (ceramic)

aluminum (Al) (metal)

P = 3800
om = 2707

ve =0.3
Vm =0.3

FGP sandwich plates can be expressed as follows [62]:

u (x7y7z) = Uy (x7y7 O) _Zwb,x - f(Z) Ws,xs
V(x,¥,2) =5 (x,¥,0) — 2wy, — f (D) w,,
w(x,y,2) =w, +w, + g (@ w;,

“4)

where u, v, Wy, ws, and w, are displacements variables in
. 4z
the neutral plane at the point (x,y,z). f(z)= 3—22;
4z . .
g=1- h—Zz are the continuous functions [63]. Note that

f(2) is the continuous function that is established basing
on three following rules: 1) the function must be
continuous; 2) the deformed surface is curved; and 3) the
stress-free condition at the upper and lower boundaries of
the plate is satisfied.

Recently, many continuum functions f(z) have been
created by scientists all over the world [64—68]. In this
work, the Reddy’s continuous function is chosen due to
its proven efficiency and simple polynomial. Besides, the
current authors’ previous studies regarding the perfor-
mance of these functions [69] illustrated that using
different functions can affect the numerical performance.
It should be noted that the new component g(z)w. in
Eq. (4) is added to investigate the thickness stretching
effect on the static bending of FGP sandwich plates.

Then, the strain components are inferred from the
displacement field as follows:

~{5 o)

T
& = {8)( 8)’ & ’y.xy} )

e={re e, (5a)
where
£ =&y +zky + f(OK + 8.8,
& = g(2)&, +8(2)€y,
Sm = { MO,X v(),y O (u(),y + vO,x) }T,
T
Ky = _{ Wb,xx Wb,yy 0 zwb,xy} )
T
Ks = _{Ws,xx Ws,yy 0 2Ws,xy} ’
e.={0 0 w. 0},
851 = {Ws,y Ws,)r }T,
T
852 = {Wz,y wz,x} . (Sb)

From Hooke’s law, the stress—strain relation is:

T
o, = {Tyz TX_} =D,s,, (6a)
in which
a a, a, 0
_ a a a 0
D =E(Q) a a a 0
0 0 0 as
_ »a3 0
DZ - E(Z) i 0 a, s
1 —v(z)
al = 2 3
1-3v(z)" —2v(z)
v(2) (1 +v(2))
aZ = ) 3
1-3v(z)" - 2v(z)
1
= 6b
ST 20 +v@) (60)
The strain energy is calculated by:
_ 1 T _ 1 T T
U=3 fvs odv == L(s, o +Elo)dv,  (7)

where V' is the volume of the sandwich plate. When the
sandwich plate is affected by the distribution load ¢ (x,y),
which is perpendicular to the neutral plane of the
sandwich plate, the work done by the external force is
determined by

W= jﬁ (W, + W, +w,) g (x,y) dQ, )

in which Q is the neutral plane area of the sandwich plate.
3.2 Finite element formulation

Using the Q4 element with 36 DOFs (each node with nine
DOFs) to discretize the model of the FGP sandwich plate
(Fig. 3). The node displacement vector of the element is
defined as follows:

d =|d, di d d7], ©)

m s z
36x1

herein
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_ T
dv } s du = {Mm Uy Uy M04} s
4x1

w={dl

u

T
V:{VOI Voo Vo3 V04},
1

Wy yi }T,
AL ALY,
T
Wai ) ((=1,.0,4)

gzl = {Wzl Wn Waz Wy }T- (10)

The node displacement components of the element are
defined by

u,=Nd,, vy =Nd,,w, = Hd,, w, = Hd,,w. = Nd_, (11)

with N=[N, N, N, N.|,H=[H, H,
are Lagrange and the Hermit interpolations given by

]

N, =%(l—r)(l—s),N2=%(LH’)(I—S),

| | (12a)
N; = Z(1+r)(1+s), N, = Z(l—r)(1+s),
and
H, = é(l -N(1-Q2-r—s—r—s%),
H, = é(l—r)(l—s)(l—rz),
Hy= (-0 =5)(1-5),
H, = %(1+r)(1—s)(2+r—s—r2—s2),
H; = —%(1 +r)(1=s)(1-7),
Hg = l(1+r)(1—s)(1—r2),
513 (12b)

H,==-(1+r)(1+s)2+r+s—r—s°),

8
H, = —%(1+r)(1+s)(1—r2),
H, = —%(1 +r)(1 +s)(1 —Sz),

1
H,= g(l—r)(1+s)(2—r+s—r2—s2),

H, = %(1—r)(1+s)(1—r2),

H, = —é(l—r)(1+s)(1—sz),
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Fig. 3 Model of Q4 element with nine DOFs per node.

Substituting Eq. (11) into Eq. (5b), we get the strain
vector as follows.

&y = Bmdms Ky, = debs Ks = Csdss

& = Bzdz, & = ledsa Ep = Bs2dz» (13)
where
N,x 0 H,xx
0 N, H
Bm = ” ) C = Cs = - - >
4x8 0 0 4><1bZ 4x12 0
N, N, 2H ,,
0
0 H N
B.=| .| B, = ,By=|0" 14
4><Zt N 2><1; |:Hx:| 2><42 |:N/\:| ( )
0

Substituting Eq. (13) into Eq. (5b) and combining with
Eq. (7), the strain energy of element sandwich plates is
obtained as follows.

kmm kmb kms kmz
L 1K ky ke K
Gt BT w ke k| ()

ss
T T T
k mz kbz k sz kZZ

where K. is the element stiffness matrix with the
submatrices determined by

ko = [ BLD,B,dQ,
Q.

8x8

Ky = L 2C'D,C,dQ,

12x12

k. =f fZCfDICSdQ+f ¢*B'D,B.dQ,
Q. Q.

12x12

k.= L ¢'B'D,B.dQ+ L ¢*B" D,B,dQ,

4x4

Koy = L 2B" D,C,dQ,

8x12
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kms = j fB;l;lDICsdgL
Q.

8x12

k, = L 2fCTD,C.dQ,

12x12

ky, = L 25.C" D, B.dQ,

12x4

k. = L f5.C"D\B.dQ + L ¢*B" D,B,dQ.

12x4

(16)

Substituting Eq. (11) into Eq. (8), the work done by the
external force acting on the element is:

We=f Wy +ws+w.)q(x,y)dQ =F.d., 17)
o

in which, F, = [, Njg(x,y)dQ is the node load vector
and N, = [0 0 H H N ] is the shape function

1x36
matrix of the displacement w which is determined

according to the node displacement of the element.

By using the virtual work principle ¢ Z U.- Z W, | =

nel

0, the governing equations of the sanna]wich plate are
derived by the following formulation:
KD=F, (18)

where D is the global node displacement vector;

K= Z K., F= Z F, are the global stiffness matrix and

nel nel

the global load vector of the sandwich plate, respectively,
and symbol “nel” represents the number of discretized
elements of the sandwich plate. Note that, K. and F, are
determined by using the Gaussian quadrature integration
method with four interpolating points. After imposing the
boundary condition and solving Eq. (18), the displace-
ment and strain field can be determined through their
relations.

For the finite element analysis, boundary conditions
(BCs) are taken according to the geometric constraints at
the edges. In this paper, BCs are given as follows.

Clamped support (C):

Uy =Vo =W, = Wy =W, = Wy, = Wy, = W, =W, = 0 atall
edges.

Simple support (S):

Ug=W, =W, =W, =Wy, =W, =0atx=0&x=aorx=
al2,

V=W, =Wy =w,=w,, =w,,=0aty=0&y=bory=
b/2.

Free support (F): all DOFs at the boundary edge are
non-zero.

4 Numerical results and discussion

This section aims to perform the numerical examples to
illustrate novel contributions including: 1) verification of
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the reliability of the proposed method; 2) presentation of
new results in the bending displacement and stress of
FGP sandwich plates including rectangular and L-shape
models.

4.1 Verification examples

Firstly, consider a rectangular FG sandwich plate as
shown in Fig. 1. The uniformly distributed load ¢, or the

sinusoidal distributed load ¢(x,y) = ¢, sin(E)sin(%) is
a
applied. The material properties are provided in Table 1.
The dimensionless parameters are introduced by the
following formulations:
For the rectangular sandwich plate:
. 10Eoh (a b)

w
qoa*

(19a)
For the L-shape sandwich plate:

*

w

_ 10Eyh (9 ﬁ)

qoa@’

10K#* (
Oy

qoa®

10

o.(2) =

(19b)

The displacement w* and stress o™ (z) of the completely
simply supported square sandwich (SSSS) plate with
FGM skins and ceramic core under the action of the
sinusoidally distributed force are shown in Table 2.
Moreover, some comparison results can be seen in Fig. 4.
In these table and figure, numerical results of the present
work are compared with published work of Zenkour [40]
using third-order shear deformation theory (TSDT) and
with work of Thai et al. [50] employing FSDT. The
thickness of plate is & = a/10, the material properties are
shown in Table 1 with the ceramic being replaced by
ZrO, with E, =151 GPa,v, = 0.3. It can be seen that the
displacement and stress converge at mesh size 16X 16.
Moreover, the obtained results are close to those of TSDT
[40] and better than those of FSDT [50]. It can be
asserted that the results from our work are more reliable
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Table 2 The comparison of the dimensionless displacement and stress of SSSS FGP sandwich plates with different mesh sizes
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k scheme displacement and stress mesh size Zenkour [40] Thai et al. [50]
12x12 14x 14 16x16 18x18 20%20
0 2-1-2 w* 0.1983 0.1979 0.1976 0.1976 0.1976 0.1961 0.1961
o (h/2) 2.0204 2.0136 2.0092 2.0092 2.0092 2.0499 1.9758
1-1-1 w* 0.1983 0.1979 0.1976 0.1976 0.1976 0.1961 0.1961
o (h/2) 2.0204 2.0136 2.0092 2.0092 2.0092 2.0499 1.9758
2-2-1 w* 0.1983 0.1979 0.1976 0.1976 0.1976 0.1961 0.1961
oi(h/2) 2.0204 2.0136 2.0092 2.0092 2.0092 2.0499 1.9758
1-2-1 w* 0.1983 0.1979 0.1976 0.1976 0.1976 0.1961 0.1961
o (h/2) 2.0204 2.0136 2.0092 2.0092 2.0092 2.0499 1.9758
1 2-1-2 w* 0.3097 0.3091 0.3087 0.3087 0.3087 0.3063 0.3064
o (h/2) 1.4808 1.4758 1.4726 1.4726 1.4726 1.4959 1.4517
1-1-1 w* 0.2952 0.2946 0.2943 0.2943 0.2943 0.2920 0.2920
o (h/2) 1.4111 1.4063 1.4033 1.4033 1.4033 1.4262 1.3830
2-2-1 w* 0.2836 0.283 0.2827 0.2827 0.2827 0.2809 0.2809
o (h/2) 1.3027 1.2983 1.2954 1.2954 1.2954 1.3206 1.2775
1-2-1 w* 0.2739 0.2734 0.2730 0.2730 0.2730 0.2709 0.2710
o (h/2) 1.3076 1.3033 1.3004 1.3004 1.3004 1.3231 1.2810
2 2-1-2 w* 0.3562 0.3555 0.3551 0.3551 0.3551 0.3523 0.3526
o (h/2) 1.7070 1.7013 1.6976 1.6976 1.6976 1.7214 1.6750
1-1-1 w* 0.3365 0.3359 0.3355 0.3355 0.3355 0.3329 0.3330
oi(h/2) 1.6130 1.6076 1.6041 1.6041 1.6041 1.6275 1.5824
2-2-1 w* 0.3189 0.3183 0.3179 0.3179 0.3179 0.3162 0.3163
o (h/2) 1.4521 1.4472 1.4439 1.4439 1.4439 1.4710 1.4253
1-2-1 w* 0.3059 0.3053 0.3049 0.3049 0.3049 0.3026 0.3027
o (h/2) 1.4646 1.4597 1.4565 1.4565 1.4565 1.4799 1.4358
10 2-1-2 w* 0.4086 0.4078 0.4073 0.4073 0.4073 0.4041 0.3894
o (h/2) 1.9573 1.9508 1.9465 1.9465 1.9465 1.9713 1.9216
1-1-1 w* 0.3898 0.3890 0.3886 0.3886 0.3886 0.3855 0.3724
o (h/2) 1.8710 1.8647 1.8606 1.8606 1.8606 1.8838 1.8375
2-2-1 w* 0.3648 0.3641 0.3637 0.3637 0.3637 0.3622 0.3492
o (h/2) 1.6450 1.6393 1.6357 1.6357 1.6357 1.6666 1.6160
1-2-1 w* 0.3520 0.3514 0.3509 0.3509 0.3509 0.3482 0.3361
o (h/2) 1.6899 1.6843 1.6806 1.6806 1.6806 1.7042 1.6587

|Present — Reference|

Note: Er(%) =1
ote: Er(%) = 100 Reference

than those of Thai et al. [50] because the FSDT has
omitted the higher-order displacement components. The
computed results are in good agreement with those of
other published, specifically, less than 1% for the

displacement and are less than 1.8% for the stress. So, it
can be confirmed that the current formula guarantees
accuracy and reliability. From here, the mesh size 16 X 16

is used for the next examples.
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Next, to ensure the performance of the proposed
element, we compare the displacement and stress results
of the FGM plate with those of Vasiraja and Nagaraj [70]
using ANSYS®15.0 software. In that study, they used a
Shell181 element with a mesh size 50 % 50. The results
shown in Tables3 and 4 once again confirm the
reliability and accuracy of the present element.

Finally, the ability to overcome shear locking of this
element for the cases of FGM (Al,O4/Al) square plates
with different BCs is demonstrated in Fig. 5. It is
observed that the dimensionless deflection of the center-
point of FGM plates is almost independent of the change

0.1985 T
—b— present
—+— Zenkour [40]
0.1980 = = = Thai et al. [50] |1
0.1975 | T T
"2
0.1970 ¢
0.1965
0.1960 T T b
12 x12 14 x 14 16 x 16 18 x 18 20 x 20
mesh size
(a)
0.3100 ;
—b>— present
0.3095 —#— Zenkour [40] [T
03090 | - - - Thaietal. [50] | |
0.3085 | it 1
"= 0.3080 -
0.3075
0.3070 -
L L A
0.3060 . L i
12 x12 14 x 14 16 x 16 18 x 18 20 x 20
mesh size
()
0.3190 -
—b— present
03185 | —k— Zen}(our [40] ||
- = = Thai et al. [50]
0.3180 } |
203175+
0.3170 ¢
0.3165 ¢
0.3160 . L A
12 x12 14 x 14 16 x 16 18 x 18 20 x 20
mesh size

(©
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of the length-to-thickness ratio % when the plates become

very thin. It can be concluded that the shear locking
problem is corrected for the plates with four BCs, and
also for five different power-law indexes, k=0, 0.5, 1, 2, 4.

4.2 The rectangular functionally graded porous sandwich
plate

Firstly, the effect of power-law index k on the static
response of square FGP sandwich plates is studied.
Figure 6 and Table 5 show displacement and stress of

2.05 * + o
—b>— present
2,047 —+— Zenkour [40]
203 = = = Thaietal. [50]| |
2.02
@ \
= 201} > > |
2.00
1.99
1.98
1.97 : . :
12 %12 14 x 14 16 x 16 18x18  20x20
mesh size
(b)
1.50 :
1.49 1 —b— present
—+— Zenkour [40]
= = = Thai et al. [50]
_ 1.48%F E
Q]
S
a7} T T
1.46
| /%) sinnit v S
12x 12 14 x 14 16 x 16 18 x 18 20 x 20
mesh size
(d
0.3190 :
—b— present
03185} —*— Zenkour [40]
- = = Thai et al. [50]
0.3180 | -
Q
= 03175+
=
0.3170 |
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Fig. 4 The displacement and stress of SSSS FGM sandwich plates with different mesh sizes. (a) The comparison of the dimensionless
displacement with k = 0, scheme 1-1-1; (b) the comparison of the dimensionless stress with k =0, scheme 1-1-1; (c) the comparison of the
dimensionless displacement with k =1, scheme 2-1-2; (d) the comparison of the dimensionless stress with k =1, scheme 2-1-2; (e) the
comparison of the dimensionless displacement with k = 2, scheme 2-2-1; (f) the comparison of the dimensionless stress with k =2, scheme
2-2-1; (g) the comparison of the dimensionless displacement with k& = 10, scheme 2-2-1; (h) the comparison of the dimensionless stress with
k=10, scheme 2-2-1.

Table 3 Dimensionless central displacement w, in-plane stress &, and shear stress 7., of CCCC thin FGM (Al,0/Al) square plate (a/h = 100)
under uniformly distributed load g,
h b
2= T Txz (03 E’O)

power law-index E.h? ( ab ) ~ h (a b h )

T DA gea ' \2'2 T a™\2°22 == o
present Vasiraja Nagaraj [70] present Vasiraja Nagaraj [70] present Vasiraja Nagaraj [70]
ceramic 0.001244 0.001237 28.3122 28.308 0.639017 0.638044
0.5 0.001883 0.001949 36.6621 36.652 0.665653 0.665576
1 0.002426 0.002540 42.8435 42.822 0.693451 0.692580
2 0.003065 0.003264 48.16327 49.154 0.666412 0.665902
5 0.003644 0.003870 54.4678 54.402 0.603652 0.603208
metal 0.006455 0.006883 28.3114 28.308 0.639017 0.638044

Table 4 Dimensionless central displacement w, in-plane stress &, and shear stress 7, of SSSS thick FGM (Al,0,/Al) square plate (a/h = 10)
under uniformly distributed load ¢¢

power law-index __10Eh* (a b = (2l h o=l e (080
w= q0a4 w E,E x qoa X 272a2 Xz—qoa Xz ’2,
present Vasiraja Nagaraj [70] present Vasiraja Nagaraj [70] present Vasiraja Nagaraj [70]

ceramic 0.4702 0.466 2.9075 2.872 0.5020 0.491
0.5 0.7048 0.712 3.7887 3.719 0.5119 0.501
1 0.9009 0.927 4.4909 4.345 0.5028 0.491
2 1.1344 1.193 5.2529 4.988 0.4657 0.466
5 1.3751 1.444 6.1746 5.521 0.4083 0.427
metal 2.4443 2.530 2.9075 2.872 0.4992 0.491

SSSS square FGP sandwich plate (scheme 1-2-1) with the plate (scheme 1-1-1) with the thickness a/h = 30 and with
thickness a/h =25 (a is fixed), and with the porosity the porosity coefficient £ = 0.15. These figure and table
coefficient £=0.1. Figure7 and Table6 illustrate show that increase in power-law index k leads to increase
displacement and stress of SCSC square FGP sandwich of the displacement and stress of FGP sandwich plates.
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This is as expected because the increase of the power-law
index k results in increasing the volume of metal in the
structure and thus it reduces the stiffness of FGP
sandwich plates.

Secondly, Fig. 8 and Table 7 show displacement and
stress response of fully clamped (CCCC) square FGP
sandwich plates (scheme 1-1-1) with the thickness
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Fig. 5 Dimensionless deflection of the center-point of FGM plates |w* = w,

Front. Struct. Civ. Eng. 2022, 16(12): 1599-1620

a/h =50 versus porosity coefficient & with power-law
index k=2. In addition, Fig. 9 and Table 8 present
displacement and stress response of SFSF square FGP
sandwich plates (scheme 1-4-1) with the thickness
a/h =15 versus porosity coefficient & with power-law
index k= 1. It can be observed that the increase of the
porosity coefficient & results in the increase of the
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Fig. 6 The static response of SSSS FGP sandwich plates (scheme 1-2-1) versus power-law index k. (a) The displacement of the midline of
FGP sandwich plates; (b) the stress o (z) of the center-point of FGP sandwich plates through the thickness; (c) the stress o (z) of
the center-point of FGP sandwich plates through the thickness; (d) the stress 73, (z) of the C-point of FGP sandwich plates through the

thickness.
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Fig. 7 The static response of SCSC FGP sandwich plates (scheme 1-1-1) versus power-law index k. (a) The displacement of the midline of
FGP sandwich plates; (b) the stress o} (z) of the center-point of FGP sandwich plates through the thickness; (c) the stress o (z) of
the center-point of FGP sandwich plates through the thickness; (d) the stress 73, (z) of the C-point of FGP sandwich plates through the

thickness.

displacement and stress response of FGP sandwich plates.
This is reasonable since the increase in volume makes
reduce the stiffness of FGP sandwich plates.

Next, the effect of the thickness ratio between layers
(schemes) on the static response of FGP sandwich plates
are plotted in Figs. 10 and 11 and provided in Tables 9
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Table 5 The displacement and stress of SSSS FGP sandwich plates  Table 6 The displacement and stress of SCSC FGP sandwich plates

versus power-law index k (scheme 1-2-1) versus power-law index k (scheme 1-1-1)
parameters k=0.5 k=1 k=2 k=4 k=10 parameters k=0.5 k=1 k=2 k=4 k=10
max (w*) 1.5769 1.7310 1.8768 1.9648 2.0067 max (w*) 1.1924 1.2681 1.3406 1.3885 1.4152
o (h/2) 4.7358 4.9465 5.0721 5.0709 5.0223 oy (h/2) 2.6989 2.7840 2.8436 2.8592 2.8451
o (h/2) -0.1026  —0.0448  -0.0221  -0.0698  —0.1711 o (h/2) 0.0083 0.0353 0.0483 0.0385 0.0103
7, (0) 0.5491 0.5105 0.4040 0.2722 0.2378 75, (0) 0.5763 0.5054 0.3598 0.206 0.1549
4.0 T T T T 0.5
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Fig. 8 The static response of CCCC FGP sandwich plates (scheme 1-1-1) versus porosity coefficient £. (a) The displacement of the
midline of FGP sandwich plates; (b) the stress o} (z) of the center-point of FGP sandwich plates through the thickness; (c) the stress o} (z) of
the center-point of FGP sandwich plates through the thickness; (d) the stress 73, (z) of the C-point of the FGP sandwich plate through the
thickness.

3.0 T T - . 0.5
0.4+
2.5¢ 1 03|
0.2+
20 1 .
g 0.1
=15 E S 00
” -0.1 J
10t ——¢=0.1 ] ——£=0.1
—— =02 -02 il
——£=03 -03 —— £=0.3]|
05F —=—¢=04 ' —— =04
——£=0.5 —0.4 j ——&=0.5]1
0.0 ~ - - : 0.5 e : - -
0.0 0.2 0.4 0.6 0.8 1.0 -10 —5 0 , S 10 15
x/a o,

(@ ()



Van Chinh NGUYEN et al. FEM for analysis of FGP sandwich plates 1611

0.5 0.5
04} 0.4 =
0.3 0.3} B S
02 0.2}
0.1F 0.1t
S 00 S 00f 7
—0.1t —0.1t 2 1
——¢=0.1
0.2+ 0.2+ 4 =021
031 031 —#—C= 8.2 .
—a— =
—0.4+ -0.4+ L gz 051
-0.5 . -0.5 : : - -
=15 -1.0 -0.5 0.0 0.0 02 04 . 06 0.8 1.0
o, Ty
© ()

Fig. 9 The static response of SFSF FGP sandwich plates (scheme 1-4-1) versus porosity coefficient £. (a) The displacement of the midline
of FGP sandwich plates; (b) the stress o} (z) of the center-point of FGP sandwich plates through the thickness; (c) the stress o7 (z) of the
center-point of FGP sandwich plates through the thickness; (d) the stress 7%, (z) of the C-point of the FGP sandwich plate through the
thickness.

Table 7 The displacement and stress of CCCC FGP sandwich plates  Table 8 The displacement and stress of SFSF FGP sandwich plates

versus porosity coefficient £ (scheme 1-1-1) versus porosity coefficient £ (scheme 1-4-1)
parameters ¢=0.1 £=02 £=03 £=04 =05 parameters £=0.1 £=02 £=03 £=04 =05
w* 2.3609 2.5479 2.7840 3.0943 3.5251 w* 2.2870 2.4194 2.5749 2.7611 2.9897
oy (h/2) 24028 25142 2.6486 28175 3.0417 o (h/2) 12.1422 12.5523 13.0116 13.5344 14.1424
o (h/2) ~0.0106 0.0174 0.0573 0.1155 0.2046 oz (h/2) -0.2010  -0.1692  -0.1247  —0.0624 0.0257
752 (0) 00851 —00716 00575 —0.0425 —00266  T©® 0.6928  0.6543  0.6099  0.5580  0.4970
7 : - : T 0.5
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Fig. 10 The static response of SSFS FGP sandwich plates versus different schemes. (a) The displacement of the midline of FGP sandwich
plates; (b) the stress o7} (z) of the center-point of FGP sandwich plates through the thickness; (c) the stress o (z) of the center-point of FGP
sandwich plates through the thickness; (d) the stress 7%, (z) of the C-point of the FGP sandwich plate through the thickness.
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Fig. 11 The static response of SSCS FGP sandwich plates versus different schemes. (a) The displacement of the midline of FGP sandwich
plates; (b) the stress o7 (z) of the center-point of FGP sandwich plates through the thickness; (c) the stress o (z) of the center-point of FGP
sandwich plates through the thickness; (d) the stress 77, (z) of the C-point of FGP sandwich plates through the thickness.

Table 9 The displacement and stress of SSSS FGP sandwich plates
versus schemes

Table 10 The displacement and stress of CCCC FGP sandwich plates
versus schemes

parameters value parameters scheme

0-1-0 1-1-1 1-2-1 1-8-1 2-2-1 0-1-0 1-1-1 1-2-1 1-8-1 2-2-1
w* 6.1509 5.5924 5.6977 5.8287 6.0131 w* 5.0841 4.4759 4.5641 4.7329 4.8117
oy (h/2) 10.7513 9.4641 9.2555 9.4142 8.9882 oy (h/2) 4.7835 4.2647 4.1825 4.2377 4.0886
o (h/2) —-0.6205 0.4326 0.2359 —0.2589 -0.072 o (h/2) -0.3376 0.2420 0.1333 -0.1398  —0.0373
75, (0) -0.0074  -0.0035  -0.0044  —0.0064  —0.2087 73, (0) -0.0065 -0.0036  —0.0044  —0.0058 —0.1977

and 10 with porosity coefficient £ = 0.4 and power-law
index k = 4. Specifically, Fig. 10 and Table 9 present the
displacement and stress response of SSFS FGP sandwich
plates with the thickness a/h =20 while Fig. 11 and
Table 10 show the static response of SSCS FGP sandwich
plates with the thickness a/h = 40. From these figures and
tables, it can be found that when the FGP sandwich plate
thickness is constant, the thickness ratio between layers
significantly affects the static bending of FGP sandwich
plates. Observing the graphs, we can see that the scheme
1-1-1 gives the smallest displacement and stress response,
whereas the scheme 0-1-0 (the isotropic FGP plate) gives
the largest displacement and stress response. This
confirms that the FGP core has a positive effect on the
static response of sandwich plates and is more efficient

than the isotropic FGP plates. Herein, C-point has
b
coordinates (0, E,z).

Besides, Table 11 provides more displacement and
stress results of SSSS FGP sandwich plates versus power-
law index k corresponding to specific values of a/h ratios
and schemes while Table 12 presents the displacement
and stress results of CCCC FGP sandwich plates versus
porosity coefficient £. Note that, the order of BCs is
denoted sequentially from edge 1 to edge 4.

4.3 The L-shape functionally graded porous sandwich
plate

This part investigates the static bending of FGP L-shape
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Table 11 Displacement and stress of SSSS FGP sandwich plates versus power-law index & (¢ = 0.5)
a scheme w* o (h/2)
" k=0.5 k=15 k=45 k=10.5 k=0.5 k=15 k=45 k=10.5
15 2-1-2 0.8784 0.9727 1.0567 1.0909 6.3092 6.5531 6.6895 6.7067
1-1-1 0.8068 0.9597 1.1057 1.1628 5.9845 6.4243 6.615 6.5761
2-2-1 0.9338 1.1028 1.2584 1.3349 6.3485 6.4606 6.194 6.0005
1-8-1 0.5541 0.8466 1.2147 1.4443 4.6512 5.8802 6.3579 6.2968
25 2-1-2 24161 2.6738 2.9015 2.9934 6.3056 6.5505 6.6869 6.7034
1-1-1 2.2182 2.6359 3.0298 3.1793 5.9786 6.4198 6.609 6.5663
2-2-1 2.5643 3.0147 3.3936 3.5356 6.343 6.4494 6.1549 5.9230
1-8-1 1.5180 2.3169 3.2765 3.689 4.6408 5.8674 6.3219 6.1527
45 2-1-2 7.7980 8.6274 9.3581 9.652 6.305 6.5509 6.6881 6.7047
1-1-1 7.1580 8.5027 9.7641 10.2371 5.9768 6.4193 6.6094 6.5661
2-2-1 8.2710 9.7063 10.8665 11.2379 6.3419 6.4476 6.1447 5.8988
1-8-1 4.8916 7.4630 10.4927 11.5449 4.6368 5.8629 6.3109 6.1010
65 2-1-2 16.2553 17.983 19.5043 20.1155 6.3049 6.5511 6.6886 6.7053
1-1-1 14.9205 17.7219 20.3464 21.3277 5.9764 6.4193 6.6098 6.5665
2-2-1 17.2388 20.2215 22.6094 23.3412 6.3418 6.4475 6.1431 5.8942
1-8-1 10.1931 15.5496 21.8323 23.8898 4.6358 5.862 6.3088 6.0899
Table 12 Displacement and stress of CCCC FGP sandwich plates versus porosity coefficient & (k = 2.5)
a scheme w oy (h/2)
" k=0.5 k=25 k=5.5 k=9.5 k=0.5 k=25 k=55 k=95
5 1-1-2 0.0305 0.0325 0.0347 0.0374 2.4846 2.5974 2.7286 2.8848
1-1-1 0.0373 0.0406 0.0448 0.0504 2.6051 2.7543 2.9404 3.1836
2-2-1 0.0444 0.0498 0.0571 0.0678 2.6459 2.8007 3.0011 3.2800
1-6-1 0.0405 0.0445 0.0496 0.0564 2.6255 2.7572 2.9185 3.1251
30 1-1-2 0.8036 0.8552 0.9168 0.9921 2.4375 2.5461 2.6727 2.8238
1-1-1 0.9119 0.9948 1.1029 1.2510 2.4950 2.6311 2.8017 3.0271
2-2-1 0.9554 1.0553 1.1933 1.3994 2.4546 2.5721 2.7213 2.9263
1-6-1 0.9096 0.9885 1.0912 1.2321 2.4831 2.5921 2.724 2.8919
70 1-1-2 4.3360 4.6143 4.947 5.3542 2.4358 2.5443 2.6707 2.8215
1-1-1 4.9072 5.3533 5.9353 6.7345 24914 2.6270 2.7970 3.0214
2-2-1 5.1152 5.6463 6.3798 7.4766 2.4492 2.5654 2.7130 2.9153
1-6-1 4.8788 5.2999 5.8479 6.6002 2.479 2.5873 2.7183 2.8847
95 1-1-2 7.9786 8.4909 9.1032 9.8526 2.4357 2.5441 2.6705 2.8212
1-1-1 9.0272 9.848 10.9188 12.3892 24911 2.6266 2.7965 3.0208
2-2-1 9.405 10.3807 11.7283 13.7437 2.4486 2.5647 2.7121 2.9141
1-6-1 8.9720 9.7459 10.7531 12.1361 2.4786 2.5868 2.7177 2.8840
sandwich plates with geometrical parameters as shown in Firstly, some displacement and stress results of

Fig. 12, so as to illustrate the effectiveness of the finite
element method compared with the analytical method in
analyzing the mechanical behavior of the structures,
especially when the geometrical model becomes more
complex (un-symmetry).

SSSSSS FGP L-shape sandwich plates (scheme 1-2-1)
with h/a =20; £ =0.3 versus variations with power-law
index k and different mesh sizes are provided in Table 13,
which indicates that the numerical results converge at
mesh size 16 x 16. Then, Fig. 13 presents the
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Fig. 12 The schematic diagram for the FGP L-shape sandwich plate and the mesh model.

Table 13 Variations of displacement and stress of SSSSSS FGP L-shape sandwich plates versus with power-law index k (scheme 1-2-1;

hla=20; £=0.3)
power law-index displacement and stress value
12x12 14x14 16x16 18x18 20x20
k=0.5 w* 0.1563 0.1559 0.1556 0.1556 0.1556
o (h/2) 1.5970 1.5965 1.5962 1.5962 1.5962
o (h/2) —0.0161 —0.0157 —0.0154 —-0.0154 —-0.0154
73, (0) —0.3376 -0.3371 —0.3367 -0.3367 -0.3367
k=1 w* 0.1769 0.1765 0.1763 0.1763 0.1763
oy (h/2) 1.6900 1.6906 1.6901 1.6900 1.6900
o (h/2) 0.0183 0.0180 0.0178 0.0177 0.0177
73, (0) -0.2857 -0.2853 -0.2850 —0.2849 —0.2849
k=2 w* 0.1990 0.1990 0.1991 0.1990 0.1990
oy (h/2) 1.7621 1.7617 1.7614 1.7613 1.7613
o’ (h/2) 0.0432 0.0428 0.0424 0.0424 0.0424
7. (0) —0.1859 —0.1855 —0.1851 -0.1850 —-0.1850
k=5 w* 0.2201 0.2199 0.2197 0.2196 0.2196
o (h/2) 1.7743 1.7739 1.7735 1.7735 1.7735
o (h/2) 0.0289 0.0285 0.0281 0.0280 0.0280
7, (0) —0.0420 —0.0416 —0.0412 -0.0411 -0.0411
k=10 w* 0.2275 0.2270 0.2268 0.2267 0.2267
oy (h/2) 1.7586 1.7581 1.7576 1.7576 1.7576
o7 (h/2) —0.0021 —-0.0015 —0.0011 -0.0010 -0.0010
73, (0) -0.0128 —0.0123 —-0.0120 —0.0119 —0.0119

displacement and stress response of SSSSSS FGP L-
shape sandwich plates, and illustrates that the maximum
displacement of FGP L-shape sandwich plates shifts to
the left and the elastic line is no longer as symmetric as in
the case of rectangular sandwich plates. This is due to the
asymmetry of L-shape sandwich plates.

Similarly, the displacement and stress response of
CCCCCC FGP L-shape sandwich plates (scheme 1-4-1)
with a/h =40, k=10 versus porosity coefficient £ and
different mesh sizes are listed in Table 14, which
confirms that the obtained results also converge at a mesh

size 16 X 16. Next, the displacement and stress response
of CCCCCC FGP L-shape sandwich plates is plotted in

3
Fig.14. Note that, A-point has coordinates (:—i, Za,z), B-
. . 3 )
point has coordinates (a, Za,z) and AB-line has the

3
equation as y = Za (see Fig. 12), the order of BCs is

denoted sequentially from edge 1 to edge 6 and mesh size
N,xN, with N,, N, are respectively the number of
elements divided along the x- and y-axis.

Furthermore, Table 15 and Table 16 present some new
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Fig. 13  The static response of SSSSSS FGP L-shape sandwich plates (scheme 1-2-1; ii/a = 20; ¢ = 0.3). (a) The displacement of the Ay-
line of FGP sandwich plates; (b) the stress o} (z) of the A-point of FGP sandwich plates through the thickness; (c) the stress o7} (z) of the A-
point of FGP sandwich plates through the thickness; (d) the stress 77, (z) of the B-point of FGP sandwich plates through the thickness.

Table 14 Variations of displacement and stress of CCCCCC FGP L-shape sandwich plates versus with porosity coefficient £ (scheme 1-4-1;
h/a =40; k=10)

porosity coefficient ~displacement and stress value

12x12 14x 14 16x16 18x 18 20%20

£=0.05 w 0.2876 0.2870 0.2865 0.2864 0.2864
o (h/2) 0.7686 0.7680 0.7675 0.7674 0.7674
oi(h/2) -0.0397 -0.0392 —-0.0389 —-0.0388 —-0.0388

7y, (0) 0.0128 0.0122 0.0118 0.0117 0.0117

£=0.15 w* 0.3130 0.3126 0.3121 0.3121 0.3121
o (h/2) 0.7991 0.7987 0.7983 0.7982 0.7982

ox(h/2) —0.0350 —0.0345 —0.0342 —0.0341 —0.0341

7 (0) 0.0084 0.0079 0.0076 0.0075 0.0075

£=0.25 w* 0.3470 0.3466 0.3461 0.3460 0.3460
oy (h/2) 0.8365 0.8360 0.8355 0.8354 0.8354

oi(h/2) —0.0272 —0.0267 —-0.0263 —0.0263 —-0.0263

75, (0) 0.3471 0.3465 0.3461 0.3460 0.3460

£=0.35 w* 0.3945 0.3940 0.3936 0.3935 0.3935
o (h]2) 0.8837 0.8832 0.8827 0.8827 0.8827

oi(h/2) -0.0141 -0.0137 -0.0133 -0.0132 -0.0132

7y, (0) —0.0029 —-0.0024 —0.0019 —0.0018 —0.0018

£=045 w* 0.4673 0.4668 0.4664 0.4663 0.4663
o (h/2) 0.9493 0.9489 0.9485 0.9485 0.9485

ox(h/2) 0.0114 0.0107 0.0101 0.0100 0.0100

75, (0) —0.0080 —0.0073 —0.0069 —0.0068 —0.0068




1616

Front. Struct. Civ. Eng. 2022, 16(12): 1599-1620

0.5 :
> =005
e E=0.15
0.4 //w‘*\\.\\ —e £=025]
—— £=0.35
e
: A =
) /ﬁ //;/D—R \k\\\
= 0.2 ? : ‘\;}Q\f\
0.1t ]
0-9% 0.2 0.4 0.6 0.8 1.0
x/a
(@)
0.5
0.4
03 — A i
0.2 =
0.1
= 00 l/——¢&=00s NN
N o E=0.15 HiL <
0.1 s #=025 / I’
02 [{—=—¢=035 Pd
o3 H==¢= 0.45
By it
204 03 02 0.1 0.0 0.1

*

[

©

0.5
0.4
0.3 =
0.2
0.1
< 00
B =005
0.2 < E=0.15]1
03+ —%— 5: 0.25
—a— £=0.35
—04 — E=045
03,5 0.5 1.0
0.5
0.4 e
> \
03 B
0.2 e ™
0.1 / e
PR RN LI -
NN =00
—03 j —— f: 0.25(]

' )4 —— £=035
0.4 i E=045]]
70'5 I T

0.0l 0.0 001 002 003 0.04 005 006

T

@

Fig. 14 The static response of CCCCCC FGP L-shape sandwich plates (scheme 1-4-1; i/a = 40; k = 10). (a) The displacement of the Ay-
line of FGP sandwich plates; (b) the stress o} (z) of the A-point of FGP sandwich plates through the thickness; (c) the stress o7 (z) of the A-
point of FGP sandwich plates through the thickness; (d) the stress 7%, (z) of the B-point of FGP sandwich plates through the thickness.

Table 15 Displacement and stress of SSSSSS FGP sandwich plates versus with different parameters (¢ = 0.45)

a scheme w oy (h/2)

h k=0.5 k=15 k=55 k=8.5 k=0.5 k=15 k=55 k=8.5

15 2-1-2 0.1198 0.1323 0.1448 0.1472 1.9343 2.0125 2.0664 2.0719
1-1-1 0.1104 0.1308 0.1528 0.1568 1.8389 1.9771 2.0566 2.0576
2-2-1 0.1275 0.1507 0.179 0.1867 1.9545 2.0177 1.9894 1.9789
1-8-1 0.0774 0.1172 0.1789 0.2003 1.4551 1.8269 2.0487 2.0761

25 2-1-2 0.3216 0.3542 0.3860 0.3918 1.9076 1.9744 2.0157 2.0187
1-1-1 0.2962 0.3495 0.4040 0.4133 1.8193 1.9404 1.9979 1.9947
2-2-1 0.3404 0.3965 0.4501 0.4608 1.9218 1.9632 1.9058 1.8871
1-8-1 0.2054 0.3097 0.4466 0.4772 1.4480 1.8032 1.9732 1.9803

55 2-1-2 1.5322 1.6856 1.8328 1.8589 1.8937 1.9538 1.9872 1.9886
1-1-1 1.4107 1.6613 1.9112 1.9516 1.8093 1.9206 1.9642 1.9581
2-2-1 1.6179 1.8705 2.076 2.104 1.9044 1.9325 1.8578 1.8351
1-8-1 0.9731 1.4646 2.0519 2.1366 1.4450 1.7915 1.9327 1.9309

85 2-1-2 3.6507 4.0154 4.3645 4.4264 1.8915 1.9504 1.9825 1.9836
1-1-1 3.3611 3.9569 4.5485 4.6434 1.8077 1.9174 1.9585 1.9518
2-2-1 3.8534 4.4501 4.921 4.9794 1.9016 1.9274 1.8495 1.8261
1-8-1 2.3166 3.4856 4.861 5.0403 1.4445 1.7896 1.9259 1.9227

results on the static response of FGP L-shape sandwich parameters.

plates with variation of the geometrical and material

Finally, the variation of deformation field of FGP L-
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shape sandwich plates versus with different BCs is shown geometry parameters and material properties, the
visually in Fig. 15. It can be concluded that with the same displacement of the CCCCCC L-shape sandwich plate is

Table 16 Displacement and stress of CCCCCC FGP sandwich plates versus with different parameters (k = 3.5)

a scheme w* oy (h/2)
h £=0.1 £=02 £=03 £=04 £=0.1 £=02 £=03 £=04
45 2-1-2 0.8525 0.9221 1.0107 1.1283 1.6144 1.6928 1.7883 1.9100
1-1-1 0.8607 0.9339 1.0283 1.1562 1.6015 1.6778 1.7713 1.8918
2:2-1 0.8907 0.9741 1.0868 1.2504 1.5934 1.6561 1.7322 1.8312
1-8-1 0.8891 0.9636 1.0607 1.1951 1.6648 1.7271 1.7999 1.8891
65 212 1.7718 1.9165 2.1006 2.3452 1.6121 1.6899 1.7847 1.9052
1-1-1 1.7881 1.9400 2.1361 2.4017 1.5991 1.6747 1.7673 1.8864
2:2-1 1.8469 2.0190 22516 2.5891 1.5908 1.6527 1.7274 1.8238
1-8-1 1.8442 1.9980 2.1987 2.4760 1.6628 1.7244 1.7963 1.8839
80 212 2.6806 2.8995 3.1781 3.5482 1.6114 1.689 1.7835 1.9036
1-1-1 2.7049 2.9347 3.2313 3.6332 1.5983 1.6737 1.766 1.8846
2:2-1 2.7922 3.0521 3.4032 3.9126 1.5900 1.6516 1.7259 1.8214
1-8-1 2.7885 3.0208 3.3237 3.7424 1.6621 1.7236 1.7951 1.8822
100 212 4.1849 4.5266 4.9615 5.5394 1.6108 1.6883 1.7827 1.9025
1-1-1 4.2225 4.5811 5.0441 5.6714 1.5978 1.673 1.7651 1.8834
2:2-1 4.3569 4.762 5.3093 6.1032 1.5894 1.6508 1.7248 1.8197
1-8-1 43514 47135 5.1858 5.8385 1.6617 1.7230 1.7943 1.8810
“ 0.045 R —
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Fig. 15 Deformation field of FGP L-shape sandwich plates (top view) (scheme 1-1-1; h/a=10; k=1; £=0.2). (a) The SSSSSS FGP
L-shape sandwich plate; (b) the CCCCCC FGP L-shape sandwich plate; (c) the SFSFSF FGP L-shape sandwich plate; (d) the SCSCSC
FGP L-shape sandwich plate.
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smaller than those of L-shape sandwich plates with other
BCs because the clamped boundary condition is less
flexible than the simply supported and free BCs.

5 Conclusions

This paper proposes a Q4 finite element with nine DOFs
per node for the investigation of the static response of
FGP sandwich plates including L-shape models. The
finite element formulation based on Quasi-3D theory
helps to describe more accurately the stress—strain field of
plates, especially with thick plates. Besides, the use of
Quasi-3D theory satisfies the stress-free condition at the
upper and lower boundaries of plates condition and does
not require use of any anti “shear-locking” techniques.
The paper also analyses and discusses the effects of
geometrical parameters, material properties on the static
response of FGP sandwich plates consisting of L-shape
models. From the formulas and obtained numerical
results, some main conclusions can be highlighted as
follows.

1) Using the Q4 element combined with Quasi-3D
theory easily discretizes the problem domain even with
complex geometric domains and avoids “the shear-
locking” phenomenon that appears in the classical Q4
element.

2) Using sandwich structures with an FGP core not
only reduces the overall mass but also increases the
flexural strength of the structure in some specific cases.

3) The material properties such as power-law index £,
porosity coefficient ¢ and geometric parameters such as
length-thickness ratios, thickness ratio between the
bottom layer significantly affect the static bending of
FGP sandwich plates. In general, power-law index k and
porosity coefficient £ make reduce the plate’s stiffness.
Moreover, adjusting these parameters can help control the
stiffness of sandwich plates as desired.

4) The numerical results provided are useful for
calculations for design of FGP sandwich plates in
engineering practice.
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