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ABSTRACT Selective laser melting (SLM) is a unique additive manufacturing (AM) category that can be used to
manufacture mechanical parts. It has been widely used in aerospace and automotive using metal or alloy powder. The
build orientation is crucial in AM because it affects the as-built part, including its part accuracy, surface roughness,
support structure, and build time and cost. A mechanical part is usually composed of multiple surface features. The
surface features carry the production and design knowledge, which can be utilized in SLM fabrication. This study
proposes a method to determine the build orientation of multi-feature mechanical parts (MFMPs) in SLM. First, the
surface features of an MFMP are recognized and grouped for formulating the particular optimization objectives. Second,
the estimation models of involved optimization objectives are established, and a set of alternative build orientations
(ABOs) is further obtained by many-objective optimization. Lastly, a multi-objective decision making method integrated
by the technique for order of preference by similarity to the ideal solution and cosine similarity measure is presented to
select an optimal build orientation from those ABOs. The weights of the feature groups and considered objectives are
achieved by a fuzzy analytical hierarchy process. Two case studies are reported to validate the proposed method with
numerical results, and the effectiveness comparison is presented. Physical manufacturing is conducted to prove the
performance of the proposed method. The measured average sampling surface roughness of the most crucial feature of
the bracket in the original orientation and the orientations obtained by the weighted sum model and the proposed method
are 15.82, 10.84, and 10.62 um, respectively. The numerical and physical validation results demonstrate that the
proposed method is desirable to determine the build orientations of MFMPs with competitive results in SLM.

KEYWORDS selective laser melting (SLM), build orientation determination, multi-feature mechanical part
(MFMP), fuzzy analytical hierarchy process, multi-objective decision making (MODM)

into seven categories [4], in which selective laser melting
(SLM) [1], also known as laser powder bed fusion or
direct metal laser melting, helps directly manufacture

1 Introduction

Additive manufacturing (AM) is an advanced freeform

fabrication process that fabricates a physical part from its
three-dimensional digital model using layer-upon-layer
material deposition [1]. This unique manufacturing
mechanism gives AM several advantages regarding
material saving, design flexibility, high feasibility for
geometric complexity, and shorter development time for
new products compared with conventional subtractive
manufacturing processes [2,3]. AM processes are divided
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complex shape parts with high mechanical performance
and accuracy from metal or alloy powder particles
without the mold design process [3]. This characteristic
of the SLM process makes it desirable for fabricating
high-quality mechanical parts widely used in aerospace
and automotive.

The SLM process consists of powder material
deposition on a platform or previous as-built layer,
selective fusion of powder particles by a laser beam based
on the current layer’s profile, lowering the platform by a
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predefined layer thickness, and recoating a new layer of
powder material. The cycle repeats until the entire part is
fabricated. This process will generate a staircase effect on
the surface of an SLM part [2]. The staircase effect
adversely affects the surface quality of an SLM part and
cannot be eliminated. The mechanical part usually has
multiple surface features, such as cylindrical and planar
features, which are used for connection, mating, bearing,
and assembly. For a multi-feature mechanical part
(MFMP), the poor surface quality, especially on the
working surface, will influence its usage function. In
practice, a surface finishing process is essential to
improve the surface quality of an as-built part in AM
[5-7]. However, it requires additional time and cost. To
improve this shortcoming, feasible process planning is
crucial for the SLM process.

Process planning for an SLM part mainly includes the
build orientation determination, support structure genera-
tion, slice creation, laser scanning path planning, and
process parameters determination [8,9]. The build
orientation is essential because it directly affects the
subsequent support structure generation, slice creation,
and laser scanning path planning [10,11]. The build
orientation of an SLM part has a critical effect on the
mechanical properties, part accuracy, surface quality,
support volume, and build time and cost of its as-built
part [12—17]. The build orientation determination for an
SLM part involves selecting an optimal build orientation
(OBO) from the infinite build orientation space regarding
the part’s particular production or design requirements. A
desirable OBO is critical to the fabrication of an MFMP
in SLM. It is difficult to manually select a suitable OBO
to benefit the as-built part in practice comprehensively.

Many studies have been performed to determine an
OBO for different AM processes, such as fused
deposition modeling (FDM) [18-29], stereolithography
(SLA) [20-23,30-35], selective laser sintering (SLS)
[20-22,36-39], and SLM [12-15,40]. Methods in
previous studies can be classified into computation-based
and evaluation methods [25,33,39]. The computation-
based methods adopt optimization methods to directly
obtain one or more OBOs regarding single or multiple
optimization objectives by global searching from the
infinite orientation space [12-15,18-21,25-29,34-37].
The evaluation methods select an OBO from a set of
alternative build orientations (ABOs) using multi-
objective decision making (MODM) by considering
the objectives affected by build orientation
[22-24,30-33,38-42]. The objective estimation accuracy
is crucial to the ultimate achieved OBO. However,
several objective estimation methods in the literature are
either unsuitable for SLM [19,23,36,37] or not
sufficiently accurate (e.g., the support volume, and build
time and cost [12,42]).

This study attempts to determine the OBOs for MFMPs
in SLM. For an MFMP, its surface features are critical in

conventional machining and AM processes. It carries the
information on the design or functional requirements of
the part [39]. The specific knowledge of the features can
be utilized in determining the OBO. A method to
determine the OBOs for MFMPs in SLM via MODM is
developed in this study. The method initially identifies
the surface features of an MFMP and groups them to
formulate specific optimization objectives. The estima-
tion accuracy of the support volume, and build time and
cost are improved to increase the trustworthiness of the
computation results. Then, the ABOs are generated by
many-objective optimization (MOO). Ultimately, an
integrated MODM method is presented to select an OBO
from the ABOs.

This study is organized as follows. Section 2 reviews
the related work. Section 3 introduces the framework of
the proposed method. Section 4 validates the effective-
ness of the proposed method with two MFMPs, and offers
physical experiments and a discussion. Section 5 ends
this study with conclusions.

2 Related work

2.1 Computation-based methods for OBO determination
Computation-based methods are intuitive ways to obtain
one or more OBOs for an AM part by applying an
exhaustive search method to traverse the infinite
orientation space. Many types of exhaustive search
method have been conducted in the literature, such as
nonlinear optimization-based methods [12,29,37,43,44],
population-based optimization algorithms [13,14,18-21,
26,27,34-36,45], Taguchi method [25], derivative-free
simulated annealing method [28], and Tabu search
method [15]. Morgan et al. [12] determined the OBO for
an SLM part by minimizing the support volume using a
line search algorithm. They calculated the support volume
by summing the volume of the irregular prism formed by
each downward facet and the build platform.
Nonetheless, this estimation method is inaccurate for the
commonly applied nonconvex model because, in this
case, certain prisms will intersect the model instead of the
platform [22]. Similar estimation methods were also
implemented in Refs. [23,25,33,34].

Wang and Qian [29] proposed a method to simulta-
neously optimize the build orientation and topology
layout of an FDM part by moving asymptotes. Singhal
et al. [37] considered the surface roughness, build time,
and the quantity of support structure in the OBO
determination for SLA and SLS processes by the trust
region method. Their approach utilized the part height
along the z-direction to estimate the build time, which
was a simple and efficient computation method. Although
they considered the influence of support structure on
estimating build time, the entire area of the supported
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facets was taken as the quantity of support structure. This
estimation was not desirable because the actual support
volume was also affected by the height of the supported
facets. This shortcoming likewise appeared in Refs.
[19,26,27].

Paul and Anand [43] utilized the weighted sum model
(WSM) to convert the multiple optimization objectives
into a single main objective. In this manner, the build
orientation could be optimized using the trust region
method, which would minimize the part’s flatness,
cylindricity errors, and support volume. They reported a
voxel-based method to calculate the support volume. The
method required converting the input standard tessellation
language (STL) model into a voxel representation, which
induced a high computation cost, especially for
computation-based methods with many iterations [24].
This method was also applied in Refs. [14,44].
Chowdhury et al. [44] determined the OBO by the WSM
based on a global search algorithm in MATLAB
software. The geometric features, support volume,
support contact area, mean cusp height, and build time
were involved. They measured the build time only by the
number of layers, resulting in an inaccurate result.
Nonlinear optimization-based methods have an issue with
the definition of search step size that influences the
balance between effectiveness and efficiency [17].

Population-based optimization algorithms are the most
popular computation-based methods, such as genetic
algorithm (GA) [13,18,20,21,34,36], particle swarm
optimization [14], and non-dominated sorting genetic
algorithm II (NSGA-II) [19,27,35]. In comparison with
nonlinear optimization-based methods, population-based
optimization algorithms are conducive for improving
solving efficiency. Masood et al. [18] determined the best
part orientation by minimizing the volumetric error using
GA. They calculated the volumetric error by the layer
thickness and the area difference between each layer’s top
and bottom slices. Pandey et al. [19] simultaneously
optimized the surface roughness and build time by the
NSGA-II to obtain the Pareto front. The OBO could be
obtained from the Pareto front based on minimum build
time or surface roughness.

Byun and Lee [20] proposed a method to determine the
OBO in FDM and SLA processes by the WSM,
considering the surface roughness and build time.
However, their approach did not provide the estimation
method of the support volume, and the corresponding
estimated build time is inaccurate. Ahn et al. [21]
optimized the build orientation by minimizing the surface
roughness using GA. Canellidis et al. [34] implemented
the WSM to achieve an OBO in SLA regarding the build
time and surface roughness. The support removal time
was considered in estimating build time. Phatak and
Pande [36] utilized the WSM to determine an OBO for an
SLS part, considering the part build height, surface
roughness, and material utilization.

Brika et al. [13] determined the OBO of an SLM part
by the WSM, and the considered objectives included the
mechanical properties, surface roughness, support
volume, and build time and cost. Cheng and To [14]
utilized the WSM to obtain the OBO of an SLM part with
minimum residual stress and support volume. Griffiths
et al. [15] proposed a build cost estimation method for an
SLM part and applied it to address the problem of
obtaining an OBO and 2D irregular bin packing a mixed
batch of parts across identical SLM machines. Matos
et al. [26] selected the volumetric error, support area,
staircase effect, build time, surface roughness, and
surface quality as the optimization objectives to obtain an
OBO for an FDM part using an electromagnetism-like
mechanism algorithm. They further adopted a MOO
method to optimize the volumetric error, support area,
build time, and surface roughness simultaneously to
achieve the OBO by NSGA-II [27]. Nevertheless, they
used the support area and part height to estimate the
amount of support and build time, respectively, which, as
previously mentioned, was inaccurate.

Ulu et al. [28] introduced a model shape correction
method in AM and optimized the build orientation by
minimizing the difference between the modified shape
and the manufactured part. Mele and Campana [35]
applied the evolutionary algorithms to obtain the OBO
that was the one with the lowest cost, evaluated by the
material mass and build time. The input mesh was
initially simplified in their method to reduce the
computation cost. However, this method would damage
the accuracy of the computation results. In addition to the
methods above, several studies have applied machine
learning techniques to optimize the build orientation to
reduce user-preferred features’ support or improve
prediction accuracy on the build time and part mass
[46,47].

The WSM is a convenient and efficient means to
determine a build orientation with multiple objectives.
Unfortunately, the WSM does not work well in the case
of MOO with nonconvex Pareto fronts [48], which
frequently appears in build orientation issues with
multiple objectives.

Although the applications of computation-based
methods require more calculation costs, they will achieve
more accurate results. Computation-based methods are
widely applied for the build orientation determination of
an AM part.

2.2 Evaluation methods for OBO determination

Evaluation methods determine the OBO of an AM part by
generating a set of ABOs and then selecting the most
optimal via specific methods. The typical generation
methods of ABOs can be classified into feature-based
methods [30-32,39,40], convex hull generation method
[22], facet clustering methods [41,42], and quaternion
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rotation methods [23,33]. Cheng et al. [30] developed a
classification method of the features of 3D models and
applied such features to generate the ABOs. For example,
the normal vector of a planar feature was selected as an
ABO. The OBO was determined by the part accuracy and
build time one by one, which did not consider the trade-
off between the objectives. Pham et al. [31] reported
similar work, but they were concerned with the support
volume, and build time and cost. West et al. [32]
proposed a process planning system to select the desirable
build orientation, layer thickness, and recoating variables
for an SLA part. The ABOs were identified by the typical
surface features of the part, and the OBO was determined
by a deviation function regarding the surface roughness,
part accuracy, and build time.

Zhang et al. [39] indicated the definition of AM
features and classified the AM features into cylindrical,
planar, tapered, and structural unit types combined by the
former three. The ABOs were generated from the
recognized AM features via specific rules, such as two
orientations perpendicular to a planar feature as its ABOs.
The OBO was selected based on an MODM method
regarding the surface roughness, support volume, build
time and cost, and favorableness of AM features. The
estimated objective values depended on a process
planning platform named KARMA Tool. Al-Ahmari
et al. [40] performed a method to read a model of the
Standard for the Exchange of Product Model Data to
extract its features and geometric properties. They applied
the recognized features to generate the ABOs. The
generation rules were similar to the feature-based
methods above. The OBO was determined based on the
WSM, considering the accuracy and build time. Feature-
based methods are not suitable for the freeform surface
models because the feature definition of such models is
difficult.

Byun and Lee [22] manually selected the normal
vectors of the surfaces of the convex hull of the STL
model as the ABOs. The surface roughness and build
time and cost were considered the evaluation objectives
to obtain the OBO using the WSM. The accuracy issue
limits the convex hull generation method because the
convex hull is not the exact model. Zhang et al. [41]
divided the STL model into several finite clusters of
significant triangular facets based on the similarity of the
facet normal vectors based on the k-means clustering
algorithm. The unitized central vector of all normal
vectors in a cluster and its opposite vector served as this
cluster’s ABOs. The facet clustering method is efficient
because it avoids the AM feature recognition and can also
be applied for freeform surface models. Qin et al. [42]
improved the computation efficiency and stability of the
generation of ABOs in Ref. [41] using an accelerated
hierarchical density-based spatial clustering of applica-
tions with noise* algorithm instead of the k-means
clustering algorithm. The WSM determined the OBO for

an SLM part regarding the support volume, surface
roughness, volumetric error, build time, and build cost.
The support volume was estimated by Autodesk
Meshmixer software, which had computation efficiency
and convenience limitations because the software
required frequent operations for the ABOs. The ABO
generation rule of the facet clustering methods is similar
to feature-based and convex hull generation methods.

The above three evaluation methods require little
computation time because they focus on a few ABOs in
the finite possible build orientations [17]. The quality of
the obtained OBO is highly dependent on the ABOs.
Selecting the normal vector of a feature or a facet cluster
as the ABO is advantageous to the surface quality of the
planar surface but may be disadvantageous to that of the
nonplanar surface, such as cylindrical surface. In
addition, the calculation of the actual support volume of
an AM part is complex [24]. This ABO generation rule
cannot guarantee to benefit from the reduction of the
support volume.

Qie et al. [33] determined ABOs by rotating a model
around a randomly acquired axis using quaternion
rotation, which made the search space of the ABOs
expand to infinity. A feedback MODM model iteratively
achieved the OBO until the user’s requirements were
satisfied, in which the surface roughness, support volume,
and build time were concerned. Yu et al. [23] improved
the work of Ref. [33] by proposing a negative feedback
decision-making model, and the build cost and flatness
error were added to the optimization objectives. Given
that the rotation axis was created randomly, the
quaternion rotation methods could miss the true OBO in
the obtained ABOs.

In addition to the four evaluation methods above,
Padhye and Deb [38] applied the NSGA-II and multi-
objective particle swarm optimization to obtain the ABOs
in the Pareto front of an SLS part, considering the surface
roughness and build time. They proposed three decision-
making methods to select the best one from the Pareto
ABOs. Di Angelo et al. [24] developed a similar
approach to obtain the Pareto ABOs for an FDM part,
considering the surface quality and build cost by the S-
metric selection evolutionary multi-objective algorithm.
The OBO was determined by the technique for order of
preference by similarity to ideal solution (TOPSIS) [49].

The present study is motivated by the two types of
OBO determination method and thus proposes an
approach to determine an OBO for an MFMP in SLM
with desirable results.

3 Framework of the proposed method

The schematic of the proposed method is presented in
Fig. 1. The input includes the manifold mesh model and
machining accuracy design requirements (MADRSs) of an
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Fig. 1 Schematic of the proposed method. ABO: alternative build orientation, CSM: cosine similarity measure, FAHP: fuzzy analytical
hierarchy process, FG: feature group, MADR: machining accuracy design requirement, MFMP: multi-feature mechanical part, MOO:
many-objective optimization, OBO: optimal build orientation, SLM: selective laser melting, TOPSIS: technique for order of preference by

similarity to ideal solution.

MFMP and SLM process parameters, such as layer
thickness, recoating time, laser scanning velocity, and
hatch spacing. The main steps of the proposed method
consist of feature recognition and grouping, generation of
ABOs, and OBO determination.

In feature recognition and grouping, the features of the
input model are recognized, and the features with the
same MADR are combined into a feature group (FG). In
the generation of ABOs, the estimation models of the
optional optimization objectives, namely volumetric
error, surface roughness, support volume, and build time
and cost, are established. The values of volumetric error
and surface roughness are the weighted sums of the
values of the FGs, following their MADRs. Then, the
ABOs are generated by the MOO regarding the
considered objectives. In OBO determination, an OBO is
selected from the ABOs based on an integrated MODM
method composed of the TOPSIS and cosine similarity
measure (CSM) [50]. The weights of the FGs and
considered objectives are defined by the fuzzy analytical
hierarchy process (FAHP) [51]. Finally, the OBO and its
objective estimation values are the outputs. The details of
the proposed method are described in the following
sections.

3.1 Feature recognition and grouping

Whether in conventional or AM process planning, the
MADR (can be expressed by surface roughness) of a
specific feature of an MFMP should be given more
attention because it affects the part’s function realization
and machining cost. To this end, the surface features of
an MFMP should be initially recognized, especially in the
AM environment. Moroni et al. [52] identified the
cylindrical assembly feature from the STL model to serve
as the build orientation consideration for the surface
quality of a functional assembly component fabricated by
AM. Zhang et al. [39] classified the AM features into
cylindrical, planar, tapered, and structural unit types
combined by the former three types. These features are
the typical features of mechanical parts. The other
standard features of mechanical parts include the

spherical and rotational features and can likewise be
utilized in AM. Given that the input model is a manifold
mesh model, the dihedral angle method is applied to
obtain the surface features of an MFMP [53].

Different features of an MFMP will have different
MADRSs in accordance with their various functions.
Consequently, the build orientation should benefit the
features with high MADRs. Generally, an MFMP has
several MADRs; its features with the same MADR will
have different positions and directions. It is not easy to
select a build orientation to optimize all of them
simultaneously. To this end, those features can be
regarded as a whole, that is, the features with the same
MADR form an FG.

Figure 2 illustrates the above process. Figure 2(a)
depicts the 20 recognized features of an MFMP,
including cylindrical and planar features. The central
cylindrical feature has the highest MADR. The planar
mating features (including the bottom planar feature)
intersecting with the middle cylindrical features have the
same MADR and are smaller than the central cylindrical
feature. The two small cylindrical features used as the
connecting bolts have the same MADR and are smaller
than the former two MADRs. The remaining features
have the same and lowest MADR. The four MADRs and
the combined FGs are shown in Fig. 2(b), where the
features with the same color represent an FG.

3.2 Generation of ABOs

The objective estimation models should be reasonable
and practical to obtain more accurate optimization results.
Indeed, a desirable MOO solving method is crucial for
the generation of ABOs. The details are presented in this
section.

3.2.1 Objective estimation models

In this study, the volumetric error, surface roughness,
support volume, and build time and cost are considered as
the optimization objectives for determining the build
orientation of an MFMP in SLM.
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Fig. 2 Illustration of the (a) features and (b) feature groups of a multi-feature mechanical part.

(1) Volumetric error model. The existence of the
staircase effect results in a volumetric difference or
volumetric error as shown in Fig. 3. The volumetric error
is the difference between the volume of the material used
for the AM part and the volume specified by the manifold
model [18,42,45,54]. The volumetric error affects the part
shape accuracy of an as-built part in AM and cannot be
eliminated [45]. The model for estimating the entire
volumetric error, VE, of an AM part is expressed as
follows [42,45]:

vE=Y" I |d n| 0
where [, is the layer thickness, d =(0,0,1)" is the build
direction vector, A} and n} are the area and unit normal
vector of the ith facet F,, respectively, and n; is the
number of facets of the manifold model. In Fig. 3, «; is
the angle between the build direction d and normal vector
of the ith facet mn]. The build orientation and layer
thickness directly influence the volumetric error.

Given that the FGs have different MADRs, Eq. (1)
cannot reflect the relative importance of different FGs. A
weight is assigned to the volumetric error produced by
each FG, and the weighted volumetric error, V., of an
SLM part can be obtained by

Vie= ) WEVEE, 2)

where ny, is the number of the FGs, w; (w® > 0) and VE?
are the weight and volumetric error of the ith FG,
respectively, and Y w' = 1.

A higher weighted volumetric error of an SLM part will

Model surface —

Fig. 3

AM part surface

‘\\\\

result in poor part accuracy, especially for FGs with
higher MADRs. Therefore, a build orientation is crucial
to minimize the weighted volumetric error.

(2) Surface roughness model. Surface roughness is a
popular indicator for measuring the surface quality of an
AM part [13,19-21]. Past studies have investigated the
effects of the process parameters and orientation on the
surface roughness of the SLM parts [13,55-61]. A
suitable and reasonable prediction model of the surface
roughness for an SLM part is essential in practical
application. However, in the publications, prediction
models are either not given [56-58] or are not applicable
due to complexity [55,59,61]. Accordingly, the prediction
model proposed by Brika et al. [13] is applied in this
study. However, it is simple and cannot insufficiently
reflect the effects of the process parameters and
orientation on the surface roughness. This model was
developed based on a study of the surface roughness of
SLM Ti—6Al-4V samples for the up-facing and side-
facing surfaces in different build orientations with a
constant layer thickness of 0.03 mm. The surface
roughness Ra] of the ith facet F;, for an angle «; is
estimated based on polynomial regression, which is
expressed as follows [13,42]:

Ra! =9.4148+0.0389|90 — a|. 3)

The average surface roughness, Ra,;, of an SLM part is
calculated by [13,19,42]

" Ra/A!
Raasr -

S

“4)

[lustration of the volumetric error in additive manufacturing (AM).
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In Refs. [13,42], Eq. (3) was suitable for the up-facing
and downward-facing facets (also known as overhang
facets). The support structure is essential for the overhang
facets to improve their surface quality [2], and the support
removal process damages the surface quality of the
overhang facets of an SLM part [56]. To this end, the Ra
value of a supported facet is weighted as

Ral = (1+0)(9.4148 +0.0389|90 — a)), %)

where Ra® is the surface roughness of the ith supported
facet, and o is the weight for the surface roughness
calculation of a supported facet. The value of o~ was set as
0.2 for FDM based on experiments in Ref. [19].
However, similar experiments for SLM are unavailable.
Given that the layer thickness of the SLM is smaller than
the FDM, o is set as 0.1 for SLM.

Thus, the estimation model of the average surface
roughness for an SLM part is given by

Raasr =

n" n

" Ra*AT + " Ra®Af

=1 I k=1 KTk
f L ®

Z:: A

where n} and n} are the numbers of the facets without and
with supports, respectively, and n; = n} + n;.

Similar to the volumetric error model, the weighted
average surface roughness, Ra,,, of an SLM part can be
achieved by

ngy fo
Rawasr = Zi—l W,‘ Raasr,i’ (7)

Bounding
box

(a)
I iy
rays

Overhang
facets

Platform
e
___ /

where Ra,; is the average surface roughness of the ith
FG obtained by Eq. (6).

The higher the value of Ra,, is, the worse the surface
quality of an SLM part will be. A build orientation is
crucial to minimize the weighted average surface
roughness.

(3) Support volume model. The support volume is an
essential objective because it affects the build time and
cost. Once the overhang angle of a facet is greater than
the threshold (the threshold is 45° in this study), the
support structure is required for it [2,17]. The ray—triangle
intersection method [62] is applied to estimate the support
volume with desirable computation efficiency. As shown
in Fig. 4, the projection of the bounding box of a model
on the platform is first partitioned into numerous small
square grids (Fig. 4(b)). The ray of each grid is
constructed from the grid’s center and upward along the
build direction and used to intersect with the model’s
triangles. The number of grids is controlled by the edge
length of the grid as follows:

ng = round(

Blcngth
, 8
l ) ®)

(S

nﬁ = round(

Bwidth
| 9
L ) (€))
where n; and ), are the numbers of the grids along the x-
and y-axis, respectively, Biuen and By, are the length
and width of the part’s bounding box along the x- and

Hig

Blsnglh
T r Buian
T
A Ray origin
(b)
> Intersections
H&{’-;":l (.N. i

A

Fig. 4 Illustration of support volume estimation: (a) manifold mesh model, (b) grids and ray origins, (c) required rays intersected with

the overhang facets, and (d) support segments.
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y-axis, respectively, and [, is the edge length of the grid.
The number of the grids is n, = ny X n.

The value of [, is related to the part size. Then, the
overhang facets of the model are detected and applied to
obtain the intersected rays, as shown in Fig. 4(c).

The intersection in a supported facet and the closest
intersection downward along the ray will construct a
segment (Fig. 4(d)). The support volume of each grid can
be obtained by summing the products of the grid area and
segments, which can be expressed as follows:

Ve :AngHi,,, (10)

where V7 is the support volume of the ith grid, A, = 2 is
the area of the grid generated in the projection of the
bounding box on the platform, and H; is the height of the
jth segment of the ith supported ray. Accordingly, the
support volume, V,, of an SLM part can be determined as

o=y (B 1) (an

where n, is the number of the rays intersected with the
overhang facets.

Finding a build orientation is essential to minimize the
entire support volume of an SLM part.

(4) Build time model. Build time is likewise an
essential objective in SLM and influences the build cost
of a part. It is the sum of the building time and the
preparation time (i.e., recoating time between two
adjacent layers of each layer). On the basis of Refs.
[13,22,42], the entire build time, T}, of an SLM part can
be estimated by

H,+H,, Vi Vi

b= Lt 5+

A R, R

where H, is the part’s height, H,, is the height between

the part and the platform, 7, is the recoating time of each
layer, V, is the part volume, and R} and R} are the build

: (12)

135

1
Slicing plane 30
‘ | ’UA 1 § g
| / £ 125
- =
Contours
Supports 120
L Platform
S 7

Fig. 5§

rates of the part and support, respectively. The part’s
build rate is defined by

R =lvH, (13)
where v, is the laser scanning speed, and H} is the hatch
distance for filling the part. As shown in Fig. 5, one layer’s
laser scanning path comprises contour, filling, and
support; and H; is the hatch distance of the lattice support
structure. In Fig. 5, the green triangle and square
represent the start and end points of the contour path,
respectively. The red triangle and square represent the
start and end points of the filling path, respectively. The
purple triangle and square represent the start and end
points of the support path, respectively.

The build rate R} of the support can be the same as R},
and the resulting support structure is then completely
solid. In practice, the lattice support structure is
commonly applied to reduce the material used and build
cost in SLM [14,63]. The lattice support structure is
constructed by a set of cell blocks, and Hj is greater than
H}. Thus, the support’s build rate is defined by

R = hvsH (14)
b 2 .

A build orientation is essential to minimize the entire
build time of an SLM part.

(5) Build cost model. Build cost is a critical indicator in
SLM, mainly due to the use of high-quality metal
powder. The build cost, Cpyg4, of an SLM part is
composed of material, energy, and indirect costs [13],
which can be expressed as

Cbuild = Cmaterial + Cenergy + Cindirects (15 )
where Cueia 1S the material cost, Ce,. is the energy
cost, and Cjqiree 18 the indirect cost.

Crueia 18 composed of the material cost used for the
part, support structure, and wasted material during the

fabrication, which can be expressed as follows:

— Contour I
Filling :

— . . - .
——]\ N
=3

e

Support == -

[ |Contour 2

Contour 1

\ Contour 3 [ S

1o 15 120 125 130
X/mm
(b)

140

Illustration of the model slicing and the laser scanning path: (a) model slicing and (b) laser scanning path.
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Conaierial = (Vpy F Suensity Vo) Maensity Miporosity Prmateriat (1 + Ryasee)

(16)
where Mensiy and M,y are the density and porosity of
the material, respectively, P...iq 1S the material price,
R, 1s the material waste rate, and S, 1S the volume
fraction of the lattice support structure [14,64].

Cenergy 1S given by
Cenergy = (Vp + Sdensity Vs)MdensityMpomsityEconsumptionPenergy’ (17)
where E qnumpion 15 the energy consumption rate, and Peyerey
is the energy price.
Cindirect 18 Written as

Blength Bwidth

Cindirect = TbRindirect ) (1 8)

Aplatform

where Rige 1S the indirect cost rate, and A,pm 1S the
area of the fabrication platform.

The build cost of an SLM part should be reduced by
selecting an appropriate build orientation.

3.2.2 Determination of weights using FAHP

The weights of different FGs in the estimation models of
volumetric error and surface roughness are related to the
MADRs. An FG with a high MADR should match a high
weight [41]. The weights can be assigned manually.
However, human judgment is often fuzzy in real life. For
this, the extent FAHP method [49] is applied to determine
the weights of the FGs. FAHP uses linguistic variables to
express the relative importance of different objectives by
pairwise comparison. The linguistic variable can be
scaled by a triangular fuzzy number (TFN).

A TFN A = (I,m,u) is a fuzzy set, the probability of a
real value, x, belong to A can be determined by the
membership function, uz(x), of A, which is given by

x—1
—, I<x<m,
m—1
Ha(x) = u-x m<x<u, (19)
u—m
0, otherwise,

where O </<m<u, [ and u are the lower and upper
bounds of a TFN, respectively, and m denotes the most
promising value of a TFN (i.e., uz(m) = 1).

The linguistic variables scaled by the TFNs are
presented in Table 1 [51].

The FAHP method obeys the following steps [51]:

(1) The value of the fuzzy synthetic extent,
S; = (l,,ms,, us,), concerning the ith object g; is defined by

Si=) M) [Z”Z“ ]

where Mé, =(l§t, g’,u;) is a TFN and is the extent
analysis value of the jth factor to the ith object in the
fuzzy judgment matrix, M,,,, # is the number of objects,

? M; is obtained by

Jj=1

(20)

and

Table 1 TFNs for linguistic variables [51]

Linguistic variables TFN Scale of TFN
Equal importance 1 (L LD
Little importance 1 1,1,3)
Intermediate value between 1 and 3 2 (1,2,4)
Moderate importance 3 (1,3,5)
Intermediate value between 3 and 5 1 (2,4, 6)
Essential importance 5 3,57
Intermediate value between 5 and 7 6 4,6,8)
Extreme importance 7 (5,7,9)
Intermediate value between 7 and 9 8 (6,8, 10)
Absolute importance 9 (7,9, 11)
ml Z . (@1
=28 ) e

where ¢ is the number of factors of one object, and

[ZL Zj:] M;]il is obtained by
> > m|

1 1 1
0 T =T - (22)
Zi:] Zj‘:l u; Zi:] Zj‘:l mg" Zi:l Zj:l &
Thereby, S; can be given by
(e Sm S
211211 8i 211211 Zle]lg )

(2) The degree of possibility of S, = (Is,,ms,, us,) > Sl =
(ls,,mg, ,us,) is defined as
VS, =8)= Supm min (lls2 ()’) s Ms, (x))a (24)

where S, and S, are obtained by Eq. (20), then Eq. (24)
can be equivalently expressed as follows:

V(Sz>Sl)=hgt(52051)=/~lsz(d), (25)
] ’ mS« > mS, ’
0, ls, > us,,
ps, (d) = s — 7 (26)
. = otherwise,

(ms2 - Msz) - (ms, - ls,)’
where d is the ordinate of the highest intersection point D
between u5 and pg,. The values of V(S,>S,) and
V(S, = §,) are needed to compare S, and S,.
(3) The degree of possibility for a convex fuzzy number
S to be greater than k convex fuzzy numbers S,
(i=1,2,...,k) is defined by

V(S = 8,55,....8)
=VIES =2S)NE =2S)N---N(§ =Sl
=minV(S >S),i=12,...k. 27
(4) The normalized non-fuzzy weight vector can be
expressed as
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W = (d(S)),d(S>),....d(S,)), (28)
where d(S;) is the weight of the ith object, and is given by

des,) = ﬂ

D dS)

where d'(S;) is calculated according to Eq. (27), and
written as

d'(S;)=minV(S, =2 S,), fort=1,2,...,n, t £1i.

29

(30)

3.2.3 Many-objective optimization

The MOO generates the ABOs regarding the considered
objectives. The part’s rotation angles (6,, 6,) around the x-
and y-axis will define an ABO. Accordingly, 6, and 6, are
taken as the decision variables. The rotation angle around
the z-axis is not considered because it does not affect
SLM manufacturing. The proposed MOO problem can be
formulated as

Mlnlmlze {ﬁ (9)6’ 9&) ’.flz (HX’ 9\) > '"7-](;"«» (9)5’ 9?)} ’
subjectto  0° <6, < 180°,
0° <6, <180°,

where f;(6,,6,) represents the estimation model function
of the ith objective, and n, is the number of considered
objectives.

The ranges of 6, and 6, will make all the orientations in
the 3D space covered. Equation (29) can be solved in two
ways. One is to apply the WSM [13,34], which can be
formulated as

(€3]

. OV, _ OV;nin

) —— " S 32
ZiZI Wl 0‘/imax _ 0‘/imm ( )

where w9 and OV, are the weight and value of the ith
objective, respectively, and OV™ and OV™" are the
maximum and minimum values of the ith objective,
respectively. The WSM is simple and efficient in solving
the MOO problem and generates only one solution.

The other one is applying the Pareto-based optimization
to obtain the Pareto front of the MOO problem
[19,24,27,38], which will generate a set of Pareto optimal
solutions. The final optimal solution can be selected from
those solutions by the decision maker. In comparison
with the WSM, the Pareto-based optimization can better
reflect the characteristics of individual objectives.

This study adopts the NSGA-II with vectorized
calculation provided by the MATLAB software to
generate the Pareto ABOs. It supports the vectorized
calculation to speed up the solving process. The
volumetric error, surface roughness, and build time and
cost models are easily coded in vectorized format. The
support volume model is more complex but can be
vectorized partly. To maintain the population diversity,
the population size and the maximum generation are set
to 100 and 600, respectively. The number of optimal

solutions in the Pareto front is set to be the same as the
population size, and the other parameters are kept the
same as the default values.

3.3 OBO determination

The obtained ABOs are equivalently optimum, referring
to Pareto optimality. An OBO should be selected from the
ABOs in practice. The OBO determination is an MODM
problem and can be summarized as a decision matrix,
DM, as shown as follows:

X X2 Xin
X1 Xopo o Xog

pm=". T . | (33)
xm,l xm,Z xm,n

where x; ; is the value of the jth objective for the ith ABO.
A weight vector that will reflect the relative importance
of the considered objectives is given by

W, = [w],w5,...,wo], 34

where w} > 0 is the jth objective weight, and Zn wi=1
Jj=1

The objective weights are crucial because it directly
affects the OBO determination. Most of the existing
works have defined the weights manually. Nevertheless,
specifying the proper objective weights is challenging
[17]. Therefore, the objective weights are also determined
by the FAHP.

This study integrates the TOPSIS and CSM methods
[50] to solve the proposed MODM problem. The best
alternative determined by the TOPSIS will have the
minimum distance to the positive ideal solution and
maximum distance to the negative ideal solution, which
was likewise utilized in Ref. [24]. Nonetheless, the
TOPSIS only considers the distance metric and can
induce several alternatives with the same measured
distance in the high-dimensional solution space.
Consequently, the CSM is applied to distinguish the
alternatives with the same measured distance. The CSM
measures the similarity of two vectors by the cosine of
the angle between them. The greater the cosine is, the
more similar the two vectors will be. It pays more
attention to the direction rather than the distance and is
sensitive to even a tiny deformation. The OBO should
have the highest CMS with the positive ideal solution.

The TOPSIS method is described in the following
steps:

(1) Normalize the decision matrix of DM as follows:

Xij .
rii= ,l:1,2,...

J
"2
X
oy Vil

(2) Calculate the weighted normalized decision matrix
as follows:

m, j=1,2,.on. (35)

vij=wir, i=12,...m, j=1,2,..n (36)
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(3) Determine the positive ideal solution A* and
negative ideal solution A~ as follows:

AT =(viv3, ..V, (37)

A" = (v, v). (38)
If the jth objective is a benefit objective, then
V; = maX{Vlyj, Vz’j,..., vm,j} and V]_- = min{vl,j,vlj,...,Vm,j}. If
the jth objective is a cost objective, then
v = min{v, ;,v,,...,v,,} and V; = max VijsVajseees Vi)

(4) Calculate the distances D;” and D; from each
alternative to A* and A-, respectively, as follows:

Di+ - Z';:l (V,-,j—V; )2, i=1,2,..

D; = ijl(v,-’j—v;)z, i=1,2,....,m.

(5) Calculate the relative closeness to the ideal solution
as follows:

(39)

(40)

op— (41)
" D +D;”
(6) Rank the alternatives following C; (0 < C; < 1). The
greater C; is, the better alternative will be.
To utilize the CSM method, Steps 1-3 of the TOPSIS
method are likewise applied. Then, the CSM, M,, between
each alternative and A* is defined as

M, = ZH (v27) .
\/Z}Z=1 v \/Z; o)

The greater M, is, the more similar the alternative to the
positive ideal solution will be. Given that C; and M; have
the same positive influence, the integration value, 7V, of
the TOPSIS and CSM can be expressed as

1V, =pC/ +(1-p)M/, (43)
where p (0 <p <) is a coefficient to adjust the relative
importance of the TOPSIS and CSM, here, p is set as 0.5,
which indicates that the importance of TOPSIS and CSM
is the same, C; and M are the normalized values of C; and
M., respectively, and given as follows:

(42)

G
C=-=— (44)
20 C
i=1
M;
M= = —. (4$)
M;

i=1
The greater 1V, is, the better the alternative will be. In
comparison with the TOPSIS method, the proposed
integrated MODM method that selects the OBO not only
has the highest relative closeness between the positive
and negative ideal solutions but also the highest similarity
to the positive ideal solution.

4 Applications and discussion

4.1 Case studies

Two MFMPs are applied to illustrate the proposed
method, and the detailed geometric information is
presented in Table 2. Figure 6 depicts the manifold mesh
models of the two MFMPs with their original orientation.
The relevant process parameters used for the objective
estimation models are provided in Table 3. In Table 3, the
layer thickness, recoating time, laser scanning speed, and

Table 2 Geometric information of the two MFMPs

MFMP Length/ Width/ Height/ Volun}qe/ Are%/
mm mm mm mm mm

Connecting rod 53.58 26.92 25.99 10236.77  5360.21

Bracket 63.00 46.78 60.13 17644.09  9573.85

(@) (b)

Fig. 6 Manifold mesh models of the two multi-feature
mechanical parts: (a) connecting rod and (b) bracket.

Table 3 SLM process parameters used for the objective estimation
models

Parameter Value

I 0.03 mm
T, 20s

Vs 1250 mm/s
Hy 0.07 mm
Hy 1 mm
Hpp 3 mm
Mensity 4.43 g/lem3
Mporosity 99.5%
Ruyaste 0.1
Sdensity 0.3
Prmaterial 300 USD/kg
Penergy 0.18 USD/(kW-h)

162.13 kW-h/kg
53.35USD/h
62500 mm?

E consumption
Rindirect

A platform
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hatch spacing are cited from Ref. [13]; the hatch distance
of the lattice structure is cited from Ref. [63]; and the
fraction of the support volume is cited from Ref. [14].

Figure 7(a) presents the 13 recognized features of the
connecting rod with different colors. Three FGs are
obtained for the connecting rod following its MADRs,
and the features of an FG have the same color, as
presented in Fig. 7(b). The feature numbers of the three
FGs for the connecting rod are 5, 4, and 4. Figure 8(a)
presents the 31 features of the bracket with different
colors. There exist four FGs following the MADRs, as
illustrated in Fig. 8(b). The feature numbers of the four
FGs for the bracket are 3, 5, 2, and 21.

Notably, as the MADR increases, the machining cost
becomes increasingly high. Accordingly, the FG’s
importance should increase with the MADR’s increment.
Depending on the MADRs of the connecting rod, the
pairwise fuzzy judgment matrix, @, and ultimate weight
vector, W, of the FGs obtained by the FAHP are
expressed as follows:

1,1, 1) 1,2, 4) (2,4,06)
= (1/4,1/2, 1) 1,1, 1) 1, 2, 4)],
(1/6, 1/4, 1/2) (1/4,1/2,1) (1,1, 1)

W =(0.5293, 0.3541, 0.1166)".

Similarly, the pairwise fuzzy judgment matrix and
ultimate weight vector of the FGs for the bracket are
obtained as follows:

fg
2

1,1, 1) (1,3,5) 2,4,6) 3,57
| /5, 1/3, 1) (1,1, 1) 1,2,4) (1,3,5)
“lase, 1/4,1/2) (1/4,1/2,1) (1,1, 1) (1,1,3)f

(1/7,1/5,1/3) (1/5,1/3,1) (1/3,1,1) (1,1, 1)

W = (0.4705, 0.3224, 0.1550, 0.0521)".

Once the weights of the FGs are determined, the Pareto
ABOs can be achieved. For that, the relevant optimization
objectives should be identified first. The volumetric error,
surface roughness, support volume, and build time are
selected for the connecting rod. Given that four
optimization objectives exist, the Pareto front cannot
easily be depicted in a single graph. To reflect the
considered objectives’ trade-offs, any three of the four
objectives in the Pareto front are shown in a single graph,
which will generate four graphs. Figure 9 presents the
Pareto front of the connecting rod. Ra,,, in the Pareto

@

(b)

Fig. 7 Features and feature groups of the connecting rod: (a) features and (b) feature groups.

(b)

Fig. 8 Features and feature groups of the bracket: (a) features and (b) feature groups.
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Fig. 9 Pareto front of the four objectives for the connecting rod: (a) Viye, Rawasr, and Vs, (b) Ve, Rawasr, and Ty, (€) Vigye, Vs, and Ty,

and (d) Rawasr, Vs, and Ty,

front changes a little, whereas the other three objectives’
values have sufficient changes, especially for V, and 7.

The weights of the four objectives should be obtained
through the FAHP first to achieve an OBO. Indeed, the
pairwise fuzzy comparison matrix for the four objectives
can be directly constructed by the decision maker’s
preferences. However, it should likewise reflect the
inherent relationship between each objective and the
OBO. Given that the change of Ra,. is extremely small,
using it to distinguish the difference between the ABOs is
difficult. Thus, Ra,,. has a little effect on the OBO. V,,.
reflects the part accuracy and has a sufficient distinction,
as shown in Fig. 9. In comparison with other objectives,
Ve should have a higher weight in the OBO
determination. The presence of the supports will increase
the build cost and time, and the support removal will
damage the surface quality. As a result, V is more crucial
than Ra,,,. The build time can adopt the same importance
as the support volume. The fuzzy pairwise comparison
matrix, Q,, of the four objectives for the connecting rod
can be considered as follows:

QO
(1,1, 1) (1,3,5) 1,2, 4) 1,2, 4)
_la/s, 13,1y 1,1, 1) (1/4,1/2, 1) (1/4,1/2, 1)
174,172, 1) (1,2,4) 1,1, 1) a, 1
(1/4,1/2, 1) (1,2, 4) 1,1, 1) 1,1, 1)

The correspondence weight vector is W, = (0.3529,
0.1443, 0.2514, 0.2514)". Then, applying the integrated
MODM method will achieve the decision choice (marked
as a black star; i.e., the OBO), from the Pareto front of the
connecting rod, as shown in Fig. 9.

The build cost is influenced by the support volume and
build time simultaneously. To present the effects of
different objectives on the build orientation, the build
time objective used in the connecting rod is replaced by
the build cost to generate the Pareto ABOs for the
bracket. Figure 10 illustrates the obtained Pareto front
and the OBO of the bracket, in which the objective
weights are the same as that of the connecting rod.

The OBOs of the connecting rod and bracket are
(0.2563°, 45.1261°) and (89.5595°, 135.0014°),
respectively, which are presented in Fig. 11. The
objective values of the original orientations and OBOs for
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Fig. 11 Optimal build orientations for the connecting rod and bracket: (a) connecting rod and (b) bracket.

the two MFMPs are listed in Tables 4 and 5, respectively. with the original orientation; significantly, the support
The results suggest that the proposed method optimizes volume decreases by 53.43%, whereas the build time
the first three objectives for the connecting rod compared increases by 50.43%. The proposed method optimizes all
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Table 4 Comparison of the original orientation and OBO for the
connecting rod

Orientation  Vyye/mm> Rdyase/tm  Vg/mm? Ty/s %
Original 8.1129 10.8011  6041.0644 23547.7393 0.00970
OBO 7.8981 10.5099  2836.6676 35423.6799 0.01137

Table 5 Comparison of the original orientation and OBO for the
bracket

Orientation  Vyyye/mm® Rawas/km  Vi/mm®  Cpuila/USD IV
Original 9.6181 10.9872  39258.6953  82.1573  0.00414
OBO 9.2628 10.5730  1292.4769  64.5985  0.01297

the four objectives for the bracket compared with the
original orientation; especially, the support volume
decreases by 96.71%. The objective values in the original
orientation are added to the Pareto front to demonstrate
the OBO’s effectiveness. The proposed integrated
MODM method is applied to evaluate them, and the
corresponding results (/) for the connecting rod and
bracket are listed in Tables 4 and 5, respectively. Given
that the 7V value of the OBO is greater than that of the
original orientation, the obtained OBOs of the connecting
rod and bracket are effective solutions.

4.2 Effectiveness comparison

The accuracy of the estimation models of the objectives
considered is crucial to the ultimate optimization results.
No software or open-source toolkit is available to
estimate an SLM part’s volumetric error and surface
roughness. Thus, they are not considered in the validation
of the estimation effectiveness. Autodesk Netfabb, a
commercial software that provides the function to
estimate the support volume and build time of an SLM
part, can be utilized to validate the effectiveness of the
proposed estimation models of support volume and build
time. Table 6 presents the estimated support volumes
obtained by the proposed method and Netfabb for the two
MFMPs in the original orientation and OBO. The
maximum error of support volume is 4.54% for the
bracket. Similarly, Table 7 lists the two types of estimated
build time of the two MFMPs. The maximum error is
5.02% for the bracket. The comparison results
demonstrate the effectiveness of the proposed estimation
methods.

To further validate the effectiveness of the proposed
method for obtaining an OBO for an MFMP in SLM, the
WSM commonly applied in the previous studies
[13,20,34,36] is utilized to compare with the proposed
method. The GA is used to solve the solution of the WSM
expressed in Eq. (30). GA is a popular algorithm for
solving the optimization problem, which is also provided
by MATLAB software and supports vectorized
calculation. Likewise, GA obtains the maximum and

minimum values of the considered objectives. The
weights of the considered objectives are the same as that
of the proposed integrated MODM method. The
population size and maximum generation are 50 and 200,
respectively, and the other parameters keep the default
values.

The solutions of the WSM are (0.0496°, 6.5723°) and
(56.1215°, 90.0000°) for the connecting rod and bracket,
respectively. The OBOs of the connecting rod and
bracket obtained by the WSM and proposed methods are
compared. The results are shown in Tables 8 and 9.

In Table 8, compared with the WSM, the first three
objectives of the proposed method are better, especially
the support volume, but the build time is worse. To
quantitatively compare the effectiveness of the two
methods, the proposed MODM method is applied to
evaluate them in the same way as Section 4.1. The
correspondence [V values are listed in Table 8, and the
results suggest that the proposed method is better than the
WSM.

In Table 9, compared with the WSM, although the
volumetric error of the proposed method increases by
39.92%, the other three objective values are optimized;

Table 6 Comparison of support volume estimation

Support volume/mm3

MEMP Orientation Proposed method ~ Netfabb Difference/%
Connectingrod  Original 6041.10 5828.10 3.650
OBO 2836.70 2787.60 1.760
Bracket Original 39258.70 37961.10 3.420
OBO 1292.50 1236.40 4.540
Table 7 Comparison of build time estimation
Build time/s
MEFMP Orientation Proposed method Netfabb Difference/%
Connecting rod Original 23548 24016 -1.95
OBO 35424 35678 -0.71
Bracket Original 50905 53597 —5.02
OBO 45705 45809 —0.23

Table 8 Comparison of the OBOs obtained by different methods for
the connecting rod

Method Vave/Mm®  Rawasr/pm  Vg/mm? Ty/s 1w
WSM 8.2895 10.7758  4654.8951 24039.8217 0.01050
Proposed 5 gggy 10.5099  2836.6676 35423.6799 0.01137
method

Table 9 Comparison of the OBOs obtained by different methods for
the bracket

Method Vave/mm®  Rawar/pm  Vg/mm>®  Chuijlg/USD w
WSM 6.6203 10.584 28077.8537  74.5537 0.00743
Proposed

method 9.2628 10.573 1292.4769 64.5985 0.01470
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especially, the support volume decreases by 95.40%.
Similarly, the 7V values indicate that the proposed method
is better than the WSM.

The virtual manufacturing of the three orientations for
the connecting rod is depicted in Fig. 12 (layer thickness
is set as 1 mm for visualization), where each layer is
colored with its build time. As listed in Table 8, the build
time of the proposed method is higher than the WSM
because the part height in the OBO obtained by the
proposed method is higher than that of the WSM, which
will require more recoating time. In Fig. 12, the FG’s
staircase effect with the highest MADR of the WSM
method is more severe than the proposed method. The
staircase effect of that FG of the original orientation
seems to be the smallest; notwithstanding, it cannot
guarantee that the last layer reaches the surface of that
feature without any deviation, as shown in Table 4.

Z/mm
—_— N
RO N o ! S

N\
$

The surface roughness visualizations of the three
orientations for the connecting rod are presented in
Fig. 13, which verifies the results of Tables 4 and 8. The
supports of the three orientations for the connecting rod
are shown in Fig. 14. The OBO obtained by the proposed
method has the least number of supports.

A kind of laser scanning pattern of the connecting rod
in the three build orientations is depicted in Fig. 15. Each
layer’s cross-sectional profile changes with the change of
the build orientation. This manner affects the ultimate
manufacturing quality and build time and cost, among
others, of the part in SLM. A desirable build orientation is
crucial for practical SLM fabrication.

The virtual manufacturing with build time coloration in
the three orientations for the bracket is depicted in
Fig. 16. The surface roughness visualizations and
supports in the three orientations for the bracket are

245
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Fig. 12 Virtual manufacturing with build time coloration in different orientations for the connecting rod: (a) original orientation; optimal
build orientation obtained by (b) the weighted sum model and (c) the proposed method.
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Fig. 13 Surface roughness visualizations in different orientations for the connecting rod: (a) original orientation; optimal build
orientation obtained by (b) the weighted sum model and (c) the proposed method.
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Fig. 14 Supports in different orientations for the connecting rod: (a) original orientation; optimal build orientation obtained by (b) the

weighted sum model and (c) the proposed method.
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Fig. 15 Type of laser scanning pattern of the connecting rod in different part heights and orientations: (a) 35% and (b) 70% part height
in original orientation; (¢) 35% and (d) 70% part height in the optimal build orientation obtained by the weighted sum model; and (e) 35%
and (f) 70% part height in the optimal build orientation obtained by the proposed method.

presented in Figs. 17 and 18, respectively. Similar to the
connecting rod, the three figures verify the results of
Tables 5 and 9. A type of laser scanning pattern for the
bracket in the three orientations is illustrated in Fig. 19,
which also reveals the layered cross-sectional profile’s
change in different build orientations.

4.3 Physical experiments

Given that the actual SLM manufacturing involves many
factors, physical fabrications are conducted to validate the
performance of the proposed method. The designed parts
are fabricated using the ZRapid Tech iSLM280 SLM
system in Ti-6Al-4V. The manufacturing volume of the
machine is 280 mm (X) x 280 mm (Y) x 350 mm (Z); the
laser wavelength is 1064 nm; the laser power is 500 W;
the beam diameter is 0.06-0.20 mm; and the installation
power is 220 V (£10%) AC 50/60 Hz, single-phase,
5/20 A.

The bracket in the three build orientations shown in
Fig. 16 is fabricated, as illustrated in Fig. 20. The SLM
machine and laser scanning process are presented in

Figs. 20(a) and 20(b), respectively. Figure 20(c) displays
the fabricated bracket in the original orientation with
lattice support. Stripping the lattice support will induce
extra time and cost. The SLM fabricated brackets after
stripping the lattice support in the three build orientations
are illustrated in Figs. 20(d)-20(f), respectively. Given
the material property of Ti—6Al-4V, there exist a few
support residues on the part’s overhang surfaces after the
support removal, as shown in the yellow squares in
Figs. 20(d)-20(f). Significantly, support residues exist on
the surface of the most crucial FG in the OBO obtained
by the WSM, whereas the other two orientations do not
exist. The support residues require further polishing.

The surface roughness measurements for the SLM
fabricated brackets are performed to verify the manufac-
turing quality by a noncontact optical profiler, as
presented in Fig. 21. The optical profiler used in the
measurements is Veeco/NT9100. The objective magnifica-
tion range of the optical profiler is 0.75-100 times, the
vertical measurement range is 0.1-10 nm, and the
resolution is 0.49 um. The measured surface topographies
of the sampling regions (Fig. 21) from the most crucial
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Fig. 16 Virtual manufacturing with build time coloration in different orientations for the bracket: (a) original orientation; optimal build
orientation obtained by (b) the weighted sum model and (c) the proposed method.
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Fig. 17 Surface roughness visualizations in different orientations
obtained by (b) the weighted sum model and (c) the proposed method.
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Fig. 18 Supports in different orientations for the bracket: (a) original orientation; optimal build orientation obtained by (b) the weighted

sum model and (c) the proposed method.

FG for the SLM fabricated brackets are displayed in
Fig. 22. For the original orientation, a slight change of the
sampling region results in a noticeable difference in the
surface roughness, as depicted in Figs. 22(a) and 22(b).
This result implies that the sampling region’s surface is
uneven. This phenomenon may be because this region in
the original orientation is horizontal while manufacturing.
The resulting average sampling surface roughness is
15.82 pm, in which the surface roughness for Figs. 22(a)

and 22(b) are 10.60 and 21.04 pm, respectively. The
measured surface roughness for the OBOs obtained by
the WSM and the proposed method are 10.84 and
10.62 pum, respectively. The two sampling regions in the
two OBOs are vertical while manufacturing. These
measurement results are similar to the previous
investigations [13,57,61]. The experimental measure-
ments demonstrate that the proposed method is desirable
for better surface quality.
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Fig. 19 Type of laser scanning pattern of the bracket in different heights and orientations: (a) 35% and (b) 70% part height in original
orientation; (c¢) 35% and (d) 70% part height in the optimal build orientation obtained by the weighted sum model; and (e¢) 35% and
(f) 70% part height in the optimal build orientation obtained by the proposed method.

4.4 Discussion

As shown in Figs. 9 and 10, the Pareto fronts of the
connecting rod and bracket are nonconvex. As mentioned
above, the WSM cannot work well in the case of MOO
with nonconvex Pareto fronts [48]. The comparison

results between the proposed method and the WSM in
Tables 8 and 9 have verified this. Although obtaining the
Pareto front will take some time, it is still worthwhile
compared with the part build time, because it will bring a
more accurate result that will reduce the post-processing
time and cost. A more efficient solving method can be
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Fig. 20 Selective laser melting fabrications for the bracket in different orientations: (a) selective laser melting machine; (b) laser
scanning process, (c) fabricated bracket with lattice support in original orientation; fabricated bracket after stripping lattice support in (d)
original orientation, (e) the optimal build orientation obtained by the weighted sum model, and (f) the optimal build orientation obtained

by the proposed method.
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W

Fabricated bucket_

Fig. 21 Surface roughness measurement system using a
noncontact optical profiler.

developed to reduce the computation cost of Pareto-based
optimization (e.g., GPU acceleration computation).

This study focuses on MFMPs, and they are basically
regular models. For freeform models, the surface features
are difficult to identify. Indeed, if there exists a desirable
feature recognition method for freeform models, the

proposed method is suitable for freeform models. Without
losing generality, the proposed objective estimation
models are still ideal for freeform models, which requires
taking the freeform model as only one FG for the
volumetric error and surface roughness models. By
contrast, the other three objective estimation models are
naturally suitable for the freeform models.

The estimation model of the surface roughness cited
from Ref. [13] is a simple reflection of the effect of build
orientation, which indicates that it has accuracy and
application limitations. In practice, the surface roughness
of SLM parts is affected by the material properties,
process parameters, and build orientation. Specific
physical experiments regarding the influencing factors
above are conducive to obtaining a more accurate
estimation model.

The layer-by-layer melting process in SLM induces
anisotropic mechanical properties for the as-built parts.
Desired mechanical properties, such as tensile strength,
elongation, residual stress, and Vickers hardness, are
crucial for the fabrication quality of as-built parts [16].
Varying build orientations will induce different layered
cross-sectional profiles (as shown in Figs. 15 and 19),
which may result in various mechanical responses.
Among the literature, Brika et al. [13] proposed the
estimation models for the ultimate tensile strength,
elongation, and Vickers for SLM parts concerning
different post-processing heat treatments, using a similar
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Fig. 22 Measured surface topographies of the sampling regions for the selective laser melting fabricated brackets in different
orientations: (a) first and (b) second regions in original orientation; optimal build orientation obtained by (c) the weighted sum model and

(d) the proposed method.

generation method to that of the surface roughness.
However, the estimation models are still rough and lack
adequate characterization of the synthetic effects of the
process parameters and build orientation. Comprehensive
and sufficient numerical and physical experiments will
benefit the development of available and suitable
estimation models for considering these factors in
applications.

The case studies and effectiveness comparison illustrate
the characteristics of the proposed method. This study
focuses on determining the build orientation to benefit the
manufacturing of MFMPs in SLM. To this end, an
MFMP’s surface features are grouped into several FGs
via its MADRs, as shown in Figs. 7 and 8. The FGs are
applied to the optimization objectives, namely,
volumetric error and surface roughness, for mapping the
MADRs of an MFMP. The estimation effectiveness
comparisons of the support volume and build time models
are compared with commercial software, as listed in
Tables 6 and 7. The visualizations of the volumetric error,
surface roughness, and support volume models are
likewise presented to demonstrate the effectiveness of the
estimation models, as shown in Figs. 12—14 and 16-18.

In comparison with the existing evaluation methods
based on feature recognition [30-32,39,40], convex hull
generation [22], facet clustering [41,42], and quaternion
rotation [23,33], the proposed method obtains a more
accurate result because it adopts the MOO to generate the
Pareto ABOs, as shown in Figs. 9 and 10. In comparison

with the WSM method [13,14,20,34,36,43,44], the
proposed method obtains an OBO from the Pareto ABOs
by the integrated MODM method, which is more flexible
for the case of multiple conflicting objectives, as
demonstrated in Tables 8 and 9.

5 Conclusions

This study proposes a method to determine an OBO for
an MFMP in SLM. This method mainly consists of three
steps. In the first step, the surface features of an MFMP’s
manifold mesh are recognized and grouped into several
FGs based on their MADRs. In the second step, the
estimation models of the volumetric error, surface
roughness, support volume, and build time and cost are
established, where the volumetric error and surface
roughness values are the weighted sum of the values of
the FGs. In the last step, the Pareto ABOs are obtained by
the MOO regarding the considered objectives. Then, an
OBO is selected from those ABOs by an integrated
MODM method composed of the TOPSIS and CSM. The
FAHP determines the correspondence weights for the
FGs and considered objectives. Two MFMPs are tested to
validate the proposed method with numerical results. The
effectiveness comparisons of the estimated support
volume and build time and the OBOs obtained by the
WSM and the proposed method are presented. The
physical fabrications and surface roughness measure-
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ments further demonstrate the performance of the
proposed method. The validations indicate that the
proposed method can adequately determine an OBO for
an MFMP in SLM with competitive results.

As the present study concerns the build orientation of
an MFMP in SLM, other crucial influencing objectives
(e.g., mechanical properties) can be developed with
available estimation models. In addition, more complex
part geometries, such as porous shape and cellular solid,
will be addressed in future work.

Nomenclature

Abbreviations

ABO Alternative build orientation

AM Additive manufacturing

CSM Cosine similarity measure

FAHP Fuzzy analytical hierarchy process

FDM Fused deposition modeling

FG Feature group

GA Genetic algorithm

MADR Machining accuracy design requirement

MFMP Multi-feature mechanical part

MODM Multi-objective decision making

MOO Many-objective optimization

NSGA-II Non-dominated sorting genetic algorithm II

OBO Optimal build orientation

SLA Stereolithography

SLM Selective laser melting

SLS Selective laser sintering

STL Standard tessellation language

TFN Triangular fuzzy number

TOPSIS Technique for order of preference by similarity to
ideal solution

WSM Weighted sum model

Variables

A Triangular fuzzy number

At Positive ideal solution

A Negative ideal solution

A, Area of the grid generated in the projection of the
bounding box on the platform

Af Area of the ith facet

Aplatform Area of the fabrication platform

Blength Length of the part’s bounding box along the x-axis

Byidth Width of the part’s bounding box along the y-axis

Chuild Build cost of an SLM part
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Energy cost for building an SLM part

Relative closeness to the ideal solution of the ith
alternative

Normalized relative closeness to the ideal solution of
the ith alternative

Indirect build cost of an SLM part

Material cost used for the part, support structure, and
wasted material

Ordinate of the highest intersection point D between
s, and s,

Normalized weight of the ith object

Weight of the ith object obtained by the FAHP
Distance of the ith alternative to the positive ideal
solution

Distance of the ith alternative to the negative ideal
solution

Build direction vector

Decision matrix of an MODM problem

Energy consumption rate

Estimation model function of the ith objective

ith facet

WSM evaluation value of one solution

ith object

Height of the jth segment of the ith supported ray
Hatch distance for filling the part

Hatch distance of the lattice support structure

Part’s height

Height between the part and the platform

Integrated MODM evaluation value

Integrated MODM evaluation value of the ith
alternative

Number of convex fuzzy numbers

Lower bound of a TFN

Edge length of the grid

Lower bound of the TFN M/

Layer thickness

Lower bound of the TEN S;

Most promising value of a TEN

Most promising value of the TEN M/

Most promising value of the TFN S;

Density of the material

Extent analysis value of the jth factor to the ith
object

CSM value between the ith alternative and the
positive ideal solution

Normalized CSM value between the ith alternative

and the positive ideal solution



M, porosity
M,

oV,

oV
0 ‘/imin
Penergy

Pma!erial

q
0

Rmdirecr
Ryasee
Raasr
Ra,;
Raf
Ral‘a

i
Ra.
S density
S

T,

T,

u

i

Us,

Vij

<~

Hongsheng SHENG et al. Build orientation determination of multi-feature mechanical parts 23

Porosity of the material

Fuzzy judgment matrix used in the FAHP

Number of the objects

Number of facets of the manifold mesh model
Number of the feature groups

Number of the facets without supports

Number of the facets with supports

Number of the grids

Number of the grids along the x-axis

Number of the grids along the y-axis

Number of the considered objectives

Number of the rays intersected with the overhang
facets

Unit normal vector of the ith facet

Value of the ith objective

Maximum value of the ith objective

Minimum value of the ith objective

Energy price

Material price

Number of the factors of one object

Pairwise fuzzy comparison matrix of the feature
groups of the ith part

Pairwise fuzzy comparison matrix of the
optimization objectives

Normalized value of the jth objective for the ith
alternative

Build rate of the part

Build rate of the support

Indirect cost rate

Material waste rate

Average surface roughness of an SLM part

Average surface roughness of the ith feature group
Surface roughness of the ith facet

Surface roughness of the ith supported facet
Weighted average surface roughness of an SLM part
Volume fraction of the lattice support structure
Fuzzy synthetic extent concerning the ith object
Build time of an SLM part

Recoating time of each layer

Upper bound of a TEN

Upper bound of the TFN M

Upper bound of the TFN S;

Weighted normalized value of the jth objective for
the ith alternative

Positive ideal weighted normalized value of the jth

objective among all alternatives

VE
VE®
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V(S >81,8,,...50)
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Negative ideal weighted normalized value of the jth
objective among all alternatives

Laser scanning speed

Support volume of the ith grid

Part volume

Support volume of an SLM part

Weighted volumetric error of an SLM part
Volumetric error of an AM part

Volumetric error of the ith feature group

Degree of possibility of a TEN §, greater than a TFN
S

Degree of possibility for a convex fuzzy number to
be greater than k convex fuzzy numbers

Weight of the ith feature group

Weight of the ith objective

Normalized non-fuzzy weight vector

Weight vector of the feature groups of the ith part
Weight vector of the considered objectives

Real value

Value of the jth objective for the ith ABO

Angle between the build direction and normal vector
of the ith facet

Rotation angle of the part around x-axis

Rotation angle of the part around y-axis

Coefficient to adjust the relative importance of the
TOPSIS and CSM

Weight for the surface roughness calculation of a
supported facet
Membership function of the TFN A’

Membership function of the TEN S;
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