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Developing energy conversion technologies via
electrochemistry will significantly facilitate the large-
scale utilization of renewable energy, thus helping
address issues regarding energy shortage and
environmental deterioration. The application of
electrochemical energy conversion reactions such as
electricity generation and electrolysis is highly dependent
on developing efficient electrocatalysts. Metallic
electrocatalysts, including pure metals and alloys, possess
superior intrinsic activities compared to other materials
for various energy-conversion reactions, ascribed to the
active d-electrons [1-3]. Traditionally, low-coordinated
and unsaturated metal atoms have been the most
important active sites for catalysis. Thus, over the past
few decades, the most popular strategy to improve
catalytic activity has been to reduce the particle size from
bulk to nanoscale [4,5] as shown in Fig. 1. However, only
a few atomic layers at the surface of nanoparticles
contribute to these catalytic reactions, leading to lower
metal utilization [6,7]. In addition, several active sites for
side reactions exist, which further impede the
improvement of selectivity and activity. For monolayer
metallic electrocatalysts as a possible solution to achieve
high utilization of metals, the choice of metallic atoms on
the surface is limited by the compatibility of work
functions between the core and shell metals [8]. Recently,
single-atom catalysts (SACs) in which each atom can be
exposed to catalytic reactions have garnered increasing
attention as a promising pathway to increase metal
utilization [9-12]. The active sites of SACs are isolated
atoms surrounded by a coordinated environment of
supports compared to the overall surface of nanoparticles.
The catalytic atoms were well confined and highly
dispersed on the support. Owing to the further optimized
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electronic conditions, SACs possess desirable activity,
selectivity, and stability and minimize metal loadings and
maximize economic benefits [13,14].

Single atoms in SAC structures cannot survive and tend
to agglomerate because of their high surface energy.
Therefore, different strategies, including defect design,
special confining, and coordination during SACs
fabrication, have been proposed and employed to achieve
stable anchoring of the central atoms [17], as shown in
Fig. 2. In addition to the stability problem of the central
atoms, other factors can also influence the performance
of the central sites, such as the uniformity and population
of metal sites, as well as their neighboring coordination
conditions [18,19]. Overall, the biggest challenge in the
fabrication of SACs is the difficulty in reconciling the
high metal loading and high dispersion of single atomic
sites. When the metal loading increases, agglomeration
gradually arises to form clusters or even nanoparticles.
The successful dispersion of central atoms with a high
metal loading of SACs is generally related to the number
of defect sites on the substrate, which requires complex
pretreatment. Wet chemistry and pyrolysis methods are
mostly used to prepare SACs [9, 20-22]. Following wet
chemistry routes, capping agents such as oleylamine [23]
and triphenylphosphine [24] are essential to protect single
atoms from agglomeration. Unfortunately, these
macromolecular organic species are difficult to remove
and thus inevitably cover and inactivate the active sites.
And the impurities can make the characterization of
SACs less accurate. In addition, the trial-and-error
process makes it difficult to understand the growth
mechanism and guide top-down synthesis, because the
duration is so short that it is difficult to capture the
information through methods using nanoscale materials
[25]. For the thermal pyrolysis method, selecting the
appropriate temperature, precursors, pressure, and
atmosphere requires numerous trials. The migration of
metal atoms is inevitable at such high temperatures.
Accordingly, appropriate substrates that can effectively
stabilize isolated atoms are required [18,19,26,27]. In
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Advance of metal
electro-catalysts

Fig. 1 Development of metallic electrocatalysts (adapted with
permission from Refs. [11, 15, 16].

addition, the yield ratio of isolated single-atomic active
sites can also be used to measure the efficiency of
different synthetic approaches.

In contrast, it is promising to employ electrochemical
deposition methods to prepare SACs under precise
regulation of the growth of deposits, and this has
significant potential to easily obtain nucleation and
growth information through measurable parameters such
as current densities and applied potentials [28-30]. In
addition, the deposition process can be adjusted by
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changing the concentration of precursors and adding
substances that may affect complexation or reaction
pathways [31,32]. Moreover, electrochemical methods
are more tolerant of a wider range of metal elements and
substrates.

The electrodeposition mechanism of single atoms is
significantly different from that of nanoparticles. First,
the generally accepted mechanism for nanoparticles,
including nucleation and subsequent growth processes,

might be inapplicable to SACs because the
electrochemical deposits comprise a single atom instead
of aggregated atoms. Second, the classical

electrodeposition theory might be inapplicable to
deposition using ultralow ion concentrations. Third,
multisite deposition of isolated single atoms might be
produced from adsorbed ions on the substrates. Thus,
clarifying the mechanism of electrochemical deposition
of single atoms is critical to flexibly control the synthesis
of SACs.

Current electrochemical approaches for the preparation
of SACs include over-potential electrodeposition (OPD),
under-potential deposition (UPD), potential cycling
deposition, and multi-step potential deposition [33]. OPD
is driven by the electrochemical potential of the reduction
reaction. Zeng et al. proposed an electrochemical
potential-scanning  deposition route to synthesize
It/Co(OH), [34]. It is believed that a relatively low
precursor concentration (no more than 107* mol/L),
proper scanning cycles, and scanning rate jointly ensure
isolated single atoms by maintaining minimum
supersaturation. Its generality was well evidenced for a
wide range of SACs, including (Ir, Ru, Pt, Pd, Rh, and
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Fig. 2 Comparison of traditional preparation methods and electrochemical methods for SACs (adapted with permission from Refs. [34,

38, 40, 42-44)).
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Ag)/(Co(OH),;, MnO,, MoS;, N-C, and CoggFegSe»).
Various metal species and metallic site-substrate
interactions determine the intrinsic catalytic properties. It
has been found that the anodically prepared
electrocatalysts are more active in the oxygen evolution
reaction. Whereas, those cathodically deposited are
highly active for the hydrogen evolution reaction (HER)
[35].

Li et al. proposed a facile strategy for electrochemically
anchored non-noble metal SACs, Ni and Fe, which
exhibited remarkably enhanced activity and stability
toward the HER compared to most bulk catalysts [36].
They also synthesized graphdiyne-supported Pd® SACs
by an in situ electrochemical reduction method [37]. This
reliable catalyst exhibits lower overpotential, higher mass
activity, and turnover frequency toward the HER at a
relatively low Pd loading of 0.2% (mass fraction). The
interaction between Pd and graghdiyne also contributes to
the superior durability of the HER. Yan et al. indicated
that the principle of metal atom—substrate interaction
during the electrodeposition of SACs is similar to UPD
[38]. However, the UPD method is highly dependent on
the surface of the target substrate and the difference in
work functions between the active sites and substrate. In
addition, it is difficult to distinguish the potential range of
UPD for isolated atoms from that of OPD.

In recent years, advanced characterization has
facilitated the study of electrodeposited preparation of
SACs [39]. Single metal atoms can be detected using
scanning transmission electron microscopy. Synchrotron
radiation techniques, such as extended X-ray absorption
fine structure spectroscopy, can be used to study the
coordination environments of the central active sites in
SACs [40]. X-ray photoelectron spectroscopy and diffuse
reflectance infrared Fourier transform spectroscopy can
reveal the bonding features of SACs [39]. Computational
techniques can also help understand electrochemical
methods [41]. According to density functional theory
[42], a potential-related adjustable strategy was
discovered for single-atom preparation, in which there is
a potential leap when clusters transfer to a single atom. It
can be concluded that there are significant differences in
the chemical potentials that could be related to the
electrochemical potential or overpotential for preparing
nanoparticles, clusters, and isolated atomic catalysts.
Consequently, it is suggested that the number of metal
atoms can be flexibly adjusted by manipulating the
potential, which has been experimentally proven by
preparing N-doped graphene-supported Pt, Pd, and Ni
SAC:s in this study.

Notably, the critical factors of electrodeposition
preparation of SACs include ultralow metal precursor
concentration, short deposition time, and appropriate
potential value (located at a large overpotential value or
current density). A low metal ion concentration and short
deposition time help maintain slow mass transfer, and a

large overpotential provides sufficient power for the high
density of isolated metal atoms on the supports. The
ligands of the metal ions also affect the reduction process.
The electrochemically deposited SACs indicate a
comparable loading of single metal sites to those
prepared by traditional methods, as summarized in Table 1.
However, there is greater tolerance to the selection of
substrates. Measurable parameters in electrodeposition
approaches help uncover the mechanisms of growth.

Table 1 Comparisons of metal loading of SACs prepared by
traditional and electrodeposition methods

Atomic mass loading Ref

Samples Methods (mass fraction, %)

Pt;-N/BP Pyrolysis 0.4 [31]
Pt/FeO, Thermal reduction 0.08 [45]
Pt-SA/TiO, Thermal reduction 2.02 [46]
Ir/Co(OH), Electrochemical deposition >2.0 [34]
Fe/GD Electrochemical deposition 0.68 [36]
Ni/GD Electrochemical deposition 0.278 [36]
Ir;/To-CoOOH  Electrochemical deposition 1.2 [35]
Ir;/Vo-CoOOH  Electrochemical deposition 1.3 [35]

To satisfy the large-scale preparation of SACs, more
stringent control of the synthetic process is required,
which could also be proposed by understanding the deep
insights into the deposition mechanism of SACs. The
conflict between the requirement for high metal loading
and uniform metal sites should be resolved. In addition,
the synthetic strategy should be universally applicable to
more metal elements and substrates to promise more
possibilities  for  higher catalytic  performance.
Accordingly, electrochemical deposition protocols
exhibit unique advantages in eliminating pollutant effects
and avoiding agglomeration. It has been proven that
isolated atom density, metal loading, and suitability
between metal species and substrates can be achieved by
regulating the metal precursor concentration or
complexation in the electrolyte and deposition parameters
(such as potential and duration time). The
electrodeposition strategy is well known to be more
controllable and more compatible between substrates and
precursors, and has moderate and wide applications in
large-scale manufacturing.
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