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Abstract Post-acute care (PAC) residents in nursing
homes (NHs) are recently hospitalized patients with medi-
cally complex diagnoses, ranging from severe orthopedic
injuries to cardiovascular diseases. A major role of NHs is
to maximize restoration of PAC residents during their NH
stays with desirable discharge outcomes, such as higher
community discharge likelihood and lower re/hospitaliza-
tion risk. Accurate prediction of the PAC residents’ length-
of-stay (LOS) with multiple discharge dispositions (e.g.,
community discharge and re/hospitalization) will allow
NH management groups to stratify NH residents based on
their individualized risk in realizing personalized and resi-
dent-centered NH care delivery. Due to the highly hetero-
geneous health conditions of PAC residents and their
multiple types of correlated discharge dispositions, devel-
oping an accurate prediction model becomes challenging.
Existing predictive analytics methods, such as distribution-/
regression-based methods and machine learning methods,
either fail to incorporate varied individual characteristics
comprehensively or ignore multiple discharge dispositions.
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In this work, a data-driven predictive analytics approach is
considered to jointly predict the individualized re/hospital-
ization risk and community discharge likelihood over time
in the presence of varied residents’ characteristics. A sam-
pling algorithm is further developed to generate accurate
predictive samples for a heterogeneous population of PAC
residents in an NH and facilitate facility-level performance
evaluation. A real case study using large-scale NH data is
provided to demonstrate the superior prediction perfor-
mance of the proposed work at individual and facility
levels through comprehensive comparison with a large
number of existing prediction methods as benchmarks.
The developed analytics tools will allow NH management
groups to identify the most at-risk residents by providing
them with more proactive and focused care to improve
resident outcomes.

Keywords nursing home, predictive analytics, individ-
ualized prediction, competing risks, health outcomes

1 Introduction

Nursing homes (NHs), or skilled nursing facilities, are
mainly responsible for caring for the frail and vulnerable
population of older adults with 24/7 personal care and
assistance. Historically, NHs have been considered as a
major healthcare setting for providing custodial care for
long-term care (LTC) residents. In recent decades, while
maintaining their conventional role as LTC providers,
modern NHs have increasingly been responsible for
caring for post-acute care (PAC) residents who are
recently hospitalized patients and require extended reha-
bilitation and recovery after an acute care hospital stay.
Recent studies reported that the percentage of residents
(within NHs) admitted from the hospital increased from
67% in 2000 to 85% in 2015 (Fashaw et al., 2020).
Several policy and market changes contributed to the
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shifts of the NH population composition. First, the rising
trend toward rapid hospital discharge with the reduced
hospital length-of-stay (LOS) generated a growing popu-
lation of quicker-and-sicker patients and drove many
NHs to expand their sub-acute care and rehabilitation
services (Murad, 2011). Second, Medicare covers qualified
PAC residents with a higher reimbursement rate than
Medicaid in NHs, the latter of which is the primary payer
for qualified LTC residents who mainly require custodial
care. In 2017, the US average reimbursement rate of
Medicaid was $206 per resident day, which is less than
half the rate paid by Medicare, $503 per resident day
(NIC, 2018). Thus, a strong financial incentive for NH
providers to accept more PAC Medicare beneficiaries
was observed. Finally, due to the impact of a series of
laws and initiatives (Moon et al., 1997; Ginsburg and
Supreme Court of the US, 1998; Eiken et al., 2014) in
recent decades, there has been a considerable increase in
home and community-based services for the overall LTC
population to advocate age-in-place and divert or delay
the expensive NH placement.

With the growing demand of PAC residents in NHs,
the major goal of NH in caring PAC residents is to return
them to the community successfully and efficiently with
lower re/hospitalization rate. Thus, successful prediction
on how long every individual PAC resident will stay in
the NH and what will be his/her discharge disposition is
greatly important for both NH administrators and individ-
ual residents (and their family). To NH administrators,
successfully predicting LOS and the discharge disposition
of each resident at individual level with individual risk
factors identified will help administrators identify the
most at-risk residents (e.g., residents with shorter LOS
and higher re/hospitalization risk, and residents with
longer LOS and lower community discharge likelihood),
and more targeted care can be provided to improve the
care quality of the overall facility. At the facility level, an
accurate predictive model of LOS with incorporation of
varied individual characteristics will further allow accurate
evaluation of the NH utilization (measured in average
LOS) of a heterogeneous population of PAC residents
with varied individual characteristics. To an individual
resident and his/her family, accurate prediction of how
long he or she will stay in an NH will improve the
communication between caregivers and care recipients. It
will further assist the family of residents to prepare the
informal care resources to accommodate the needs of
residents to be discharged.

Accurate prediction of LOS and discharge disposition
of PAC residents is challenging. First, PAC residents
admitted in NHs are often medically complex with a high
level of functional dependence and with a variety of clinical
diagnoses, ranging from severe orthopedic injuries (e.g.,
hip and pelvic fractures) to cardiovascular diseases (e.g.,
stroke and myocardial infarction). It is unclear which
individual characteristics will affect LOS and discharge

disposition. Many of the existing LOS models in literature
are distribution-based methods and considered various
distributions, such as Exponential, Phase-type, Log-
normal and Gamma distributions (Xie et al., 2005; Faddy
et al., 2009), to characterize LOS of patients. They failed
to take into account and quantify the influence of various
possible individual characteristics for improving LOS
prediction. Second, PAC residents have multiple possible
discharge dispositions. They may be discharged to resi-
dential community for further recovery or transferred to
hospital due to occurrence of critical events (e.g., infection
and fall). Community discharge and re/hospitalization are
mutually exclusive events, wherein whichever comes first
will terminate the NH dwelling duration of a resident.
Existing LOS modeling approaches, such as regression-
based methods (Carey, 2002; Kelly et al., 2010; Kramer
and Zimmerman, 2010) and machine learning methods
(Hachesu et al., 2013; Pendharkar and Khurana, 2014;
Turgeman et al., 2017), mainly focused on predicting
time-to-discharge without differentiating the disposition
difference and overlooked the complexity arising in the
competing risks between the dispositions. Thus, there is a
need to develop an advanced LOS modeling approach for
PAC residents that incorporates both individual charac-
teristics and considers multiple competing discharge
dispositions.

After realizing superior individual prediction of LOS
and discharge disposition with relevant factors identified,
there is still need to evaluate the facility-level LOS and
discharge outcome performance for a population of resi-
dents with varied individual characteristics. This will
better inform the NH on resource preparedness and eval-
uate the facility-level quality outcome. Computer simula-
tion, such as discrete event simulation and agent-based
simulation, are often considered in healthcare system
engineering by modeling and simulating each individual
patient as a discrete event or agent, as well as further
evaluating the system level performance (e.g., average
LOS of a population of individuals at the facility level)
(Hoot et al., 2008; Taboada et al., 2011; Wang et al.,
2012). Among these simulation approaches, a key step is
to develop sampling algorithm for simulating LOS obser-
vations for a population of individuals. Existing sam-
pling algorithms are only applicable to simulating LOS
observations characterized by distribution-based models,
which ignored various resident characteristics influencing
the LOS (Cappanera et al., 2014; Zhang et al., 2019), or
regression models (Austin et al., 2002) which did not take
the multiple discharge dispositions into account. There is
a need to develop a sampling algorithm, which allows
simulations of LOS observations for a population of indi-
viduals with multiple competing discharge dispositions,
as well as varied individual characteristics.

To fill the aforementioned research gaps, we propose a
heterogeneous LOS modeling approach for PAC residents
by taking multiple discharge dispositions into account
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and incorporating the varied individual characteristics
that may potentially influence each discharge disposition.
At individual level, a semi-parametric hazard regression
model is considered to characterize the heterogeneous
LOS observations of PAC residents with improved
prediction accuracy on individual re/hospitalization risk
and community discharge likelihood. Various factors
affecting re/hospitalization risk and/or community dis-
charge likelihood are also identified with their influence
quantified. At facility level, a simulation algorithm is
further developed to realize the simulation of both LOS
observations and multiple discharge dispositions for a
heterogeneous population of PAC residents with accurate
predicted samples obtained. A real case study using large-
scale NH data is provided to demonstrate the superior
prediction performance of the proposed work at both
individual and facility levels.

The remaining of the paper is organized as follows.
The next section first presents the proposed LOS modeling
framework with an individual-level LOS model, which
quantifies various influencing factors and considers
competing discharge dispositions, as well as subsequently
introduces the proposed sampling algorithm for facility-
level performance evaluation. Then, a real-data case
study is provided to demonstrate the efficacy of the pro-
posed work. Conclusive remarks are provided in the end.

2 Methodology
2.1 Model formulation

Considering a cohort of N PAC residents in an NH facil-
ity, each PAC resident may be discharged to residential
community for further recovery or transferred to hospital
due to critical events (e.g., infections and falls). Commu-
nity discharge and re/hospitalization are mutually exclu-
sive events, whichever comes first will terminate the NH
dwelling duration of a resident. Unlike many of existing
LOS modeling works (Faddy et al., 2009; Kelly et al.,
2010), which focused on modeling a single discharge
disposition, the proposed model formulation aims to take
into account the multiple and competing discharge dispo-
sitions of PAC residents, namely, re/hospitalization and
community discharge. Moreover, unlike many of existing
discharge outcome prediction models, such as hospital re/
admission models, which focused on predicting the risk
of critical outcomes at a fixed time period, e.g., 30-day or
90-day re/hospitalization risk (Incalzi et al., 1992), the
proposed model will capture the re/hospitalization risk as
well as community discharge likelihood of each individual
PAC resident over time. The instantaneous discharge rate
of the ith PAC resident with discharge disposition type s
(community (C) or hospital (H)) can be characterized as

Pr(¢< T, <t+At|Tpin > 1, X;)
At ’
i=1, .. n se{C, H}, )

d;,(1]%,) = lim

where T, = min{T,¢, T;y} is the LOS of resident i, and
T,c and T, are the latent time-to-discharge quantities
with discharge disposition of community and hospital,
respectively. x; is a p,-dimensional observed vector
which contains varied individual covariates that may
potentially influence d;,(¢), such as individual demo-
graphics, clinical diagnoses, cognitive deficits, and physi-
cal functional performance. To associate the individual
characteristics explicitly with d;, (¢), the hazard regression
is considered as follows

d,()=d"t)exp(BTx,)),i=1, ..., n; se{C, H}, (2)

where d”(r) is the population average instantaneous
discharge rate with disposition s in the absence of the
influence of x,. B, is a p,-dimensional disposition-
specific coefficient vector that quantifies the influence of
x; ond; ().

A benefit of the model in Eq. (2) is that, for any time
t, individual re/hospitalization risk until time ¢, i.e.,
Pr(T,y <t), and community discharge likelihood till
time ¢, i.e., Pr(T;¢ < 1), can be written as

Pr(T,, <1) = fd,,,,(ﬂx,.)exp —f S d.(yx)dy|dr,
0 | Y0 se(c.H) ]

(3a)

Pr(Tc <1) = j dic (t]x) exp —f S d;,(y|x)dy|dr.
0 | 0 se{C,H) |

(3b)

In other words, given a specific time period until time ¢,
the proposed model can always be converted into evalu-
ating both the re/hospitalization risk and community
discharge likelihood of resident i at a fixed time period
based on Egs. (3a) and (3b). It bypasses the conventional
discharge outcomes modeling approach, which requires
the discretization of discharge outcomes data in advance
based on a pre-specified time period and then formulates
a classification model for outcome prediction. It also
allows the comparison of re/hospitalization risk and
community discharge likelihood among different individ-
uals with varied individual characteristics x; over time.

2.2 Model estimation

Given observed data D ={t, z;,, x;}.,, where z;,=1 if
PAC resident i is discharged to disposition s; O other-
wise, se€{C, H}, with unknown parameters/functions
0 = U,icm0,, where 6, = {d’ (), B,}. The joint likelihood
function L(@|D) can be written as follows
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Let index set A, = {i : z;, = 1}, s € {C, H}. Then the joint
likelihood function can be simplified as

H dﬁc (ti) exXp (ﬂgxi) : H dz]'],H (ti) exp (ﬂ-ll:lxi)

i€A, €Ay

: ﬁexp[ djg (t)exp (B'x, )dr] (5)

i=1

{ & (1)exp(Bx,)

L@|D)=

2

se{C.H)

When 6, are mutually exclusive, L(8|D) can be multi-
[T Li(6,D), in

se{C,H}

plicatively decomposed into L(8|D) =
which L,(0,|D) can be expressed as

L,(0,ID) =1 d;, (1) exp(Bx:)
i€A

n 1
-ﬂexp[—j &’ (v)exp(Blx;)dr|,s € {C, H}.
i=1 (U
(6)
Thus, maximizing L(@|D) can be equivalent to maxi-
mizing L,(6,|D), separately. To maximize L,(6,|D) by
treating d” (r) as an unknown function, we will first maxi-

mize the partial likelihood L,(B,|D) written as (Cox,
1972)

exp (B, x;)
e ot bl
>, exp(Blx))

JEB(;)

L,B|D) =1

i€A,

e {C, H}, @)

where B(t;) is a set of residents who are still in the NH
before #,, Maximum likelihood estimation will be con-
sidered by solving maxlog L,(8,|D), which can be real-
ized by a numerical optimization algorithm, such as the
Newton-Raphson method (Gonzalez et al., 2008).

Based on the estimated B,, we will estimate d”(¢) by
maximizing the profile likelihood L, (d”|D) written as

L.(d|D)e ]—Idf’iexp[ —d;; % exp(Bx))|. s€{C, H},
€A /EB(f)
®)
where d?[ = d? (ti): i€ AS, and dAI: =0Vt ¢ {ti}ieAj' The
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profile maximum likelihood estimator can be obtained as
(Cole et al., 2014)
1
T > S
2. exp(Bix;)

JEB(t;)

db

o = €{C, H}.

©)

2.3 Sampling algorithm

Based on the proposed model formulation and developed
estimation algorithms, as illustrated in Sections 2.1 and
2.2, the re/hospitalization risk and community discharge
likelihood over time of any individual i with individual
characteristics x; can be predicted. To further investigate
the service utilization of the sample of PAC residents in
an NH facility and evaluate the facility-level performance
for a heterogeneous population of PAC residents with
varied individual characteristics, it becomes important to
utilize computer simulation to mimic the patient flow of
individual PAC residents and evaluate the system perfor-
mance at the aggregate level. An essential basis of such
computer simulation requires simulating the realization of
LOS for each PAC resident. Existing simulation algorithm
for LOS models mainly focused on simulating realization
based on distribution-based models (El-Darzi et al., 1998;
McGuire, 2007; New et al., 2015), such as Weibull distri-
bution and Log-normal distribution. For the developed
semi-parametric regression models with multiple com-
peting discharge dispositions in Section 2.1, existing
sampling algorithms are not applicable and there is a
need to develop the corresponding simulation algorithm
to facilitate generating predictive samples of LOS realiza-
tions given a heterogeneous population of PAC residents
with varied individual characteristics x;. T;, of resident i
with disposition s would be simulated based on the devel-
oped sampling algorithm summarized as follows.

3 Case study
3.1 Data description

To demonstrate the performance of the proposed model

Proposed Sampling Algorithm

Step 1:

Step 2: Compute Sf.) = exp[— p:O b; (t(p) Ixi)], =0, ..,

n
1) <ty <...<tq <..<tn) <HUN+1) and to) = 0, H(N+1) = +00; {t(/)}l=

Step 3: Randomly generate u = Unif (0, 1);

Step 4:

Step 5:

w=[we, wy]T

Determine disposition state s by drawing for the categorical distribution as ws =

Compute ¢; (X)) = Xyse(c.H) d” (H)exp (ﬂT ) where ¢; (t| x;) is the instantaneous probability of resident i with x; being discharged at time ¢

N, N+1, where S l(.l) is the probability of resident i still residing in NH at time #;;

| are ordered distinct historical LOS observations;

5O

Compute /; _max[l ,u<S(l)} b= mln{l l’Illl’lS() <,u] and get simulated LOS, T; as T; = (1 ) (, 3 (t(zz)—t(zl))+f(1,);

d" (1) exp(ﬁTx,)

Sy S € {C, H}, i.e., s ~ Categorical (w), where
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and sampling algorithm, the Minimum Data Set (MDS)
3.0 of a certified NH in Tampa Bay Area, Florida, is
considered. The MDS 3.0 is a rich data set containing
comprehensive assessment of clinical and functional
status of all residents in a Medicare/Medicaid-certified
NH during their stays. The dataset is mandated federally
and is required by the Centers for Medicare and Medicaid
Services (CMS) (CMS, 2017). Each resident is assessed
upon admission, periodically during the stay, and upon
discharge or in case of any event causing significant
change in their functional status. Each assessment
contains over 680 data covariates representing informa-
tion on identification, admission and discharge dates,
socio-demographics, financial details, various functional
performance metrics, diseases and chronic conditions,
medication and therapy information, discharge outcomes/
dispositions of each resident, and facility administrative
details.

The data collected includes stays of all residents admitted
to the NH in a one-year period. For this case study, a sub-
cohort of PAC residents are selected according to “short-
stay” criteria defined by the CMS (CMS, 2013). The
CMS differentiates between “short-stay” and “long-stay’
residents by examining episodes of care of the resident.
An episode consists of one or more consecutive stays
with breaks no more than 30 days. If the cumulative
LOS(s) in the NH is equal to or less than 100 days, the
resident is labelled as a “short-stayer”, otherwise consid-
ered as a “long-stayer”. Most recent episode coinciding
with the end-date of the consideration time period is used
for the categorization. In the selected data, each data
instance refers to the LOS observation of a short-stay
resident with his/her individual characteristics.

A total of 710 LOS observations with complete infor-
mation from 611 individual residents are selected for
analysis. 98.02% of the LOS observations may be consid-
ered post-acute, which meant that the resident was either
admitted directly from the hospital to the NH, and/or
covered under Medicare Part A insurance plan (Holup
et al., 2017). LOS observations with community
discharge or re/hospitalization are included. LOS obser-
vations with other discharge dispositions, such as death
and transfer to another facility, are excluded because they
form a very small portion in the dataset with negligible
influence on the overall model building. Left-truncated
and/or right-censored observations are also neglected due
to their negligible portions.

Table 1 provides a summary of descriptive statistics of
the selected cohort and stays, which includes socio-
demographics (e.g., age, gender, ethnicity, marital status,
and so on), care utilization details of the stay (e.g., LOS,
admission origin, discharge disposition, payment source,
and so on), and health characteristics (e.g., body
measures, various functional performance scores, disease
and chronic conditions, and so on). The calculated mean
LOS of the short-stay residents was 20.33 days, with a

2

581

Table 1 Descriptive summary statistics of the selected resident
cohort

Characteristics Mean (SD) or %
Number of stays 710
Number of residents 611

Demographics

Age at admission (years) 76.68 (10.66)

Gender: Female 64.40%
Race
Black or African American 6.90%
White 90.30%
Others 2.80%
Marital status
Never married 14.20%
Married 35.60%
Widowed 33.20%
Divorced 15.60%
Others 1.40%
Care utilization
LOS (days) 20.33 (15.72)
Admission origin
Community 2.00%
Hospital 97.30%
Others 0.70%
Discharge disposition
Community 79.90%
Hospital 20.10%
Primary payer: Medicare Part A 59.00%
Health characteristics
Height (inches) 65.36 (4.13)
Weight (pounds) 170.95 (54.45)
ADL score 6.48 (3.85)
Mood/Depression score 0.91 (1.24)
Cognitive score 13.17 (2.96)
Visual impairment 15.90%
Hearing impairment 22.70%
Incontinence — urinary 54.50%
Incontinence — fecal 46.20%
Fall within past 180 days 32.70%
Fracture within past 180 days 18.00%
Diseases
Cancer 8.00%
Heart/Circulation 79.40%
Gastrointestinal 38.60%
Genitourinary 25.20%
Metabolic 73.80%
Musculoskeletal 42.00%
Neurological 26.20%
Psychiatric/Mood disorder 45.90%
Pulmonary 34.60%

Notes: SD: Standard deviation; ADL: Activities of daily living.
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majority of 97.3% being admitted from hospital, a majority
of 79.9% being discharged to community and the rest
20.1% being readmitted to hospital. The discharge dispo-
sition, socio-demographics, and health characteristics
form possible covariates influencing LOS of the resident
and consequentially, their care service utilization.

3.2 Feature selection

Because the MDS dataset contains numerous elements of
data, consider information directly relevant to the LOS.
Guided by domain knowledge in NH care, a subset of
data most related to care utilization, i.e., socio-demo-
graphics, functional performance scores, disease diagnoses
and chronic conditions observed on admission, is consid-
ered. Although MDS data monitors the stay over time,
only assessments upon admission are relevant to LOS
prediction of an unknown cohort of residents in the facil-
ity, which are also known as baseline observations.

After summarizing the data (i.e., calculating LOS,
deriving various functional performance scores and
converting categorical covariates into dummy variables)
and preprocessing (i.e., removing low-frequency covari-
ates, removing one from each highly correlated pair, and
checking for multicollinearity), 68 covariates relevant to
LOS are selected. It is still a large number of covariates
and incorporating all of them for developing a predictive
model may yield model overfitting. To reduce the dimen-
sionality of the input variables, a collection of 10 popular
feature selection methods are applied to the dataset.

The feature selection methods include four linear
feature selection methods, which are stepwise regression
(e.g., Stepwise Akaike Information Criterion (AIC)),
recursive feature elimination (RFE), simulated annealing
(SA), and regularized linear regression (e.g., LASSO).
Each feature selection method implements different algo-
rithm to determine the best subset of covariates. For
example, Stepwise AIC trains linear regression models
by progressively adding covariates and evaluating model
performance with AIC. By contrast, RFE ranks all
covariates, progressively removes unimportant ones,
trains, and reevaluates a linear model at each step. SA
performs a random heuristic search for best combination
in the covariate space. LASSO regression penalizes
unimportant covariates to zero coefficient value with
L1-norm regularization.

Moreover, six nonlinear feature selection methods are
applied, including Filtering with Random Forest, RFE
with Bagged Trees, RFE Random Forest, Genetic algo-
rithm with Random Forest, SA with Random Forest, and
Boruta. Filtering uses a preprocessing step to test strength
of individual relationship between each covariate and the
response variable before training a predictive model. RFE,
Genetic and SA use a subset selection heuristic similar to
that applied in training linear models. However, tree-
based algorithms are trained instead of linear models at

each step. In each case, the tree-based model with the
highest accuracy evaluated identifies the best subset of
covariates.

The most significant covariates influencing LOS are
identified by each of the above feature selection methods.
To keep most of the information without missing any
relevant covariates, the union of all feature selection
results, namely, 35 covariates in total, are considered for
further predictive modeling. Table 2 displays the final
selected covariates, while Table 3 shows the significant
covariates identified by each feature selection algorithm.

3.3 Prediction performance comparison

To compare the prediction performance between the
proposed model and alternative prediction methods in the
literature, the dataset is split randomly into 90% training
and 10% test datasets of observations with stratified
sampling to preserve the proportion of discharge dispo-
sitions. The previous section of feature selection is
conducted based on the training data set without touching
the independent test dataset. The proposed model is
compared to others by evaluating the C-index values of
training and test datasets for each discharge dispositions,
which are community and hospital (Harrell et al., 1996;
D’Agostino and Nam, 2003). A C-index value beyond
0.5 indicates that the model is consistently satisfactory in
predicting discharge risks, rather than making random
predictions. A higher C-index value indicates the better
predictive capability. The proposed model takes about
0.726 seconds by fitting all the LOS observations and
making the predictions, which is efficient for real appli-
cations. Several semi-parametric and parametric survival
models are compared under the competing risk frame-
work, where the characteristic of competing discharge
dispositions, i.e., community discharge and re/hospital-
ization, is incorporated. Semi-parametric models include
the Cox regression with LASSO, or Elastic Net regular-
ization, where the baseline hazard is non-parametric,
while regularization attempts to avoid over-fitting. Para-
metric models comprise Weibull, Logistic, Log-normal,
Log-logistic, and Exponential hazard regression, where
the baseline hazards are parameterized based on the
named distributions. Furthermore, several alternative
regularized/unregularized linear and non-linear machine
learning methods independent of competing risk are
considered, including the linear regression, LASSO
regression, Ridge regression, Tobit regression, Decision
Tree, Boosting Tree and Random Forest. Thus, a total
of 15 different models are evaluated for each of the
discharge dispositions based on the same 35 covariates
identified in the previous section. Table 4 provides the
list of models considered with their abbreviations and
corresponding training and test C-index values. Figure 1
further visualizes the results.

As observed in Fig. 1(a), for predicting LOS before
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Table 2 List of 35 selected covariates with the associated descriptions

Covariate short name

MDS 3.0 covariate description

Age
ADL score
Cognitive score

Mood score

Cancer

Anemia

Atrial fibrillation
Coronary artery disease
DVT, PE, PTE
Heart failure
Hypertension
GERD or Ulcer
UC, CD, IBD

BPH

Renal disease
Neurogenic bladder
Obstructive uropathy
MDRO

Pneumonia
Septicemia
Diabetes mellitus
Hyponatremia
Hyperlipidemia
Arthritis

Hip fracture

Other fracture

Alzheimer’s disease

Non-Alzheimer’s dementia

Hemiplegia or Hemiparesis

Malnutrition
Anxiety disorder
Depression
Schizophrenia
PTSD

Respiratory failure

Age at admission (years)

Activities of daily living score at admission

Brief interview for mental status (BIMS) summary score at admission

Resident mood interview patient health questionnaire (PHQ)-9 total severity score at admission
Active diagnose indicator of resident at admission

Cancer (with or without metastasis)

Anemia (e.g., aplastic, iron deficiency, pernicious, and sickle cell)

Atrial fibrillation or other dysrhythmias (e.g., bradycardias and tachycardias)

Coronary artery disease (CAD) (e.g., angina, myocardial infarction, and atherosclerotic heart disease (ASHD))
Deep venous thrombosis (DVT), Pulmonary embolus (PE), or Pulmonary thrombo-embolism (PTE)
Heart failure (e.g., congestive heart failure (CHF) and pulmonary edema)

Hypertension

Gastroesophageal reflux disease (GERD) or Ulcer (e.g., esophageal, gastric, and peptic ulcers)
Ulcerative colitis (UC), Crohn’s disease (CD), or Inflammatory bowel disease (IBD)

Benign prostatic hyperplasia (BPH)

Renal insufficiency, Renal failure, or End-stage renal disease (ESRD)

Neurogenic bladder

Obstructive uropathy

Multidrug-resistant organism (MDRO)

Pneumonia

Septicemia

Diabetes mellitus (DM) (e.g., diabetic retinopathy, nephropathy, and neuropathy)
Hyponatremia

Hyperlipidemia (e.g., hypercholesterolemia)

Arthritis (e.g., degenerative joint disease (DJD), osteoarthritis, and rheumatoid arthritis (RA))
Hip fracture (e.g., sub-capital fractures, and fractures of the trochanter and femoral neck)

Other fracture

Alzheimer’s disease

Non-Alzheimer’s dementia (e.g., Lewy body dementia, vascular or multi-infarct dementia; mixed dementia; frontotemporal
dementia such as Pick’s disease; and dementia related to stroke, Parkinson’s or Creutzfeldt-Jakob diseases)

Hemiplegia or Hemiparesis

Malnutrition (protein or calorie) or at risk for malnutrition

Anxiety disorder

Depression (other than bipolar)

Schizophrenia (e.g., schizoaffective and schizophreniform disorders)
Post-traumatic stress disorder (PTSD)

Respiratory failure

community discharge, the proposed model outperforms
other models with the training and test C-index values of
0.75 and 0.76, respectively. The regularized Cox regres-
sion models, i.e., LASSO and Elastic Net, yielded lower
C-index values. Both values are still above 0.5, indicating
that Cox baseline hazard is flexible in representing the
LOS data with improved prediction performance. The
reduced performance with regularization suggests that
penalization of covariate coefficients in the Cox model is

unnecessary, probably because an optimal set of covariates
has been chosen based on the previous step of feature
selection. Parametric survival models have poorer perfor-
mance than the Cox model family with C-index values
ranging from 0.21 to 0.25, which are much lower than 0.5,
indicating that the models are consistently poor at predic-
tion than a random guess. The Cox model family outper-
forms parametric survival models because its baseline
hazard is non-parametric and is able to capture LOS data
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Table 3 Summary of covariates identified by various feature selection methods

Covariate Vote Feature selection methods
Linear Nonlinear
Stepwise ~ RFE:  SA:  \qqq ?ggfi?r% ngEéd Rondom  Rendow  Random  Boruta
AlC Linear  Lincar Forest Trees Forest Forest Forest
Community
ADL score 80% A A A A A A A A
Cognitive score 70% A A A A A A A
Mood score 80% A A A A A A A A
Cancer 70% A A A A A A A
Anemia 70% A A A A A A A
Atrial fibrillation 60% A A A A A A
Coronary artery disease 30% A A A
DVT, PE, PTE 80% A A A A A A A A
Heart failure 70% A A A A A A A
Hypertension 100% A A A A A A A A A A
GERD or Ulcer 40% A A A A
UC, CD, IBD 30% A A A
BPH 50% A A A A A
Renal disease 80% A A A A A A A A
Neurogenic bladder 60% A A A A A
Obstructive uropathy 50% A A A A A
MDRO 40% A A A A
Pneumonia 50% A A A A A
Diabetes mellitus 40% A A A A
Hyponatremia 90% A A A A A A A A A
Hyperlipidemia 60% A A A A A A
Arthritis 30% A A A
Hip fracture 90% A A A A A A A A A
Other fracture 60% A A A A A A
Alzheimer’s disease 60% A A A A A A
Non-Alzheimer’s dementia 90% A A A A A A A A A
Hemiplegia or Hemiparesis 80% A A A A A A A A
Malnutrition 30% A A A
Anxiety disorder 30% A A A
Depression 40% A A A A
Schizophrenia 60% A A A A A A
PTSD 40% A A A A
Respiratory failure 30% A A A
Hospital
Age 30% A A A
ADL score 50% A A A A A
Cognitive score 20% A A
Hypertension 50% A A A A A
GERD or Ulcer 30% A A A
Obstructive uropathy 20% A A
Septicemia 20% A A
Hyponatremia 20% A A
Hyperlipidemia 30% A A A
Arthritis 30% A A A
Non-Alzheimer’s dementia 40% A A A A
Hemiplegia or Hemiparesis 20% A A
PTSD 30% A A A
Respiratory failure 40% A A A A
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Table 4 Prediction performance (C-index) comparison between the proposed and alternative models
Model family Model short name Model description Discharge dispositions
Community Hospital
Train  Test Train  Test
With competing risks assumption
Semi-parametric survival SP.Cox Proposed: Cox regression with non-parametric baseline hazard 0.758 0.768 0.707 0.699
SP.Cox. Lasso Cox regression with L1-regularization 0.728 0.747 0.500 0.500
SP.Cox.Elastic Net Cox regression with L1/L2-mixed regularization 0.669 0.677 0.669 0.677
Parametric survival P.Exponential Survival regression with exponential baseline hazard 0.241 0.231 0.292  0.303
P.Weibull Survival regression with Weibull baseline hazard 0.248 0.248 0.293 0.319
P.Logistic Survival regression with Logistic baseline hazard 0.237  0.206 0.291 0.327
P.Log.logistic Survival regression with Log-logistic baseline hazard 0.237 0.204  0.284 0.308
P.Log.normal Survival regression with Log-normal baseline hazard 0.239 0.215 0.281 0.313
Independent of competing risks
Data mining: Linear ML.Tobit Reg Tobit regression 0.243 0.224  0.288 0.324
ML .Linear Reg Linear regression 0.265 0.229 0.334 0.318
ML.Lasso Linear regression with L1-regularization 0.284 0.242  0.500 0.500
ML.Ridge Linear regression with L2-regularization 0.266  0.225 0.347 0.352
Data mining: Tree-based ML.R.Forest Random Forest regression 0.290 0.220  0.491 0.261
ML.Boosting Tree Boosting Tree regression 0.229 0.245 0.238 0.170
ML.Tree Decision Tree regression 0.305 0.311 0.308 0.352

with more flexibility. Regularized/Unregularized linear
models perform slightly better than survival models with
C-index values ranging between 0.22 and 0.28.
Conversely, tree-based methods perform better than
linear models with Decision Tree and Random Forest
producing C-index around 0.3. The improvement
achieved from tree-based methods indicate a non-linear
relationship between LOS and the covariates.

Similarly, from Fig. 1(b), the proposed model outper-
forms other models for predicting LOS before transferring
to hospital. The performance patterns are similar to those
of predicting community discharge likelihood with a
few differences. LASSO regularization in Cox regression
performs poorly for predicting re/hospitalization risk,
because a minimum penalty term was not found to be
more effective for improving prediction than a random
guess. Within linear models, LASSO regularization
produces improved results, but were still inadequate for
accurate prediction. Within the nonlinear models, the
Decision Tree produces the best result. The test C-index
value is generally lower than the training C-index value,
because the test dataset is serving as an independent
dataset untouched during the model development phase
to evaluate the future prediction performance of the model.

3.4 Identification of risk/protective factors

Apart from producing superior prediction performance,
the proposed competing risk Cox regression model

identifies important risk/protective factors that influence
aresident’s LOS. Table 5 shows the significant covariates
identified by the proposed model for predicting community
discharge likelihood and re/hospitalization risk. The sig-
nificance level « is set at 0.05.

The magnitude and sign of the coefficient values quan-
tify the influence of the covariates on the probability of
being discharged/transferred. A higher probability of
being discharged/transferred implies a shorter LOS, and
vice versa. For a resident being ultimately discharged to
community, if s/he has higher ADL score, higher Mood
score, or any of the disease diagnoses, her/his discharge
likelihood decreases due to the negative sign and the LOS
increases. Alternately, if a resident is ultimately transferred
to hospital, having a higher ADL, or being diagnosed
with anemia, uropathy or diabetes, her/his hospitalization
risk will be increased due to her/his positive signs, implying
a shorter LOS before being transferred to hospital. For
both community and hospital dispositions, ADL is the
most significant factor on influencing LOS, confirming
the domain knowledge that residents with high dependency
for daily living activities (e.g., eating, bathing, toileting,
dressing, etc.) require greater NH care. ADL also has an
opposite effect on dispositions, indicating the importance
of incorporating multiple discharge dispositions. Such
identified risk/protective factors are valuable for the
healthcare provider to better identify and target on the
most “at-risk” NH residents with more focused care and
resources.
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Fig. 1 Prediction performance (C-index) comparison under different discharge dispositions.

3.5 Marginal effects of covariates on community discharge
likelihood and re/hospitalization risk

As opposed to a single value to quantify predicted LOS
obtained from many existing predictive models, the
proposed competing risk model further provides infor-
mation on disposition-specific probability of being dis-
charged/transferred. Such information can be visualized
and compared by plotting the survival probability (i.e.,
1-probability of being discharged/transferred) over time.
Furthermore, because the proposed model is a proportional
hazard model, marginal effects of survival curves can be
visualized under different values of covariates. Based on
such survival curves, the influence of each individual
covariate on the probability of being discharged/transferred
can be visualized. The probability of being discharged/
transferred over time among different individuals with
different individual characteristics can be visualized and
compared as well. Figures 2 and 3 provide examples of
marginal effects of various baseline ADL values on the
LOS of an example resident over time for specific
discharge dispositions. All variables other than the ADL

score is fixed at the mean level of the observed sample.
As observed in Fig. 2, a community discharge resident
with a higher baseline ADL score (more physical functional
dependency) has a curve (red) higher than the average
(blue) resident. In such a case, the probability to remain
in the facility is higher than average at any point in time,
which further increases the LOS. By contrast, a resident
with a lower baseline ADL score (more functionally inde-
pendent) has a survival curve (green) lower than average
and tends to have a shorter LOS. Figure 3 shows the
survival curves for a re/hospitalized resident. ADL score
has an opposite effect on the curves, reaffirming the
competing risk assumption. A higher baseline ADL score
results in a shorter stay, while a lower one increases the
stay. Because the curves evolve differently over time, it is
possible to assess the probability of being discharged/
transferred at any time point during the resident’s stay.
Similarly, a resident’s disposition outcome may also be
examined over time for various combinations of varied
individual characteristics. For instance, in Fig. 4, a hypo-
thetical resident with better health conditions (e.g., lower
ADL and Mood/Depression scores, and less number of
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Table 5 Significant covariates identified by the proposed model for
each disposition

N

Covariate R; SE(kj)  p-value
Community discharge

ADL score -0.113 0.014 1.11E-15 HHE
Mood score —0.143 0.041 0.0005 ok
Cancer —0.436 0.162 0.0072 *K
Anemia —0.203 0.097 0.0367 *
Hypertension —0.559 0.100 0 HokE
BPH —0.515 0.141 0.0003 HEK
Renal disease —0.330 0.134 0.0136 *
MDRO —0.628 0.295 0.0331 *
Hip fracture —0.604 0.233 0.0096 **
Other fracture —0.421 0.127 0.0009 ok
Non-Alzheimer’s dementia —0.448 0.140 0.0014 **
Hemiplegia or Hemiparesis —0.846 0.239 0.0004 ok
Malnutrition —0.556 0.196 0.0045 *K
Re/Hospitalization

ADL score 0.087 0.024 0.00026 kK
Anemia 0.482 0.180 0.00727 **
Obstructive uropathy 1.028 0.307 0.00080 ok
Diabetes mellitus 0.503 0.170 0.00311 *K

Notes: 1) * p < 0.05, ** p < 0.01, *** p < 0.001; 2) SE: Standard error;
3) 95% confidence intervals for each parameter estimate are calculated by
Rj+1.96x SE(&;), where & is the respective estimated covariate coefficient.
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Fig.2 Marginal effect of ADL score on survival curves for
community discharge.

diseases diagnosed at baseline) tends to have a shorter
LOS with community discharge (red curve) but a longer
LOS with re/hospitalization (blue). By contrast, in Fig. 5,
a hypothetical resident with worse health conditions (e.g.,
higher ADL and Mood/Depression scores, and more
diseases diagnosed at baseline) tends to remain in the
facility for a long time for recovery before being
discharged to the community (red), and a relatively short
stay if being transferred to hospital (blue).

3.6 Performance of the proposed sampling algorithm for
generating LOS predictive samples

Survival models are different in predicting response
compared with conventional machine learning models.
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Fig.3 Marginal effect of ADL score on survival curves for
re/hospitalization.
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Fig.4 Survival curves of a healthy resident under different
discharge dispositions.
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Fig. 5 Survival curves of an unhealthy resident under different
discharge dispositions.

The former models characterize the predictive distribution
by providing a probabilistic prediction, e.g., the predicted
probability of being discharged/transferred over time for
each of the resident, while the latter models often provide
a single point prediction quantity, e.g., the predicted LOS
value. To simulate the residents’ flow in a typical NH
facility using computer simulation, an important step is
to simulate LOS predictive samples accurately. Our
proposed sampling algorithm is capable of generating
predictive LOS samples accurately and simultaneously
providing the corresponding discharge dispositions as
well. Sampling performance may be evaluated by
comparing survival plots of observed LOS samples and
simulated LOS samples. The survival curves are calculated
by the Kaplan-Meier curves, which provide the disposition
specific observed and simulated survival curves of a
sample. In Fig. 6, survival curves are compared for each
disposition and the full dataset. The sampling algorithm
is very effective in generating predictive samples of LOS,
because the simulated (light-colored) curves are very
close to their observed ones (dark-colored). The green
curves (light and dark) are slightly lower than the full



588 Front. Eng. Manag. 2022, 9(4): 577-591

dataset (black and grey), indicating that residents trans-
ferred to hospital tend to have shorter LOSs than the
average, as opposed to blue curves, indicating that residents
discharged to the community have slightly longer LOSs
than the average. Figure 7 shows the performance of the
sampling algorithm in predicting discharge dispositions
with 100% classification accuracy.

The accuracy of the proposed algorithm is further
compared with the simulation results based on several
alternative models, such as survival models and machine
learning models. Simulation is performed using the Cox
Weibull regression and Log-normal regression, where the
baseline hazard functions are fitted with Weibull and Log-
normal distributions, respectively, and under the compet-
ing risk framework. As shown in the survival curves of
Figs. 8-10, the Cox Log-normal regression performs
poorly in generating samples as compared to the
observed data, while Cox Weibull performs better due to
its increased flexibility in fitting the LOS data. The
prediction performance of the proposed work is also
compared with popular linear and non-linear machine
learning models, such as linear regression, L1-regularized
linear regression (LASSO), Decision Tree, and Random
Forest. Overall, the proposed work generates the most
accurate LOS samples, when compared with other meth-
ods due to the incorporation of non-parametric baseline
hazard as well as the proposed simulation algorithm.
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Fig. 8 Comparison of prediction performance between the
proposed sampling algorithm and alternative models for all
discharge dispositions.
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Fig. 9 Comparison of prediction performance between the
proposed sampling algorithm and alternative models for
community discharge disposition.
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Fig. 10 Comparison of prediction performance between the
proposed sampling algorithm and alternative models for hospital
transfer disposition.

3.7 Simulation-based facility-level performance evaluation

The proposed sampling algorithm is not only able to
predict the probability of being discharged/transferred to
a specific disposition for a specific individual resident, it
can be further used to generate predictive LOS samples
of a heterogeneous population of NH residents with
varied individual characteristics. This will allow the users
to evaluate the system level performance of an NH
facility, given a census composition scenario of a hetero-
geneous population of NH residents.

To explain the functionality of the proposed work,
eight different cohorts of residents are defined in an
increasing order of acuity. Simulation data is generated
for each cohort using various segmentation and distri-
butions of the significant covariates identified by Cox
regression in Table 5. The setting for each cohort is
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provided in Table 6. For each acuity scenario, 1000
random admission observations are generated in the
following process. First, the ADL score is randomly
generated with a truncated normal distribution with mean
fixed at desired level corresponding to acuity and upper
and lower limits set with range of observed data. Second,
the Mood score is randomly generated similarly with a
truncated normal distribution. Lastly, for each observa-
tion, any of the 13 diseases are randomly selected and
binary value (0 or 1) is generated through a Bernoulli
distribution, where the rate of success is sampled from a
Beta prior distribution with shape parameters set accord-
ing to the desired acuity level. The sampling process is
repeated 20 times for each acuity scenario to account for
the stochastic simulation uncertainty. Mean LOS values
and disposition-specific discharge rates are estimated
with standard errors reported as well. The results
obtained are summarized in Table 7 and Fig. 11. The
computational cost of generating 1000 predictive LOS
samples is around 0.7 seconds under various acuity sce-
narios, which is quite time efficient for real application.

Table 6 Experimental settings of acuity scenarios in the simulation study

589

The proposed sampling algorithm generates the LOS
and predicts the discharge disposition for each simulated
resident in each cohort. As seen in Fig. 11(a), as acuity
increases, the mean LOS increases in the samples. More
residents are transferred to hospital. Residents being
discharged to community have increasingly longer stays,
which further increased the mean LOS of the samples
across acuity scenarios. The whiskers represent dispersion
among samples in each acuity and are mostly non-over-
lapping, indicating a significant difference of LOSs
between acuity scenarios. As shown in Fig. 11(b),
increasing acuity has a sharper decreasing effect on
community discharge rates over time, while hospital
discharge rates increase at a more gradual rate. The
phenomenon occurs because a larger number of diseases
influenced the community discharge likelihood than re/
hospitalization risk. The results further emphasized the
competing nature of two dispositions. As the resident
acuity increases, LOS tends to increase for residents
discharged to community, while LOS tends to decrease
for residents transferred to hospital. Depending on the

Covariate Distribution Parameter Acuity scenario Limits SD
Less acute More acute
1 2 3 4 5 6 7 8
ADL score Truncated normal Mean 1 3 5 7 9 11 13 15 [0, 16] 4
Mood score Truncated normal Mean 1 2 3 4 5 6 7 8 [1, 8] 2
Disease incidence prior Beta Mean 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 [0, 1]
SD 0.090 0.121  0.138 0.148 0.151 0.148 0.138 0.121

Notes: SD: Standard deviation; Diseases include: Cancer, Anemia, Hypertension, BPH, Renal disease, MDRO, Hip fracture, Other fracture, Non-Alzheimer’s
dementia, Hemiplegia or Hemiparesis, Malnutrition, Obstructive uropathy, and Diabetes mellitus.

Table 7 Facility-level performance results under various census acuity scenarios of an NH

Metric Measure Acuity scenario
1 2 3 4 5 6 7 8
LOS Mean 11.77 13.21 15.25 18.02 21.37 25.40 28.74 31.36
SE 0.20 0.18 0.23 0.32 0.33 0.54 0.72 0.66
Disposition: Community 30-day discharge rate Mean 0.98 0.96 0.92 0.84 0.74 0.64 0.53 0.45
SE 0.0009 0.0023  0.0024  0.0042  0.0051  0.0066  0.0055  0.0043
45-day discharge rate Mean 1.00 0.99 0.98 0.94 0.88 0.80 0.72 0.64
SE 0.0002 0.0010  0.0012  0.0026  0.0038  0.0056  0.0050  0.0045
60-day discharge rate Mean 1.00 1.00 0.99 0.97 0.93 0.88 0.81 0.74
SE 0.00009  0.0005  0.0007  0.0017  0.0027  0.0045 0.0042  0.0041
Disposition: Hospital 30-day discharge rate Mean 0.11 0.13 0.14 0.16 0.19 0.21 0.24 0.26
SE 0.0007 0.0013  0.0015  0.0025  0.0030  0.0029  0.0037  0.0030
45-day discharge rate Mean 0.17 0.18 0.21 0.24 0.27 0.30 0.34 0.36
SE 0.0010 0.0018  0.0021  0.0034  0.0038  0.0037  0.0047  0.0038
60-day discharge rate Mean 0.20 0.22 0.25 0.28 0.32 0.36 0.39 0.43
SE 0.0012 0.0021  0.0024  0.0039  0.0042  0.0040  0.0052  0.0041

Note: SE: Standard error.
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Fig. 11 Comparison of facility-level performance results under various census acuity scenarios.

proportion of the residents finally discharged to community
or transferred to hospital, the mean LOS varies accord-
ingly. The sampling algorithm successfully mimics the
competing phenomenon of two dispositions. Furthermore,
the algorithm can also provide disposition-specific proba-
bility of being discharged over time in a continuous time
scale for the collective cohort and individual resident,
allowing for a greater understanding of facility utilization
and resident outcome (i.e., re/hospitalization risk) over
the course of the stay. Figure 11(b) shows several
discharge rate curves at discrete times of 30-, 45-,
and 60-days.

4 Conclusions

In this paper, a heterogeneous LOS modeling appro-
ach was proposed by considering multiple discharge
dispositions and incorporating varied individual charac-
teristics for NH PAC residents. At individual level,
several popular predictive models, such as machine learn-
ing and survival models, are considered to predict LOS
and their performances are compared with the proposed
model. The proposed model outperforms other models by
jointly predicting the re/hospitalization risk and commu-
nity discharge likelihood over time. It is also capable of
identifying disposition-specific risk/protective factors for
influencing the disposition-specific probability of being
discharged/transferred over time. Furthermore, to enable
the facility-level performance evaluation of the NH, a
novel simulation algorithm was proposed for generating

LOS predictive samples of residents by incorporating
varied individual characteristics and competing discharge
dispositions. The proposed algorithm is capable of accu-
rately generating samples for a heterogeneous population
of NH residents with varied individual characteristics,
which allows the evaluation of facility performance
measures, such as facility-level re/hospitalization rate and
mean LOS. A real case study based on a large-scale de-
identified data from an NH in Tampa Bay areca was
considered to illustrate the proposed work and demon-
strate its superior prediction performance. The proposed
approach would allow NH administrators and health
practitioners to identify the most at-risk residents and
design more targeted care delivery, facilitate optimal
resource allocation strategies at the facility level for
achieving greater quality outcomes at reduced costs, and
further improve communication of prognostic information
among everyone involved in the care delivery process.
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