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ABSTRACT The prediction of structural performance plays a significant role in damage assessment of glass fiber
reinforcement polymer (GFRP) elastic gridshell structures. Machine learning (ML) approaches are implemented in this
study, to predict maximum stress and displacement of GFRP elastic gridshell structures. Several ML algorithms,
including linear regression (LR), ridge regression (RR), support vector regression (SVR), K-nearest neighbors (KNN),
decision tree (DT), random forest (RF), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), category
boosting (CatBoost), and light gradient boosting machine (LightGBM), are implemented in this study. Output features of
structural performance considered in this study are the maximum stress as f;(x) and the maximum displacement to self-
weight ratio as f,(x). A comparative study is conducted and the Catboost model presents the highest prediction accuracy.
Finally, interpretable ML approaches, including shapely additive explanations (SHAP), partial dependence plot (PDP),
and accumulated local effects (ALE), are applied to explain the predictions. SHAP is employed to describe the
importance of each variable to structural performance both locally and globally. The results of sensitivity analysis (SA),
feature importance of the CatBoost model and SHAP approach indicate the same parameters as the most significant
variables for f,(x) and f,(x).
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1 Introduction Finite element analysis (FEA) is usually implemented

for structural analysis. However, FEA is a complex and

Nowadays, demands for sustainable structures have been
increased. Selecting the appropriate materials and
systems according to the life cycle assessment and
environmental impact is one strategy for constructing an
environmentally friendly structure. The gridshell structure
is a sustainable and lightweight lattice roof with the
ability to cover a large span. Gridshell is constructed by
deform a flat grid without in-plane shear rigidity that
creates a double-curvature structure. Several studies have
been performed in the case of gridshell structure analysis
[1,2]. The accurate analysis of gridshell structure in terms
of stress and displacement is critical for breakage
reduction.
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time-consuming process. Therefore, a substituted method
with a fast and easy computational process is required. In
recent years, data-driven techniques have been developed
as substitutions to time-consuming simulation processes.
Data-driven approaches solve structural engineering
problems through a low computational cost and accurate
process [3,4].

The main contributor to data-driven methods is
machine learning (ML), which is a subset of artificial
intelligence. There are several effective ML applications
in structural engineering [5—8]. Mangalathu and Jeon [9]
established data-driven ML approaches by employing
lasso regression for beam-column joints. Yao et al. [10]
discovered that a two-class support vector regression
(SVR) presents superior estimation accuracy than
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one-class SVR and logistic regression in their
investigation of mapping landslide susceptibility. Chopra
et al. [11] studied the efficiency of ML models, including
decision tree (DT), random forest (RF), and neural
networks, to estimate the concrete compressive strength.
The results of their study indicate that the neural network
model had the highest efficiency, followed by the RF
method. Das et al. [12] presented a data-driven physics-
informed approach for concrete crack estimation. The
suggested technique can estimate the expected service life
of infrastructure before it has to be maintained using real-
time monitoring data.

Mangalathu et al. [13] implemented ML models such as
XGBoost, AdaBoost, CatBoost, and LightGBM to
determine the mode of seismic failure. Guo et al. [14]
compared several ML modols, including logistic regre-
ssion, classical Naive Bayesian classifier, K-nearest neigh-
bors method, some state-of-the-art ensemble methods,
support vector machine, multilayer perceptron neural
networks, and some tree-based classifiers, for soil
liquefaction prediction. Consequently, the ensemble
learning methods presented the most reliable results.
Huang and Burton [15] applied ML methods to detect the
in-plane failure modes of RC frames with infills and
observed that support vector machine and adaptive
boosting algorithms had reasonable accuracy. Nunez and
Nehdi [16] presented a gradient boosting regression tree
model for determining the carbonation depth of recycled
aggregate concrete with various mineral additives.

This paper performs a comparative study on several
ML models, including linear regression (LR), ridge
regression (RR), SVR, K-nearest neighbors (KNN), DT,
RF, adaptive boosting (AdaBoost), extreme gradient
boosting (XGBoost), category boosting (CatBoost), and
light gradient boosting machine (LightGBM), for predic-
ting the structural performance of gridshells. Therefore,
the model with the highest accuracy is obtained. In this
study, a dataset comprising 400 samples is prepared by
FEM. The grid search approach and K-fold cross-
validation (CV) are applied for finding the optimum
parameters of each ML model. The first-order and total-
effect SA are performed for different ML approaches. It
is crucial to understand why an ML model produces a
particular estimation and what features lead to that
estimation. Therefore, shapely additive explanations
(SHAP), accumulated local effects (ALE), and partial
dependence plot (PDP) are required, to comprehend the
behaviour of an ML method. The significance of input
features is investigated on estimating the structural
performance of glass fiber reinforcement polymer
(GFRP) gridshell structures by PDP, ALE, and SHAP
methods.

The following is how the paper is structured: Section 2
introduces the ML models, including LR, RR, SVR,
KNN, DT, RF, AdaBoost, XGBoost, CatBoost, and

Front. Struct. Civ. Eng. 2022, 16(10): 1249-1266

LightGBM, followed by performance indexes, hyper
parameters tuning, and SA. Then the Interpretable ML
approaches, including PDP, ALE, and SHAP, are
presented in Section 3. In Section 4, these methods are
implemented to two numerical examples for stress
prediction and displacement to self-weight ratio
prediction. Finally, Section 5 presents the conclusions.

2 Machine learning model development

This study investigates several ML algorithms, including
LR, RR, SVR, KNN, DT, RF, AdaBoost, XGBoost,
CatBoost, and LightGBM, in order to find the best ML
model. Scikit-learn [17], an ML package written in the
Python language, is used to create the models. Scikit-
learn contains a wide library of ML methods. Moreover,
performance indexes, an efficient method for hyper
parameters tuning, and SA are presented.

2.1 Machine learning models

2.1.1 Linear regression

LR is a supervised ML approach that identifies a linear
relationship between dependent and independent parame-
ters [18]. The simplest technique to determine the depen-
dence of output variables on the input features is LR. The
optimum set of coefficients for the parameters is obtained
by decreasing the least square error between the actual
and predicted value for the coefficients. The output of an
LR is a linear combination of the variables as follows:

FX) =B+ Y XP, (M

i=1

where B, and B, are the intercept and the regression
coefficient, respectively; M is the number of parameters.
The regression coefficients are calculated as below:

B = arg min [Z ;= f(x_,-))zl : @)

where N and y; denote the number of instances and the
target output, respectively.

2.1.2  Ridge regression

RR is comparable to the LR except that it reduces the
model variance of LR [19]. Most ML approaches have a
bias-variance trade-off. RR is a popular approach for
shrinking the coefficients by minimizing the sum of
squares [20]. Minimizing a penalized cost function
calculates the ridge coefficients as below:
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N M 2 M
Brigee = argmin Z ()’j —Bo— inﬁi) +4 Zﬂ?y (3)
i=1 i=1

=

where A determines the coefficient reduction. The RR
coefficients approach zero, as A increases.

2.1.3  Support vector regression

SVR uses hyperplanes with maximum separation to
partition the data space based on support vector
machines. The output of regression is defined as follows:

f(x)=¢(x) w+b, 4)

where @(x) is a function that transfers the input to the
high-dimensional space, and b denotes the bias of the
model. Minimum values of w are found by minimizing a
convex optimization problem to ensure that the f{x) is flat
[21]:

VRIS P .
M1n1m1se§||a)|| +C;(§j+§j), Q)

where C is the box constraint; & and &; are slack factors.
Consequently, SVM prediction can be expressed as:

fx,a,a) = Z(a,-—a;‘)l((x,-,x)+b, 6)

J=1

where «; and «; represent Lagrangian multipliers; K(x;, x)
denote the kernel function. The presented equations
indicate that the kernel function, values of €, and C can be
used to tune the SVM prediction.

2.1.4 K-nearest neighbors

The output variable is predicted by KNN as the mean of
multiple surrounding values, where £ refers to the number
of employed neighbors [22]. The critical concept of KNN
is that KNN gives more weight to the K-nearest samples
that are closer to new data point x in the training dataset.
The conditional probability of x can be calculated by the
following formula:

P(Y=m|X=x)=%Zl(y,-=m), (7

ieNy

where I(y; = m) is a parameter that serves as an indicator;
if a given observation belongs to the mth tag, it returns 1;
otherwise, it returns 0; N, is the number of instances.

2.1.5 Decision tree

DT is a supervised ML approach that may be utilized for
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the regression model. Based on the training samples, this
method improves a predictive model in a tree-like graph
[23]. The tree structure encompasses the input parameters
of the dataset as the internal nodes, decision rules as
branches, and the output as leaf nodes. A regression tree
is a set of ML approaches that create estimation models
by splitting the feature space into high-dimensional
spaces. By dividing the feature space into D areas,
R;,...,R,, the regression problem can be described as:

D

F@) =) cld(xeRy),

d=1

(®)
where ¢, denotes the average of the observations.

2.1.6 Random forest

RF is an ML technique that consists of a large number of
decision trees. Breiman [24] developed RF, which
combines the bagging approach with the selection of
random input parameter strategy. The bagging approach
creates an individual tree by replacing the training dataset
with a random sample (bootstrap sample). This technique
controls the overfitting by decreasing the modification
implemented to each tree. Furthermore, rather than
choosing all of the parameters, a random subset of them
is employed. In particular, RF is an enhanced variant of
the bagging approach. The final model predicted output is
derived by averaging the outcomes of individual decision
trees as follows:

1 )
Y=E;Yh(X), ©)

where B refers to the number of decision trees; Y, denotes
each decision tree; X' is unknown instances.

2.1.7 Adaptive boosting

The AdaBoost model creates a strong learner from a
series of weak learners to enhance the performance of the
estimated model [25,26]. Form of the learner is defined as
follows:

Fr(x)= ) £(0. (10)

In the AdaBoost model, the sample that was incorrectly
predicted is given a higher weight in the preceding step
[27,28]. The performance of model is then improved by
minimizing the error in the current step. AdaBoost starts
with identical weights and evaluates the mean square
error of estimation, assigning greater weight to those with
the greatest error and repeating the procedure until the
output converges, as follows:
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E = ) E[F,(x)+ah(x)], (11)

where E(-) denotes an error function; F,_,(x) indicates the
learner created by the prior training; f,(x) = ah(x) refers to
the weak learner, which made a contribution to the strong
learner [29]. Finally, AdaBoost combines several weak
learners in order to create a single strong learner.

2.1.8 Extreme gradient boosting

XGBoost is a boosting method in which weak learners
are iteratively given higher weights. The idea is to
integrate the weak learners in order to make a more
accurate forecast. Gradient boosting was first presented
by Chen et al. [30], who conducted a regression model
using the direction gradient vector of the misfit function
that is comparable to gradient-descent techniques.
Gradient boosting uses a parallel tree version that is
known as XGBoost. In this method, the factors are
iteratively modified to optimize the objective function by
reducing the residual of the past step [31]. In order to
avoid overfitting, the XGBoost approach adds regulariza-
tion to the objective function as well as a loss function.
The objective function of XGBoost can be expressed as
below:

(12)

Obj = Zj]L(&,-,yi)+Z_k]w<ﬁ>,

where L denotes the loss function for the bias of the
model; w indicates the regular term that is utilized to
reduce the complexity of the model.

2.1.9 Category boosting

The CatBoost [32] investigates categorical input
parameters as a new gradient boosting technique. This
approach employs symmetric decision trees that speeds
up the inference process when using pre-trained weak
learning models. The CatBoost method is capable of
achieving improved performance for highly noisy data
with diverse characteristics and complicated relation-
ships. CatBoost sorts all instances at random and then
assigns a value to each category characteristic. The
priority weight coefficients and priority factor are applied
to limit the influence of low-frequency category instances
and noise on the distribution of data, which can be
expressed as below:

n

Z I{x}:x;{}‘yi +ﬂp
Al Jj=1

Y=, (13)

DIV

J=1
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where p and S represent a prior value and the weight of it,
respectively.

2.1.10 Light gradient boosting machine

The LightGBM [33] is on the basis of decision tree
approaches. This algorithm generates leaf-wise rather
than depth-wise that obtains higher accuracy in more
complicated trees. LightGBM implements two innovative
methodologies, including Exclusive Feature Bundling and
Gradient-based One-Side Sampling, in order to describe
its performance and distinguish it from other gradient
boosted decision trees. Its basic concept is to linearly
integrate M weak regression trees into a strong one,
which can be calculated as:

F(x)= ifm (20,

m=1

(14)

where f, (x) and F(x) indicate the output of the mth weak
regression tree and the final output, respectively. The
leaf-wise strategy with depth limitation and the histogram
technique are two main enhancements of the LightGBM
algorithm.

2.2 Performance indexes
Two performance indexes, namely the root mean square

error (RMSE), and coefficient of determination (R?), are
employed in this study. Equations for RMSE and R” are as

bellow:
1
RMSE = Nt;(yp, Y.y,

N:
D (-v)y
_ i=1

N,

(15)

R =1 , (16)

i=1

where Y; and Y, indicate the real and estimated values of
the ith observation, respectively; N, is the number of
testing models; Y, is the average of the output. The
lowest value of RMSE and the highest value of R
indicate the best-performing ML approach.

2.3 Hyper parameters tuning

Once the dataset is prepared and the ML technique has
been chosen, the next step is to specify the model
parameters, which are crucial to the success of the model.
In this study, the hyper parameters are found using the
combination of grid search approach and K-fold CV in
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order to avoid overfitting. The potential ranges of each
parameter are first stablished as grids based on literatures.
The model is then repeatedly trained using all possible
combinations of the parameter grids, and the performance
is evaluated using the K-fold CV. The K-fold CV is a
method for predictive accuracy measurement that reduces
the bias associated with data that is randomly selected for
training and testing. It divides the dataset into K equal-
sized subsets, and runs a loop of K rounds utilizing K — 1
subsets for training and the remaining one for validation.
The average of the K rounds is measured to indicate the
performance of the model. In this paper, 10-fold CV as a
commonly used value is implemented that divides the
data into ten groups to prevent overfitting problems.

2.4 Sensitivity analysis

Saltelli et al. [34] presented a variance-based SA method
to study how changes in model input values impact model
output values. This method determines the interaction
between the input features and the output factor by
keeping the values of the input parameters constant and
adjusting the value of one input parameter [35-37].

2.4.1 First-order sensitivity indices

The measurement vector can be stated as y = flix,x,, ...,
x,) in the multivariate k-input model. The first-order
index is calculated as follows:

S, = V,IE. (yx)] ’ (17)
V)
where V, [E,. (y|x;)] calculates the impact of the variable
x; on the output; when x; in kept constant, E, (y|x;)
indicates the variance of the mean value E(y); V(y) refers
to the unconditional variance of y.

2.4.2 Total-effect sensitivity indices

Higher order indices of coupling terms have to be
extended to assess the whole variance of the output,
because the first order index only evaluates a part of
variation of the output arising from the variance of the
input variable x;. As a result, the total effect S} is utilized
to evaluate the influence of the input variable x; to the
variance of the output. The total effect index can be
measured as below:

wa, [Exl ()’| x~i)]
V() ’
where E, (y|x.) and V. [E, (y|x.)] indicate the mean

value of y when all variables except x; are kept constant
and its variance, respectively. It has to be noted that the

Sp=1- (18)
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difference between S; and S represents the interaction of
the input variables with x,.

3 Interpretable ML approaches

The developed ML model may be capable of making
accurate predictions; however, it is still a black box
model that cannot provide an explicit explanation of the
mechanical or physical background of the problem, which
may result in the ML model losing credit. In this study,
the model is interpreted using three approaches, including
PDP, ALE, and SHAP, to overcome this obstacle. The
significance of a feature is determined by evaluating the
increase in estimation error after modifying the factor
values. Consequently, a factor is significant if the large
error is obtained after this procedure, otherwise, it is not
significant if little change has occurred.
3.1 Partial dependence plot
Friedman [38] proposed the PDP to investigate the
marginal impact of an assumed parameter on the output
by displaying the mean value of outcomes for various
parameters. The PDP can be employed to determine the
correlation between the feature and the objective. The
partial dependence, denoted by fg, on a portion of features
Xg, can be expressed as:

£ () = Ex [ (s5,50)] = [ f (s, 50dPG),— (19)
where xg denotes the factors for PDP and x. refers to the
other factors. PDP can be created for data {X, i = 1,...,n},
as follows:

_ 1 &
)=~ ;ﬂxs,xic). (20)

Independence of the input parameters is an essential
assumption in PDP. Otherwise, when features are
strongly related, they will be influenced by artificial data
samples that are impossible in reality, causing the
estimated feature effect to be greatly biased.

3.2  Accumulated local effects

ALE is a non-biased variant to PDP that defines the
average feature effect of an ML algorithm [39]. If the
features are highly associated, fq(xg) is averaged over all
features in PDP, resulting in biased results. This problem
may be solved by constraining data to a particular grid.
To block the influence of correlated features, ALE
averages the modification in estimations. ALE simplifies
the complicated prediction model by relying on only one
or two factors. ALE can be explained as:
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ﬂ»"ALE (xS) :I EX(.‘lXS [fAS (xS9xC)|xS = Zs]dZs —C
= [ PeaxoPls)dredzs e, 1)

0 f (xs,xc)
N 0Xs

denotes the local influences of xg on f(-) at (x, xg); zy;
refers to a selected value smaller than the least
observation; P(x|xg) refers to the density. The center of
ALE graphs is zero that works well for correlated data
and aids visualization. Nevertheless, grid or interval
selection can affect the charts and hide data variability.

where ¢ represents a fixed value; fs(xs,xc) =

3.3 Shapely additive explanations

Lundberg and Lee [40] proposed the SHAP technique for
evaluating model prediction, which is based on
conditional expectation and game theory. SHAP is
utilized to evaluate the impact of distinct input features
on each output. In general, SHAP aids in the ranking of
the features that account for interaction efforts. To
construct an interpretable model, SHAP investigates an
additive feature attribution technique. The output model,
which is described as a linear function, is the total of the
actual values related to each parameter. The interpretable
framework can be defined as below:

F@ =) =g+ ) 4,

i=1

(22)

where x = (xl,xz,...,xp) represents the M input variables; p
denotes the quantity of instances; x, refers to the
simplified inputs. Using a mapping function, x = Ax(x"),
the parameter x' transfers to the x. Moreover, ¢, and ¢,
denote a fixed value and the influence of each parameter,
respectively.

4 Numerical examples

The quality and the quantity of samples affect the
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performance of ML approaches. Therefore, preparing a
proper dataset is an essential task for this process. To this
aim, parametric design method can be implemented,
which is a practical method to create a wide range of
forms by modifying features and calculating the results.
Initially, the values of the features are specified to
generate shell structures. The grid is generated on the
continuous shell using the compass approach in the
second step. This approach generates a regular quadri-
lateral grid on any shells. The grid is created using a
compass in this approach. Initially, two crossing curves
are first generated on the shell. After that, a mesh length
is specified, which serves as the radius of the compass.
The grid spacing is defined from the point of intersection
in each axis. The intersection of two arcs determines the
knots. This technique is repeated until the entire shell is
covered with mesh. Implementing this process leads to
generating different shapes by adjusting the values of
design variables with variable heights, curvatures, and
border forms. In this study, eight input variables,
including height (H,, H,, H,), width (D,, D,, D;), length
(S), and grid size (G), are considered, as illustrated in
Fig. 1(a). The structural shape of the gridshell can be
characterize as a function of these variables:

X={H17H29H3,DIaD2’D3’S,G}' (23)

Table 1 presents the ranges of these parameters. 400
samples are generated based on the mentioned method
and within the specified ranges of the features. The
structural performances of the generated samples are
obtained by the FEA, including the maximum displace-
ment and stress. Based on the derived geometries, FEA of
gridshells are built and beam component B32 is used to
simulate the members, allowing the axial forces, shear,
and bending moments to be precisely calculated [41]. The
structural members in the gridshells are defined as
circular GFRP tubes with a density of 1850 kg/m® and
Young’s modulus of 26 GPa and a cross-section of 4 mm
in wall thickness and 25 mm in outer radius. Furthermore,
the swivel scaffold connections of the structures are
simulated to join the elements at their intersections,

\W

(a)
Fig. 1

(b) (©)

Gridshell simulation: (a) design variables of gridshells; (b) swivel scaffold connection; (c) pin anchorage for beam ends.
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which inhibits out-of-plane rotations and relative
translations between vertices while allowing comparative
in-plane rotation as illustrated in Fig. 1(b). pinned
supports are designed for beam ends to connect the
gridshells to the ground as shown in Fig. 1(c) [42]. The
weight of equipment is assumed to be 2 kN/m? in the
FEA and the structural self-weight is defined by a
gravitational acceleration of 9.8 N/kg. The lengths of
beam elements are limited to 200 mm [43]. Afterward,
two structural performance factors of gridshells,
including stress prediction f,(x) and displacement to self-
weight ratio prediction f,(x), are specified to evaluate the
ML models. Finally, a table is established, including the
design factors and the outputs. The dataset is randomly
split into training and testing set with a 70% training ratio
and a 30% testing ratio. The training set is utilized for
training ML algorithms and the test set is employed to
assess the efficiency of the algorithms.

Figure 2 depicts the correlation matrix for the input
parameters. Each correlation coefficient in the matrix
represents the strength of interaction between two

Table 1 Statistical attributes of dataset

attribute unit minimum maximum average
H, m 4 8 6
H, m 4 8 6
H, m 4 8 6
D, m 14 18 16
D, m 13 22 17.5
D, m 16 20 18
N m 32 37 34.5
G m 0.5 3 1.75
Hix) MPa 3.22 27.82 15.52
Sox) mm/kN 0.39 3.94 2.165
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Fig.2 Correlation matrix for input variables.
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parameters. It is shown that the variable D, is greatly
associated (a correlation of 0.87) with the variable D,.
Besides, the correlation coefficient between D, and D, is
0.48. There are no clear correlations for other parameters.
Various ML models, such as LR, RR, SVR, KNN, DT,
RF, and gradient boosting approaches, namely AdaBoost,
XGBoost, CatBoost, LightGBM, have been studied to
find the superior ML method.

4.1 Stress prediction

This research aims to consider a characteristic of
structural analysis as output. Since the damage occurs in
the overstressed members, it is essential to keep the stress
in the elements under control. Therefore, the first output
is maximum stress. The stress in the gridshell elements
can be expressed as follows:

Fo M, M o
Oy=—F—x——=x 5
AW W
F,
T, = 1 (25)
i (26)
T,=—,
A

where o and 7 denote the nominal and shear stress,
respectively; 4 is the area of member cross-section; F'
represents forces; W indicates the bending modulus of
sections; M refers to the inner moments of sections.
Consequently, the first output can be defined as:

F1(X) = T = ( Jore3e 373) ,

denotes the maximum stress.

27

where 0.«

4.1.1 Hyper parameters fine-tuning

Fine-tuning the hyper parameters of the ML models is
accomplished by grid search approach and 10-fold CV in
order to avoid overfitting. Consequently, the values with
the best performance are selected as the hyper parameters
of the ML approaches. Table 2 demonstrates the optimum
values of hyper parameters for each ML algorithm.

4.1.2  Sensitivity analysis

The first-order (S,) and total effect (S;) sensitivity indices
of the input variables are calculated based on the
regression models as shown in Table 3 and Fig. 3. It can
be seen that the input variables are independent since the
first-order and total-effect indices are almost identical for
all of the ML methods except KNN and DT models. G is



1256

Table 2 Optimal hyper parameters for f;(x)
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model optimal configuration

LR N/A

RR alpha =1

SVM kernel = rbf, C = 30, degree = 1, epsilon = 0.1

KNN leaf size =10, n_neighbors=1,p =3

DT max_depth = 8, min_samples_leaf = 1, min_samples_split =2, random_state = 2
RF max_depth = 8, max_features = 3, n_estimators = 500

AdaBoost learning_rate = 0.1, n_estimators = 200, random_state = 0

XGBoost colsample bytree = 0.4, learning_rate = 0.08, max_depth =2, n_estimators = 1000
CatBoost depth = 6, iterations = 2000, learning_rate = 0.1

LightGBM colsample_bytree = 0.9, learning rate = 0.1, max_depth =4, n_estimators = 500

Table 3 First-order and total effect sensitivity indices for f|(x)

regression model S H, H, H, D, D, D, S G Y
LR S; 0.0059 0.0023 0.0289 0.0112 0.2408 0.0600 0.0175 0.6302 0.9971
Sy 0.0064 0.0023 0.0310 0.0112 0.2439 0.0589 0.0170 0.6300 1.0012
RR S; 0.0059 0.0023 0.0289 0.0116 0.2468 0.0609 0.0173 0.6232 0.9972
Sy 0.0063 0.0023 0.0310 0.0116 0.2499 0.0599 0.0168 0.6230 1.0012
SVR S; 0.0009 0.0020 0.0602 0.0109 0.4013 0.0903 0.0099 0.4174 0.9932
Sy 0.0014 0.0022 0.0632 0.0110 0.4056 0.0903 0.0100 0.4189 1.0029
KNN S; 0.0144 0.0136 0.0177 0.0360 0.1624 0.0135 0.0405 0.0378 0.3363
St 0.2808 0.2872 0.4072 0.2561 0.7242 0.2060 0.2857 0.3552 2.8028
DT S; 0.0080 0.0169 0.0103 0.0004 0.0231 0.0293 0.0048 0.7881 0.8814
St 0.0529 0.1290 0.0144 0.0002 0.0556 0.0714 0.0061 0.9246 1.2546
RF S; 0.0004 0.0085 0.0062 0.0098 0.0745 0.0259 0.0014 0.8587 0.9859
Sy 0.0039 0.0175 0.0040 0.0102 0.0909 0.0370 0.0044 0.8707 1.0389
AdaBoost S; 0.0010 0.0162 0.0015 0.0002 0.0307 0.0198 0.0003 0.8706 0.9406
St 0.0014 0.0578 0.0081 0.0021 0.0434 0.0357 0.0009 0.9308 1.0805
XGBoost S; 0.0009 0.0255 0.0109 0.0212 0.1151 0.0185 0.0040 0.7835 0.9799
Sy 0.0115 0.0378 0.0116 0.0250 0.1230 0.0243 0.0100 0.7877 1.0312
CatBoost S; 0.0030 0.0044 0.0177 0.0111 0.0777 0.0193 0.0044 0.8281 0.9660
Sy 0.0096 0.0174 0.0165 0.0218 0.1233 0.0370 0.0171 0.8741 1.1171
LightGBM S; 0.0061 0.0157 0.0099 0.0290 0.1056 0.0195 0.0003 0.7407 0.9271
St 0.0262 0.0292 0.0135 0.0415 0.1531 0.0200 0.0116 0.7945 1.0900

the most influential variable and /4, has a negligible
effect on f(x). Thus, the low accuracy might be obtained
in the prediction of outputs when the influence of G is not
considered. D, ranked second among all influencing
variables. H, and S have the minimum influence on f(x).
It is found that these two variables are insignificant.
Therefore, a dataset can be prepared considering the
significant variations of G and D, for increasing the
accuracy and decreasing the number of samples in future
studies.

4.1.3 Regression models for stress prediction

The regression plots of different ML models are
demonstrated in Fig. 4, which confirm the high accuracy
of the CatBoost model. The average R* and RMSE values
obtained by 10-fold CV are shown in Table 4. The
CatBoost model presents the lowest RMSE (1.124) and
the highest R* (0.930). As a result, the CatBoost is
considered in the next subsection for interpretable
methods.
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(i) LightGBM.

Table 4 Performance of ML based regression models for f(x)
prediction of gridshells

regression method average R® average RMSE
LR 0.124 2.515
RR 0.120 2514
SVR 0.371 2.727
KNN 0.822 1.682
DT 0.779 1.750
RF 0.871 1.342
AdaBoost 0.593 1.824
XGBoost 0.905 1.126
CatBoost 0.930 1.124
LightGBM 0.890 1.278

4.1.4 Interpretable methods for stress prediction

Based on the contribution of each feature to each tree in
the model, Fig.5 displays the importance of the
parameters in the development of the CatBoost model.
The input parameter G is the most important feature,
followed by the parameter D,. The least important
variable is f;, followed by the variable S. However, it is
impossible to determine if an input variable has negative
or positive effects on the relative importance plots.

The PDPs and ALE plots are the only way to determine
this influence, as revealed in Figs. 6 and 7, respectively.
Each graph depicts the variation in the CatBoost method
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estimation compared to the average of the estimation

when the input parameter is changed. Moreover, the
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Fig.5 CatBoost importance factor for f,(x).
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graphs present the threshold of a change in the input
variable that causes the model prediction to change.

The PDP aims to display the average model outcome of
fi(x) in terms of distinct values of the estimator
throughout the whole range of parameters, whereas, the
ALE presents the average outcome over a specific range
of parameters. The outcomes prove that the ALE and
PDP plots have almost identical trends. The parameter G
is crucial and an increase in G, decreases the value of
Jf1(x), as shown in Figs. 6 and 7. Moreover, the second
most important parameter, D,, negatively impacts f,(x)
prediction. The f,(x) value decreases as D, increases.
Besides, the f,(x) value is increased when D, exceeds the
middle value. H, does not significantly affect the output
until it reaches 75%. The input parameters /1 and S have
the least impact on f;(x), which is also shown in Fig. 5.
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Fig.7 ALE of input variables for f(x).
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There is a linear relationship between [, and f(x).
Generally, H,, H,, H;, D,, and D, have positive effects,
while D,, S, and G negatively affect f,(x).

The SHAP summary plot is shown in Fig. 8(a), with
each point representing a Shapely value for the
parameters. Figure 8(a) shows that each row contains the
same quantity of samples. The Shapely values and the
input variables constitute the abscissa and ordinate of this
plot, respectively. The variables are organized in
descending order of importance, while the most important
variable is located at the top. Multiple samples of a factor
with the identical SHAP value are scattered along the
horizontal axes to represent the samples with a certain
SHAP value. Red colour denotes a high variable value,
whereas blue colour indicates a low variable value. The
range of values that raises SHAP value and thus the
related estimation is indicated by the red colour.

It can be seen that increasing variables G, D,, and S
leads to the SHAP value reduction and f,(x) is also
decreased. In contrast, increases in D, H;, D,, H,, and H,
lead to an increase in the value of f|(x). Each row has the
same number of points in Fig. 8(a). The global
significance factor is depicted in Fig. 8(b) as the mean of
the absolute of the SHAP value for per factor. SHAP
determines that the input parameter G is the most
important parameter, comparable to the conclusions from
the SA, CatBoost significance variable, ALE, and PDP.

Figure 9 depicts that SHAP presents the dependence
graph that is a scatter plot of the SHAP value of a
parameter with other parameters. The colour in Fig. 9
reflects the interaction impact of other variables with
horizontal axis values. It can be seen that most of them
have non-linear behaviour. The effect of D, on H, is
shown in Fig. 9(a). It is evident that for all values of H,;
except 7 m, The SHAP value increases with the
increment in D,. Besides, the positive effect mostly can
be observed in the case of D, and D,, as shown in

Fig. 9(d). Figure 9(g) demonstrates that D, almost
high
G *o..“‘o-*.ﬁ ote ows e oo em
D, pemate -
D, -+c--—- P
H, - 4o~ E
H, *-"- @
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H, +
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negatively affect the SHAP value for input parameter S.
The positive effect of D, is increased with the increment
in G, based on Fig. 9(h). The remaining plots show that
for the other variables, the non-linearity is increased. It
has to be noted that PDP and ALE plots cannot be used
for such inferences.

4.2 Displacement to self-weight ratio prediction

The second output is the maximum displacement to the
self-weight ratio of the gridshell. The self-weight of a
gridshell can be defined as:

W= ipAilia
i=1

where /; refers to the length of the member; 4; denotes the
cross-section of the member; p represents the density of
the material. The displacement can be measured as:

[12 0 20 .2
Xty +z,

where x;, y,, z; are the displacement along the x-, y-, and z-
axis. Thus, the second output can be defined as bellow:

(28)

d = (29)

dimax
L&) == (30)
where d,, is the maximum nodal displacement.
4.2.1 Hyper parameters fine-tuning

The hyper parameters selection of each model has a
significant impact on the performance of the model. The
optimum hyper parameters are chosen by a combination
of grid search method and 10-fold CV to prevent
overfitting. Table 5 presents optimum values of each
hyper parameters.
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Fig. 8 SHAP plots for f,(x) of gridshells: (a) Shapely value; (b) global importance factor.
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Table 5 Optimal hyper parameters for f,(x)
model optimal configuration
LR N/A
RR alpha =100
SVM kernel = RBF, C =40, degree = 1, epsilon = 0.01
KNN leaf size =20, n_neighbors=1,p=1
DT max_depth = 8, min_samples leaf = 1, min_samples_split =2, random_state =2
RF max_depth =9, max_features = 3, n_estimators = 1000
AdaBoost n_estimators = 200, random_state = 2, learning_rate = 0.1
XGBoost colsample bytree = 0.9, learning_rate = 0.08, max_depth = 4, n_estimators = 1000
CatBoost depth = 6, iterations = 2000, learning_rate = 0.05
LightGBM colsample_bytree = 0.9, learning_rate = 0.5, max_depth = 5, n_estimators = 1000

4.2.2 Sensitivity analysis

The impact of influencing variables on f,(x) is
investigated by performing the SA, as shown in Table 6
and Fig. 10. The total-effect indices are higher than first-
order indices of KNN and DT models; thus, the variables
are correlated in these two models. It is shown that the D,
is the most sensitive variable for all ML models. Thus,
the low accuracy might be obtained in the prediction of
outputs when the influence of this variable is not
considered. H, has the minimum influence, implying that

this parameter have relatively little impact on f,(x). There
are not significant differences in the effect of remaining
design parameters. Therefore, a dataset can be prepared
considering the significant variations of D, for increasing
the accuracy and decreasing the number of samples in
future studies.

4.2.3 Regression models for displacement to self-weight
ratio prediction

Figure 11 demonstrates the regression plots of ML
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Table 6 First-order and total effect sensitivity indices for f,(x)
regression model S H, H, H, D, D, D, S G y
LR S; 0.0000 0.0014 0.0301 0.0903 0.7737 0.0529 0.0043 0.0467 0.9997
St 0.0001 0.0013 0.0292 0.0899 0.7743 0.0529 0.0044 0.0466 0.9992
RR S; 0.0000 0.0003 0.0313 0.0718 0.8100 0.0563 0.0177 0.0102 0.9979
St 0.0001 0.0003 0.0307 0.0715 0.8122 0.0563 0.0179 0.0101 0.9994
SVR S; 0.0008 0.0002 0.0134 0.0780 0.7937 0.0695 0.0017 0.0286 0.9862
St 0.0020 0.0018 0.0148 0.0789 0.8030 0.0732 0.0060 0.0283 1.0084
KNN S; 0.0122 0.0251 0.0453 0.0317 0.4166 0.0517 0.0313 0.0366 0.6508
St 0.2264 0.2290 0.2656 0.2516 0.7916 0.2504 0.2624 0.1860 2.4634
DT S; 0.0020 0.0065 0.0089 0.0496 0.4186 0.0112 0.0319 0.0523 0.5813
St 0.0070 0.0367 0.1076 0.3780 0.7181 0.0342 0.0964 0.2282 1.6066
RF S; 0.0020 0.0128 0.0347 0.0620 0.5918 0.0942 0.0793 0.0361 0.9133
St 0.0054 0.0418 0.0491 0.0812 0.7003 0.1193 0.1257 0.0422 1.1653
AdaBoost S; 0.0032 0.0111 0.0704 0.0358 0.5738 0.0589 0.0462 0.0372 0.8369
St 0.0031 0.0617 0.1842 0.0688 0.7483 0.1094 0.0924 0.0904 1.3587
XGBoost S; 0.0129 0.0185 0.0488 0.0322 0.5824 0.0290 0.0169 0.0457 0.7868
St 0.0203 0.0982 0.0965 0.1283 0.7807 0.0677 0.0382 0.0590 1.2893
CatBoost S; 0.0025 0.0089 0.0412 0.0660 0.6145 0.0318 0.0323 0.0733 0.8708
St 0.0274 0.0588 0.0687 0.1142 0.7656 0.0574 0.0682 0.0873 1.2480
LightGBM S; 0.0057 0.0015 0.0164 0.0806 0.6205 0.0399 0.0181 0.0500 0.8331
Sr 0.0197 0.0279 0.0774 0.1301 0.7491 0.0592 0.0600 0.0862 1.2099
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Fig. 10 Sensitivity analysis of f;(x): (a) first-order; (b) total-effect.

S G

models for f,(x) that confirms the high efficiency of the
CatBoost model. Table 7 presents the average RMSE and
R? obtained by 10-fold CV for assessing the performance
of the ML algorithms. The outcomes indicate that the
CatBoost method is the best model with the lowest RMSE
(0.120) and highest R’ (0.966). As a result, the CatBoost
approach is chosen in this paper to investigate the
influence of various interpretable ML algorithms.

4.2.4 Interpretable methods for displacement to self-
weight ratio prediction

Figure 12 displays the importance factor generated from

S G

H H, H, D D, D
(b)

the CatBoost model, with D,, D,, and D, being the most
significant variables impacting f,(x). However, f,(x) is
slightly influenced by the input variables H,, G, and H,.
Figures 13 and 14 illustrate the direction of the impact
of the parameter and the threshold where the estimation
variations can be investigated with PDP and ALE graphs,
respectively. Even for correlated behaviour, The ALE and
PDP plots reveal comparable tendencies. It can be seen
that the input factors, with the exception of D,, D,, and G,
have a minor impact on f,(x). The relationship between
/f>(x) and D5 is non-linear, and there is a rapid change in
the f,(x) value when D, surpasses the mean value. The
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Fig. 11 Regression plot of f,(x): (a) LR; (b) RR; (c) SVR; (d) KNN; (e) DT; (f) RF; (g) AdaBoost; (h) XGBoost; (i) CatBoost;

(j) LightGBM.

Table 7 Performance of ML based regression models for f(x)
prediction of gridshells

regression method average R average RMSE
LR 0.649 0.372
RR 0.612 0.396
SVR 0.719 0.332
KNN 0.948 0.140
DT 0.869 0.220
RF 0.941 0.159
AdaBoost 0.788 0.290
XGBoost 0.961 0.129
CatBoost 0.966 0.120
LightGBM 0.931 0.164

J>(x) is almost identical when H; exceeds 75%. The f,(x)
decreases linearly when the S value surpasses the middle
value based on the PDP. Generally, H,, H;, D, D;, and G
have positive effects, while D,, and S negatively affect
J>(x). Although, Fig. 12 ranks the features, the impact of
the features can only be determined by the ALE and PDP
plots. However, ranking the features on the basis of the
ALE or PDP plots is extremely challenging.

Figure 15(a) depicts the overall SHAP values. Red
colour represents positive effect, while blue colour
specifies negative effect. The positive effect refers to an
increase in prediction as the input factor is increased. D,
has the greatest negative effect in forecasting f,(x), while

feature importance

0 5 10 15 20 25 30 35 40
relative importance

Fig. 12 CatBoost importance factor for f,(x).

D, has the greatest positive impact in forecasting f,(x), as
shown in Fig. 15(a). Generally, D,, S, and H, negatively
predict f,(x), while D,, D, H;, G, and H, positively
predict f,(x). Figure 15(b) depicts the global importance
of the features on the basis of the mean SHAP wvalues in
forecasting f,(x). In predicting f;(x) of gridshell structures,
D, is the most important factor, followed by D, and D;,
and H, is the least important factor. The global
significance feature in CatBoost determines /; as the
fifth most significant feature, while SHAP detects /7, as
the fifth most important feature due to the basic
difference in importance factor assessment. SHAP
employs the significance of input features in the output
estimations, while CatBoost implements the significance
of input features in the construction of decision trees.
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Fig. 15 SHAP plots for f,(x) of gridshells: (a) Shapely value; (b) global importance factor.
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However, the top features selected by SHAP and
CatBoost are identical.

The partial dependence plots of SHAP provide
extensive insights into the relationships of input
parameters, as shown in Fig. 16. It can be seen that the
correlations between the features are mostly non-linear.
Figure 16(a) displays the effect of SHAP value on H, and
H, variables. It is evident that for /7, more than 6 m, The
SHAP values of H, increase with an increment in f;.
However, the trend is reversed for /, less than or equals
6 m. Furthermore, the value of SHAP of /, is higher for
more D, when /), is less than or equals 6 m, while the
trend is reversed and results in negative SHAP values in
the case of A, more than 6m, as shown in Fig. 16(b).
Figure 16(c) demonstrates that the SHAP wvalue is
decreased as the H; is increased. The remaining plots
show that the other variables frequently interact linearly.

The results indicate that one interpretability approach is
not sufficient to entirely explain the behaviour of ML
approaches and a collection of interpretable methods is
required to comprehensively investigate ML behaviour.

5 Conclusions

This study proposes research on the development of ML

Front. Struct. Civ. Eng. 2022, 16(10): 1249-1266

approaches for structural performance prediction of
GFRP elastic gridshells subjected to self-weight. To this
aim, several ML algorithms, namely LR, RR, SVR, KNN,
DT, RF, AdaBoost, XGBoost, CatBoost, and LightGBM,
are investigated. FEA of 400 gridshell structures are
conducted for dataset preparation to be utilized for the
training and testing of the ML algorithms. The input to
each ML model consists of eight features, including three
height factors, three width factors, length, and grid size.
Besides, the output consists of two variables, including
the stress and the displacement to self-weight ratio. The
best hyper parameters for ML algorithms are determined
by a combination of grid search approach and the K-fold
CV algorithm. The SA is performed to investigate the
influence of input variables on the output and the results
are obtained as first-order (S;) and total-effect (S;)
sensitivity indices. Consequently, little differences are
observed between S; and S; for most of the ML models,
indicating that there is no interaction between input
variables. As a result of comparative study on various ML
models, the CatBoost model possesses the highest
accuracy with R? values of 0.930 for Jf1(x) and 0.966 for
f>(x) and RMSE values of 1.124 for f(x) and 0.120 for
f>,(x). LR and RR models shows the lowest accuracy for
both outputs.

As a result,

the CatBoost is implemented for
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interpretable approaches. Explaining the prediction of
ML models is essential for the proper use of these
methods. This paper describes different ML method
explanation approaches, including the PDP, ALE, and
SHAP. The interpretable ML approaches rank the input
features and explain the trend in the estimation. It should
be highlighted that a single method is not enough for all
interpretability problems; however, SHAP can comprehen-
sively explain prediction models and the importance of
input parameters. In general, SHAP fulfils more criteria,
which is a reason for its popularity. On the other hand,
SHAP is unable to provide an answer to the estimation
threshold or how to decrease or increase a specific
prediction by input factors modifications. PDP and ALE
approaches are able to overcome these drawbacks.
However, the ALE approach is an unbiased alternative
and faster than PDP. As a result, PDP, ALE, and SHAP
approaches are required for comprehensive interpretable
ML models. SHAP values reveal that the most significant
variables are G and D, for fi(x) and f,(x), respectively,
with negative impacts on estimating the results. The most
significant features that are obtained by the SA and the
feature importance plots of the CatBoost method, are
similar to those obtained by the SHAP method.

Although the conclusions drawn from this study are
based on gridshell structures, the method utilized in this
paper can be implemented in structural performance
estimation for other types of structures. Future research
will focus on expanding the proposed methodology for
structural performance prediction of gridshell structures
considering the complex environmental loads.
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