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ABSTRACT Due to recent advances in the field of artificial neural networks (ANN) and the global sensitivity analysis
(GSA) method, the application of these techniques in structural analysis has become feasible. A connector is an
important part of a composite beam, and its shear strength can have a significant impact on structural design. In this
paper, the shear performance of perfobond rib shear connectors (PRSCs) is predicted based on the back propagation (BP)
ANN model, the Genetic Algorithm (GA) method and GSA method. A database was created using push-out test test and
related references, where the input variables were based on different empirical formulas and the output variables were the
corresponding shear strengths. The results predicted by the ANN models and empirical equations were compared, and
the factors affecting shear strength were examined by the GSA method. The results show that the use of ANN model
optimization by GA method has fewer errors compared to the empirical equations. Furthermore, penetrating
reinforcement has the greatest sensitivity to shear performance, while the bonding force between steel plate and concrete
has the least sensitivity to shear strength.
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1 Introduction research on PRSCs can be traced back to the 1980s, when

the fabricating process of PRSCs was proposed [11]. It

The use of steel-concrete composite structures has
increased in bridge structures due to their ability to take
full advantage of the tensile strength of steel and the
compressive strength of concrete [1-3]. Shear connectors
are the key components for connecting different
components and making them work together [4,5].
Commonly used shear connectors include section steel
connectors, stud connectors and perfobond rib shear
connectors (PRSCs). Compared with traditional
connectors, PRSCs have the characteristics of easy
processing, excellent mechanical properties and good
fatigue performance.

PRSCs consist of steel sections, perforated steel plates,
penetration reinforcement and concrete, and each of the
components could affect its shear strength [6—10]. The
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investigated the effect of perforated plates with different
hole diameters on the bearing capacity. With the further
research and development [12-15], it is found that the
shear strength increases with the increase of the number
of holes, concrete strength and reinforcement ratio. Zheng
et al. [16,17] investigated the effect of hole shape on
bearing capacity based on 72 push-out experimental
specimens. PRSCs are key components of the composite
beam and their shear capacity affects the structural design
of the composite beam. However, most of them are based
on the empirical equations obtained by linear regression
of experimental data, and the accuracy of the calculation
is greatly affected by the specific nature of the
experiment [6—12]. Although the finite element method is
widely used in forecasting, it still has shortcomings such
as long implementation period, large output variance and
large data demand.
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Mathematical tools like artificial neural networks
(ANN) help to solve complex questions without
reproducing the phenomenon under study [18-25]. Due to
recent developments in artificial intelligence and
computer technology, the application of these techniques
in structural analysis has become possible [26-30].
Hamdia et al. [31] employed genetic algorithm (GA)-
based integer-valued optimization for two machine
learning (ML) models and used this method to predict the
fracture energy of polymer/nanoparticle composites
(PNCs). Using an adaptive network-based fuzzy
inference system (ANFIS) as a modeling technique,
researchers predicted the shear strength of various
connector types and analyzed the degree of influence of
different variables on the bearing capacity [32,33]. With
the continuous development of ANN, researchers have
also started to use ANN models to calculate the bearing
capacity of PRSCs [34]. Allahyari et al. [35] proposed a
novel ANN-based numerical method to calculate the
shear strength of connectors. The tests show that the
ANN model has less computational error compared to the
existing empirical equations. The shear strength predic-
tion ability of different artificial intelligence methods for
PRSCs was investigated by Khalaf et al. [36]. It was
found that employing the GA method improved the
accuracy of the ANN model through optimizing the
removal of redundant variables that reduce the model’s
efficiency. Global sensitivity analysis (GSA) can analyze
the impact of multiple parameters on the overall results of
the model, and analyze the impact of individual
parameters and their interactions on the results [37-39].
The GSA method could analyze the effect of different
variables on the shear strength of concrete structures [40].

In summary, a great number of studies have been
conducted to investigate the bearing capacity of PRSCs
based on experimental and numerical simulation analysis.
However, several issues still need to be solved, which are
summarized as follows.

1) Compared with empirical equations, artificial
intelligence models have higher prediction accuracy.
However, fewer researchers have applied different ANN
models to calculate the shear bearing capacity of PRSCs.
It is necessary to study the prediction accuracy of
different neural network models on shear bearing
capacity resistance and select the appropriate prediction
method.

2) The calculation results are mainly affected by the
adopted method and the selected parameters, while the
existing ANN models cannot quantitatively determine the
influence of each selected parameter on the shear
property. The GSA method can quantitatively analyze the
role of each factor, but requires a large amount of data.
Therefore, it is necessary to couple neural networks with
the GSA method to choose the essential input parameters
to improve the prediction accuracy.
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The shear strength of PRSCs was investigated in this
paper based on experiments, ANN models and GSA
method. First, the roles of the number of holes and of the
reinforcement on the shear property of PRSCs were
investigated by nine push-out test specimens. The
experimentally obtained shear strength was used as part
of the ANN model test set to verify the prediction effect.
Then, the influencing factors of shear strength were
determined by considering previous references and
empirical equations, and the ANN models with different
input parameters were established. The computational
accuracy of the ANN model was investigated by
comparing the prediction results of different ANN models
with empirical equations. Finally, a GSA method based
on the ANN model was introduced, and each factor’s
sensitivity to shear strength was determined.

2 Experimental investigation

2.1 Specimens design

Nine specimens were fabricated according to Eurocode 4
[41] and DB 41/T 696-2011 standard [42], as shown in
Fig. 1 and Table 1. Nine specimens, numbered N12-1
—N16-3, were prepared, where “N”, “12” and “1”
denoted normal strength concrete, diameter of penetrating
rebars and number of rib holes per connector,
respectively. The H-section steel was 300 mm % 300 mm x
10 mm X% 15 mm, and the concrete slab was 60 mm x
600 mm x 150 mm. The type of steel plates were all
Q345. The yield strength, ultimate strength and modulus
of elasticity of the steel plates were 345 MPa, 570 MPa
and 200 GPa, respectively. The diameter of the hole in
steel plate was 40 mm. Penetrating rebars of length 450 mm
were placed in each hole. The steel bars were all HRB400
type, with a yield strength of 400 MPa, ultimate strength
of 570 MPa and elastic modulus of 200 GPa.

2.2 Loading setup and measurements system

All specimens were tested on a hydraulic testing machine
with a capacity of 5000 kN. Left and right symmetrical
displacement gauges were set at the bottom of the
concrete slab and H-beam to detect the relative slip
between the slab and the beam. The loading device is
shown in Fig.2. During the test, the loading was
performed by displacement control (1 mm/min) until the
specimen failed.

3 Analysis of test results
3.1 Failure modes

Due to the high strength of the steel plate used in the test,
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Fig. 1 The shape and size of the specimens (mm).

Table 1 Parameters of the specimen

specimens /. (MPa) d, (mm) n
N12-3 53.7 12 3
N16-3 53.7 16 3
N20-3 53.7 20 3
N12-2 53.7 12 2
N16-2 53.7 16 2
N20-2 53.7 20 2
N12-1 53.7 12 1
N16-1 53.7 16 1
N20-1 53.7 20 1

Note: f; is the compressive strength of concrete; d, is the diameter of
penetrating rebars; n is the number of rib holes per connector.

the steel plate was not damaged in the experiment.
Damage models of specimens in this paper are mainly
divided into two types, as shown in Fig. 3. When the
diameter of the perforated reinforcement and the number
of holes were small, such as was the case for specimens
N12-1 and N16-1, the concrete in the hole was damaged
first, and then the reinforcement fractured. When the
diameter of the reinforcement in the hole or the number
of holes was large, longitudinal splitting damage occurred
in the concrete. During the loading condition, the cracks
in the core concrete spread outward to the surface of the
concrete slab, forming longitudinal splitting cracks along
the location of the perforated steel plate, which rapidly
developed and penetrated the concrete slab.

The crack distribution of the specimens is shown in
Fig. 3(a). When the number of holes was small and the
diameter of the penetrating reinforcement was small, the
damage was mainly caused by the concrete tenons and
reinforcement, so there was no significant damage to the
external concrete slab, as shown for specimen N12-1.
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Fig.2 Loading device.

When the bearing capacity in the hole of the perforated
steel plate was large, the damage mainly occurred to the
external concrete slab, as shown in the case of specimen
N12-3. The main damage pattern of the reinforcement is
shown in Fig. 3(b). With increase of the number of holes
and the diameter of the reinforcement the damage of the
reinforcement became less obvious.

3.2 Load-slip behavior

Taking the average value of displacement meter
measurement on both sides as the horizontal coordinate
and the load value of the testing machine as the vertical
coordinate, the load-slip curve of the specimens is shown
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in Fig. 4. As in other studies [2,3], the failure process of
PRSC could be divided into four stages: elastic stage,
plastic stage, yield strengthening stage, and failure stage.
In the initial stage of loading, there was almost no relative
sliding between the H-beam and the concrete slab. The
stress in the specimen was quite small and the load
increased linearly and rapidly in the elastic phase. After
that, the displacement in the specimen gradually
increased with the increase of the load. Cracks in the
concrete gradually developed and the slope of the
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load-displacement curve decreased, at which point it was
in the plastic phase. With further increase of the load, the
growth rate of the load-displacement curve further
decreased and entered the yield strengthening stage.
Under the action of the load, a certain degree of
deformation of the reinforcement and perforated steel
plate occurred, and the stiffness of the joint was reduced
accordingly. When the load reached the limit value, the
connector failed and entered the failure stage. Similarly,
the diameter of the reinforcement and the number of

(b)

Failure mode: (a) damage of concrete slabs; (b) damage of reinforcement.
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Fig. 4 Load-slip curve: (a) N12; (b) N16; (c) N20.
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holes in the perforated steel plates did not change the
trend of the load-displacement curve, but affected the
deformation that could be tolerated at different stages.
The more the diameter of the reinforcement or the
number of holes in the perforated steel plate, the more the
structure was subjected to loads in the elastic stage. The
larger the diameter of the reinforcement, the bigger the
relative slip of the structure. Similarly, the more the
number of holes, the bigger the relative slip.

3.3 The shear strength

The shear strength of the specimen is shown in Fig. 5. As
the number of holes increased, the ultimate load on the
specimen increased. The shear strength increased
continuously with the increase in the number of holes.
Compared to specimen N12-1, the shear strengths of
specimens N12-2 and N12-3 increased by 78.45 and
159.78 kN, respectively. In contrast to specimen N16-1,
the shear strengths of specimens N16-2 and N16-3
increased by 178.24 and 310.91 kN, respectively. As
compared to specimen N20-1, the shear strengths of
specimens N20-2 and N20-3 increased by 141.9 and
215.3 kN, respectively. Similarly, as the diameter of the
reinforcement in the hole increased, the ultimate load
increased.

4 Calculation method

4.1 Traditional bearing capacity calculation model

To determine the factors affecting shear property,
previous research references were further investigated.
Scholars have investigated the shear bearing capacity
mechanism of PRSCs and have proposed empirical
equations for shear bearing capacity based on their
respective tests. Considering the effects of concrete at the
end-bearing zone, transverse reinforcement and concrete
in the hole, Egs. (1) and (2) have been proposed [12]:
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Fig. 5 The ultimate load of the specimens.
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¢o = 0.59A /1. + 1.233A, f, +2.871nD* \[f., (1)
qu = 4.5hy 1. f. +0.91A, £, +3.31nD* \/f,, 2)

where ¢, is predicted shear strength of PRSC (kN), 4.,
concrete shear area (mm?), A, is total area of bars (mm )
Jy s yield stress of the bars (MPa) n is the number of
holes D is the diameter of hole (mm), f, is the
compressive strength of concrete (MPa), A, is connector
height (mm), ¢, is connector thickness (mm). Ahn et al.
[43] has proposed that the influence of transverse
reinforcement on the shear bearing capacity mainly
comes from the perforating reinforcement in the hole.
Equation (2) was modified and the following formula was
proposed by Ahn:

qu =314t fo+1.21A,, f,. +2.980D*\f.,  (3)
where A4 is area of bars in holes (mm?), £, is yield
stress of bars in holes (MPa). Medberry :smdy Shahrooz
[44] believed that the bonding force would also affect the
shear capacity of the structure, and proposed the
following formula:

gu = 0.747bh [ +0.413b;L +0.94, f, + 1. 66nn( ) N
(4)

where / is slab length in the front of connector (mm), b is
concrete slab thickness (mm), b; is width of the steel
section flange (mm), L, is contact length between the
concrete and steel section (mm). Yang and Chen [45]
modified the calculation of concrete in holes and took
into account the effect of distance between holes on
bearing capacity:

P, =5.15hgt.f.+5.41n(Ap -
» (n>2)

Atr,r)f:).57 + 2'2477Atr,rf;/,r s

nD
T
&)
where 7 is the reduction factor, e is the distance between
holes. Verissimo et al. [46] proposed Eq. (6) to calculate
the shear strength:

h
G :4.04fhsctsc fo+2.3TnD* \f. +0.16A 1.

Atr
+31.85x10°—

cc

(6)

In summary, the shear bearing capacity of PRSCs is
mainly divided into the following parts: compressive
bearing capacity of concrete at the end-bearing zone,
shear bearing capacity of concrete at the end-bearing
zone, shear bearing capacity of concrete in holes, yield
strength of transverse reinforcement (including
perforating reinforcement in the hole and other transverse
reinforcement) and the bonding force between steel plate
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and concrete. The number of perforated plates () also
affects the shear strength. According to the above
equation, a, f;, bh, hyt., A, bl n, D, n, @, Atrfy and
Ay, fy, were selected as the influencing factors of shear
capacity in this paper, as shown in Fig. 6.

To verify the reliability of the calculation equation, 107
data were selected according to this paper and previous
references [6—12,16,36]. The statistical parameters of the
data are shown in Table 2. Where, ¢, is the experimental
value of shear strength, uis average value, SD is standard
deviation, CV is coefficient of variation. The values of SD
and CV are both large, indicating that the data of each
influencing parameter is scattered.

The error distribution of each equation is shown in
Table 3. The calculation error of the equation is
significant. The average error of Eq. (1) is 93%, and only
59% of the calculated results have an error rate less than
100%. The average error of Eqs. (2) and (4) is greater
than 50%, and the error of most of the calculated results
is greater than 50%. The average errors of Egs. (3) and
(5) plural greater than 30%, and the errors of some
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calculation results plural more than 50%. In brief, the
equations proposed for calculating the shear capacity of
PRSC depend on their tests and do not fully consider the
effects of various factors. Therefore, it is necessary to
find a new calculation method.

4.2 Computational method based on ANN model

The ANN model is a calculation model based on the
structure and function of a biological neural network. The
ANN model is shown in Fig. 7. Due to the powerful
ability of ANN to learn complex relationships when
functional relationships are not transparent, using this
method in numerical simulation and engineering problem
solving has attracted more and more interest. This paper
chooses back propagation (BP)-ANN and BP-ANN based
on genetic algorithm optimization (GABP-ANN) for
calculation. BP-ANN is a multi-layer feedforward
network trained by error back propagation.

GA is a parallel stochastic search optimization method
proposed based on the simulation of genetic mechanism

&
Fig. 6 Parameters of the PRSC.

Table 2 Test data statistics

parameter max min u SD cv
@ 1 0 0.8 0.4 0.49
/. (MPa) 70.3 20.91 40.25 13.34 0.33
bh (mm’) 80000 15000 37745.84 16508.99 0.44
hyl,, (mm’) 4800 774 1868.58 933.54 0.5
biL, (mm’) 210000 96000 131550.47 26449.42 0.2
n 4 0 2.14 121 0.57
D (mm) 90 0 47.76 17.52 0.37
n 1 0.3 0.77 0.21 0.27
@, 2 1 1.31 0.46 0.35
Ay fy N) 1281769.79 0 424540.92 312684.08 0.74
Ay fyr N) 738902.58 0 104737.55 146890.91 1.4
q, 2066.7 179.4 589.9 362.22 0.61
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Table 3 The absolute error distribution of the equation

absolute error (%) Eq.() Eq.(2) Eq.(3) Eq.(4) Eq.(5)
0-10 9% 20% 18% 12% 19%
10-20 7% 14% 13% 10% 25%
20-30 13% 9% 13% 9% 15%
30-40 7% 7% 18% 12% 12%
40-50 7% 6% 23% 5% 4%
50-60 1% 7% 12% 5% 5%
60-70 3% 4% 3% 4% 5%
70-80 3% 6% 0% 5% 3%
80-90 3% 6% 0% 4% 5%
90-100 6% 7% 0% 4% 0%
average 93% 55% 35% 59% 31%

Fig. 7 ANN model.

in nature and biological evolution theory. GABP-ANN
consists of three parts: determination of neural network
structure, optimization and prediction. The essential idea
is that the initial weights and thresholds of the network
are represented by individuals, and the prediction errors
of the BP-ANN are used to represent the fitness values of
the individuals. Finally, the optimal initial weights are
found by selection, crossover and variation operations.
The purpose of GABP-ANN is to improve the initial
weights and thresholds of the network by GA, so that the
optimized model can make better predictions.

In order to determine the appropriate neural network
model, different models are compared. The specific
calculation process is shown in Fig. 8. The computational
process mainly includes selection of neural network,
selection of input parameters, comparison of neural
network models, parameter sensitivity analysis based on
the ANN models and selection of final neural network.

When the number of nodes in the input layer and output
layer is fixed, choosing the appropriate number of layers
and the number of nodes in the hidden layer has a great
impact on the performance of the neural network. In order
to better compare the hybrid algorithm in this work with
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the single BP-ANN, a single hidden layer was used for
the prediction model of both algorithms. The number of
neurons in the hidden layer is determined following a
trial-and-error procedure [47], the accuracy of the ANN
was tested by comparing the different numbers of neurons
in the hidden layer and the best number of neurons with
the largest R output was selected for further
investigation. Therefore, the optimal number of neurons
was different for the different models investigated in this
study. The hidden layer neuron transfer function used the
S-shaped tangent function “tansig”, and the output layer
neuron transfer function used the S-shaped logarithmic
function “logsig”. The model was trained with the
function “trainlm”. During training, the minimum error of
the training target was 1.0 x 107>, the maximum number
of training steps was 10000, and the learning rate was
0.01. The behavior of a GA was controlled by a set of
hyperparameters, such as population size and mutation
rate. With a small population size, it is clear that
inbreeding will occur, producing pathological genes that
prevent the population from evolving to produce the
desired population size as expected by the model
theorem. If the population size is too large then the results
are difficult to converge and wasteful of resources, with
reduced robustness. If the mutation probability is too
small, the diversity of the population decreases too
quickly, leading to rapid loss of effective genes. If the
mutation probability is too large, although the diversity of
the population can be ensured, the probability of
disruption of higher order patterns increases. Similar to
the variation probability, when the crossover probability
is too large, it tends to destroy the existing favorable
pattern, and so increasing the randomness and missing the
optimal individuals. Too small crossover probability
cannot effectively update the population. If the
evolutionary algebra is too small, the algorithm does not
converge easily and the population is not yet mature. If
the evolutionary algebra is too large, the algorithm is
already proficient or the population is too early to
converge, and there is no point in continuing the
evolution, which will only increase the time expenditure
and waste of resources. Based on the above issues, the
values of the parameters are shown in Table 4.

The selection process of input parameters is shown in
Subsection 4.1. Among them, 90 data are chosen as
training data, and 22 data are chosen as test data. The data
is divided based on the condition that the training and test
datasets have the same statistical distribution, rather than
being divided randomly. The data statistics are shown in
Table 5.

To judge the effect of each parameter on shear strength,
the input parameters are combined according to Egs. (1)-
(5) to establish different ANN models. The input
parameters of the BP-0-BP-5 ANN models and
GABP-0-GABP-5 ANN models are directly combined
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Fig. 8 Calculation process of ANN.

Table 4 Parameters of the GA

Table 5 Test data statistics of training data and testing data

population crossover mutation evolutionary
size probability probability algebra
50 0.6 0.05 100

from the 11 parameters determined in Subsection 4.1. To
decrease the number of input variables, the bearing
capacity of PRSC is expressed by combining 11
parameters based on empirical equations. The combined
parameters based on the equations are used as input
parameters for the BP-6-BP-11 ANN models and
GABP-6-GABP-11 ANN models. Input parameters are
shown in Table 6.

4.3 Global sensitivity analysis—ANN model

Different input parameters may change the output results
of the ANN model, so the degree of influence of the input
parameters on the shear strength needs to be quantified.
Sensitivity analysis is frequently used to determine the
importance of input variables and to describe their effects
on the dependent variable. Sensitivity analysis is divided

parameter training data testing data

max min u max min u
@ 1 0 0.8 1 0 0.84
/. (MPa) 703 2091 3523 703 2091 4431
bh (mm?) 80000 15000 37235 80000 15000 33748

hyt, (mm®) 4800 774 1867 4000 774 1876
bl (mm’) 210000 96000 131525 210000 96000 137348

n 4 0 2.15 4 0 2
D(mm) 90 0 47.11 60 0 46.23
n 1 044 078 1 0.44 0.8
@, 2 1 1.31 2 1 1.33
Ay fy N) 1281769 0 433547 915678 0 426456
Ay fyr N) 738902 0 103452 376461 0 111245
9. 2066.7 1794  593.66 11183 1794 53556

into local sensitivity analysis and GSA. GSA can analyze
the effect of multiple variables on the overall results of
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Table 6 ANN models

model input parameters

BP-0 a’fc’fco 5’ bh’ hsctsc’ bil‘c’ n, D, s ap’ Atrf’ Atr,rfy,r
GABP-0

BP-1 S bh,n, D, @y, Ay fy

GABP-1

BP-2 a fc?]c ) %c @c’ n, D’ p’ A[rj)l/
GABP-2

BP-3 @ fufa s @c %c’ n, D’ p’ Atr,rj)l/,r
GABP-3

BP-4 @ [, bh, b, n, D, @y, Ay £y,
GABP-4

BP-5 @, fc’f ) %L @c’ n, D 7, ap’ Atr rfy 'l Atrr
BP-6 abhfco-s’ bch’ ahsctsc féﬁ nszcO 5’ Atrf e Atr,r- y.r’ ap
GABP-6

BP-7 abh £2°, nD* £, 4,,. >

GABP-7

BP-8 ahyty fo D [, Ay fys @,

GABP-8

BP-9 ahsctsc f’ nDZ /‘0 ° Atr r/y,r p
GABP-9

BP-10 abh [, bL, A fy, nD' [,
GABP-10

BP-11 ahsctsc fc’ T](07851’ZD2 - Atr,r)fco-ﬂ’ nAtr,r ¥, ap

the model, and determine the effect of each variables and
the influence of their interaction on the result.

This paper uses Sobol’s method, a variance-based
sensitivity analysis method. Sobol’s method can be used
for non-linear, non-monotonic mathematical models with
reliable results. The method is able to determine
significant variables and assess the degree of their
influence on the corresponding results. A critical
characteristic of this method is the randomized treatment
of the input variables. The core idea is based on the
decomposition of variance, decomposing the function
model into individual parameters and combinations
between parameters, and performing sensitivity analysis
of parameters by calculating the output variance of
individual input parameters or a set of input parameters.

Assume that the model is Y = f(x), x=[x,x5,...,X%].
x is a data set established based on Latin hypercube
sampling and a neural network model, the upper and
lower limits of each parameter are determined according
to Table 5. f{x) is as follows:

f(x) f0+Zf(x)+ D hx)+

I<i<j<k

+ fio k(X X, X0, @)
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where Z f:(x;) is the sum of the main effect functions,

., X;) 1s the sum of

=1
and Z ﬁ/(xi’xj)+"'+ﬁ2 k(X x,.

1<i<j<

all intoractions. If the above equation holds, the following
characteristics must be satisfied:

1
J‘Ofiw,ig,mi,‘ (Xits e e es Xin) dxij =0,1<j<n (®)

The Sobol decomposition term in Eq. (7) can be
obtained:

fo= | feax ©

fi= [ o] rde - g (10)

foox)= [ o[ F@ae = = f - £ ). A

f Foodx.s
is integrating with respect to all variables, except x;. The
total variance (V) is calculated as follows:

where f{(x,) represents the marginal effect, f

V=Varl[fw] = [ fode-f = E[f] - ElhT,
(12)
where E[‘] is expected value, Var[:] is variance. The

partial (V;_,;) and total variances can be calculated as
follows:

Lyeemsly

1 1
V, ,«,.=f f R (e )d, odx, 1<y <K,
L,
(13)

(14)

V=Zvi+ Z Vit +Via o

i=1 1<i<j<n

The Sobol indices including first-order (S,) and total-
order (St,) is done with the following equations:

Viis_Var(f(x) = E.[Var., (f(x) | x)]

Si=—= Var(f(x)) :

(15)

V. Var, [E, (f(x)] x.)]
v Var(f(x)) ’

Sp=1 (16)

where V_; is the variance of all input parameters except
ith, x_; is all but the ith input factor. S; is the main effect.
Sr; is all contributions of the input variable to the output
variance. GSA methods provide valuable insights, but
their application needs large amounts of data. To solve
the problem of insufficient data, a large amount of
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reliable data is generated by neural networks. Instead of
functional equations, ANN models are used to generate
the required independent variables.

5 Analysis of prediction results

5.1 Prediction results based on ANN model
The network performance for the training and testing
datasets of the neural network is shown in Fig. 9. The
training error drops sharply in the early iterations and
then stabilizes. Training can continue with negligible
improvement. After the error in the test set is reduced,
training is allowed to proceed for another 10 iterations, in
order to prevent overfitting. The connection weights were
chosen to be at the lowest mean squared error of the test
set.

The ANN model prediction results of the testing data
(for which each model was reinitialized 50 times) are
shown in Tables 7 and 8. MAFE is Mean Absolute Error, it

104
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represents the mean of the absolute error between the
predicted value and the observed value. RMSE is Root
Mean Square Error, the larger the error, the greater the
value. The absolute error values of all models do not
exceed 100 kN, the average absolute error rate does not
exceed 20%, the maximum absolute error rate does not
exceed 65%, and the R* is not less than 0.9, which
verifies the accuracy of the prediction results of the
neural network model. Forming multiple influences on
new variables based on empirical equations reduces the
number of input variables but does not significantly
change the prediction results of the neural network. The
prediction results of models BP-0, BP-6, GABP-0 and
GABP-6 outperformed the other models, indicating that
the influencing parameters identified in this paper have
some effect on the shear strength. Comparing the BP and
GABP models of 1, 4, 7 and 10, it can be seen that b; L,
can affect the prediction results, but the effect is small.
Comparing 2, 3, 8 and 9 of the BP and GABP models, it
can be seen that 4, f; and 4, f, . have a relatively large
effect on the prediction results. The accuracy of the

104
—— GABP-6 training —— GABP-6 testing
—— GABP-0 training —— GABP-0 testing
S 1 B
=
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training iterations
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Fig. 9 Comparative convergence analyses of mean squared error in the training and testing datasets: (a) BP model; (b) GABP model.

Table 7 Predicted results of BP model

model MAE (kN) absolute error rate (%) RMSE R
average max min SD
BP-0 46.37 12.31 43.39 0.84 10.53 57.71 0.95
BP-1 55.96 12.06 24.65 1.17 6.35 76.17 0.93
BP-2 61.50 14.27 54.11 0.95 12.87 71.97 0.94
BP-3 64.69 11.08 27.13 1.22 8.82 89.25 0.94
BP-4 92.94 19.90 47.45 2.60 13.57 104.64 0.93
BP-5 73.18 17.06 36.95 1.15 15.43 88.20 0.93
BP-6 44.04 9.30 18.19 1.05 4.65 47.52 0.95
BP-7 71.00 16.43 61.55 1.69 15.01 88.13 0.91
BP-8 68.84 16.01 48.18 1.27 12.63 82.90 0.93
BP-9 94.99 17.60 49.88 1.55 12.43 112.22 0.9
BP-10 84.35 16.52 45.63 0.36 13.24 95.38 0.9
BP-11 81.65 15.35 50.35 0.68 15.53 114.34 0.91
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GABP model is higher than that of the BP model for the
same input variables.
To obtain the best results, 10-fold cross-validation was

Table 8 Predicted results of GABP model
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applied to all models, as shown in Figs. 10 and 11. The
average absolute error rate and RMSE of the prediction
results obtained by the GABP model is always smaller

model MAE (kN) absolute error rate (%) RMSE R
average max min SD
GABP-0 45.22 9.59 31.55 1.42 9.06 60.21 0.95
GABP-1 51.72 11.19 45.78 0.69 12.60 72.63 0.93
GABP-2 53.00 9.73 38.23 0.96 8.10 66.62 0.95
GABP-3 51.27 10.98 26.54 0.54 8.73 66.03 0.96
GABP-4 58.92 13.35 43.54 1.03 11.04 77.94 0.93
GABP-5 47.16 11.68 37.38 0.53 18.53 62.59 0.95
GABP-6 35.97 6.94 14.75 1.09 3.42 40.04 0.98
GABP-7 61.37 13.49 47.80 1.07 13.81 76.50 0.92
GABP-8 56.35 10.15 26.48 1.95 7.70 74.74 0.94
GABP-9 50.11 12.39 24.89 0.76 5.98 57.16 0.93
GABP-10 57.11 13.73 44.29 0.46 9.71 79.96 0.93
GABP-11 75.48 13.17 43.19 0.72 10.23 99.99 0.92
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Fig. 10 Average absolute error rate of 10-fold cross-validation: (a) BP-0—BP-5 ANN models; (b) BP-6-BP-11 ANN models; (c) GABP-
0-GABP-5 ANN models; (d) GABP-6-GABP-11 ANN models.
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Fig. 11 RMSE of 10-fold cross-validation: (a) BP-0-BP-5 ANN models; (b) BP-6-BP-11 ANN models; (c) GABP-0-GABP-5 ANN

models; (d) GABP-6-GABP-11 ANN models.

than that obtained by the BP model, which indicates that
the prediction accuracy of the BP model can be improved
by GA optimization. The average absolute error rate in
the test set of the GABP-6 model ranged from 4.4% to
9.4%, which is much lower than the other models. The
average absolute error rate of the BP-6 model ranged
from 6.8% to 11.9%. In conclusion, the prediction result
of ANN model GABP-6 is better than that of other
models, so this model is preliminarily selected as the
optimal ANN calculation model.

The calculated results from the model and equation are
compared, as shown in Fig. 12. The prediction results of
ANN model GABP-6 were significantly better than those
of the empirical equations. The predicted values of the
model GABP-6 were fluctuated up and down around the
experimental values, and the absolute error rate of all the
prediction results is less than 20%. Equation (2)’s
calculated value is mostly higher than the experimental
value, while Eq. (3)’s calculated value is mostly lower
than the experimental value.

The effect of the parameters on the computational
results of the empirical equation and the ANN model is

30004 Eq ) 6pa 0 2% oy
. i Y
Eq. 3) A 5 P
25004 A Eq. (5) /// //\/ ///_200/9
= * GABP-6 ARy -
£ 2000- AL 7
2 -40%
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£ 1500 x e
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B 1000 =T
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0 T T T T 1
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Fig. 12 Prediction results of GABP-6 model and equations.

shown in Fig. 13. The g./q, of the GABP-6 is close to 1
and does not change significantly with the change of
parameters. The g /q, calculated by Eq. (2) is less than 1
and does not change significantly with the change of
parameters. With the increase of the parameters, the trend
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of g/q, calculated by Eq. (3) is changed significantly.
With the increase of Atrfy, the g /g, of Eq. (3) changes in a
wave shape. With the increase of 4, .,  and nD” 127, the
g./q, of Eq. (3) tends to decrease and the prediction
results become more and more accurate. As abh fco‘5 , bl
and aht, f. increase, the g./q, of Eq. (3) tends to first

SC’sC
increase and then decrease. With the change of

parameters, the distribution of ¢./g, calculated by Eq. (5)
did not show a clear rule.

5.2 Analysis results of GSA method—ANN model

Based on the GABP-6 model, 4000 data were generated
for the GSA method. To directly analyze the sensitivity of
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each factor to shear strength, S, and Sp; of each factor
were normalized. The sensitivity analysis results are
shown in Fig. 14. The effect of the penetration
reinforcement in the hole having the most significant
effect on the shear strength. Concrete also affects the
shear performance of PRSCs, where the Sobol index of
compressive bearing capacity of concrete in the end
bearing area is larger than the shear bearing capacity of
concrete in the hole. The shear bearing capacity of
concrete at the end-bearing zone and the bonding force
have little effect on the shear strength. Hence, to optimize
the ANN model, ahyt,, f,, nD* £,*°, A f, Ay, [, and a,
with larger Sobol indices are selected as input parameters
to build new ANN models (BP-12 ANN model and
GABP-12 ANN model).

The prediction results of the GABP-12 ANN model and
BP-12 ANN model are shown in Fig. 15. Although the
input parameters are reduced, the prediction results do not
change significantly, and the value of R* did not change
compared to the model GABP-6. The distribution of
prediction results of model GABP-12 is better than BP-
12, so GABP-12 is chosen as the final ANN calculation
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model. Compared with other ANN models, model
GABP-12 has fewer input parameters and higher
calculation accuracy and can be used to calculate the
shear bearing capacity of PRSCs. The two eliminated
variables have less influence on the prediction results of
the neural network, which verifies the reliability of the
GSA method. When all important parameters are used as
input variables, the ANN model predicts better results
after optimization by the GA method.

6 Conclusions

In this paper, the influence of the number of holes in the
steel plate and the diameter of the penetrating
reinforcement in the holes on PRSC was analyzed, based
on push-out test. BP ANN model and GABP ANN model
for predicting shear strength were developed, and the
shear strength of this experiment was included as part of
the test set. The effects of all factors on the shear strength
of PRSC were analyzed by the GSA methods based on
the ANN model. The major conclusions are as follows.

1) In all tested specimens, the damage modes mainly
include concrete slab cracking damage, and yielding
damage of reinforcement. When the concrete strength
intensity is fixed, the number of holes and the penetrating
reinforcement change the damage mode of the specimen.

2) At the peak of the load, the slip of the specimen with
more holes is greater than the slip of the specimen with
fewer holes. Also, he larger the diameter of the
penetration reinforcement, the larger the slip of the
specimens. This indicates that the number of holes and
the diameter of penetration reinforcement change the
performance and ductility of PRSCs.

3) Different input variables affect the prediction results
of the ANN model. Forming multiple influences into new
variables based on empirical equations reduces the
number of input variables but does not significantly
change the prediction results of the neural network.
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Fig. 15 The predicted results of the modified ANN model: (a) distribution of predicted values; (b) RMSE of 10-fold cross-validation.
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4) The ANN model has a higher computational
accuracy than that of the empirical equation, and the
ANN model can be used for shear strength prediction of
PRSCs, thus reducing the need to conduct expensive
experiments. When all important parameters are selected
as input variables, the ANN model prediction is improved
after optimization by the GA method.

5) A parameter analysis method based on the ANN
model and the GSA method is proposed, which can
examine the importance of parameters. The results
indicate that the sensitivity of the penetrating
reinforcement in the hole to the shear strength is the most
significant, and the bonding force between steel plate and
concrete is the least. The prediction accuracy of the ANN
model does not change obviously after removing the
variables that have little influence.
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