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ABSTRACT Vibration-based damage detection methods have become widely used because of their advantages over
traditional methods. This paper presents a new approach to identify the crack depth in steel beam structures based on
vibration analysis using the Finite Element Method (FEM) and Artificial Neural Network (ANN) combined with
Butterfly Optimization Algorithm (BOA). ANN is quite successful in such identification issues, but it has some
limitations, such as reduction of error after system training is complete, which means the output does not provide optimal
results. This paper improves ANN training after introducing BOA as a hybrid model (BOA-ANN). Natural frequencies
are used as input parameters and crack depth as output. The data are collected from improved FEM using simulation
tools (ABAQUS) based on different crack depths and locations as the first stage. Next, data are collected from
experimental analysis of cracked beams based on different crack depths and locations to test the reliability of the
presented technique. The proposed approach, compared to other methods, can predict crack depth with improved

accuracy.

KEYWORDS damage prediction, ANN, BOA, FEM, experimental modal analysis

1 Introduction

Structural health monitoring (SHM) has been used to
assess civil engineering structures when subjected to a
sudden loading. Hence damage prediction and detection
have been a subject of focus in recent years. Cracks are
one of the most prevalent types of structural damage, and
they are created by the repeated stress of a structure. The
presence of cracks can cause a structural component to
collapse prematurely, posing a risk of incident, injury,
and financial loss. As a result, if damage is recognized
early in their development, a system’s overall safety and
durability may be assured. Vibrational analysis of the
structure is one of the damage detection approaches that
has been developed over time. The general concept of
vibrational analysis is that when a crack or damage exists,
the modal frequencies of the object vary from their
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original value [1,2]. The Artificial Neural Network
(ANN) is an essential component of Machine Learning,
and it is a type of computational structure that is modeled
on the human neural system. As a result, if enough data is
supplied to the neural network, it can efficiently antici-
pate the position of cracks in a damaged beam. Kumar
et al. [3] trained an ANN based on frequency ratio values,
considering cracks at different locations in a cantilever
beam and then estimating the damage location. It was
found that the ANN could locate cracks with high
accuracy and with low error. Several studies applied the
same approach to steel plates, pipes, and bridges [4-9].
Hence the results proved the efficiency of the application.
Maity and Saha [10] applied a neural network, using
strain and displacement, to understand the behavior of an
intact beam as well as a beam that had been damaged in
various ways. Their results showed that the network
performance improved when the strain was used as an
input pattern instead of displacement. The vibration-
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based damage detection algorithms have attracted the
research community’s interest, and a variety of time-
domain techniques and input-output modal identification
approaches have been used [11,12]. In Ref. [13], the
authors employed natural frequencies as input for damage
diagnosis using an optimization approach. Lee et al. [14]
investigated the use of ANN-based structural damage
detection (SDD) in bridges. The damage was presented as
flaws and modeled using FEM to extract the data. The
ANN-based SDD approach considered the modal features
as well as the modeling errors of the baseline FE model
from which the training patterns were generated. Anitescu
et al. [15] applied ANN to solve boundary value problems
using a collocation method. The method used only
scattered sets of points for the training and evaluation
sets, so there was no mesh. Results for the chosen
parameters were shown to be accurate. The application of
Deep Neural Network (DNN) has been investigated
[16-19] to analyze boundary value issues and Kirchhoff
plate bending and vibration analysis. The authors avoided
a classical discretization and considered DNNs to be
function approximation machines, combining experi-
ments and simulations within one framework. Nanthaku-
mar et al. [20] created an approach based on inverse
analysis to predict the inclusion of interfaces in a
piezoelectric structure. The displacement and potential
electric fields were calculated for each iteration using the
extended finite element method (XFEM) to determine the
responses for varying inclusion interfaces due to its mesh
independence. This proposed methodology could identify
defects such as cracks and impurities with low stiffness
and permittivity compared with the actual piezoelectric
material. The technique suggested here has a significant
benefit in that it uses various tools and concepts produced
by a very active community.

Arora and Singh [21] proposed a new optimization
technique, namely the Butterfly Optimization Algorithm
(BOA). They conducted numerous studies on BOA and
later, Arora and Singh [22] suggested an enhanced
butterfly optimization approach using ten chaotic maps to
solve three engineering optimisation problems. They also
developed a hybrid optimization technique that combined
BOA with the Artificial Bee Colony (ABC) algorithm
[23]. Several researchers have demonstrated the effective-
ness of artificial intelligence (AI) algorithms such as
Genetic Algorithms (GA) in solving minimization
problems [24,25]. GA robust global optimization algori-
thms have been effectively employed to address a
comprehensive class of structural problems in the
engineering sector. In addition, GA is a quite interesting
method compared to conventional optimization methods
because it does not require a search throughout the whole
solution space [26-28]. Lai and Zhang [29] introduced a
new hybrid method that combined Particle Swarm
Optimization (PSO) and GA and the results of 23
benchmark problems.
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Furthermore, several alternative approaches based on
damage identification have been widely utilized to
determine the damage identification and predict the true
structures’ behavior. Truss structures and thin plates were
analysed for damage identification using Bat algorithm
[30,31]. Ghannadi and Kourehli [32] proposed a
structural damage identification method using the Moth-
Flame Optimization algorithm MFO. Moezi et al. [33]
applied a modified Cuckoo Search (CS) algorithm to
determine crack depth and location in a cantilever beam.
Also, Kim and Stubbs [34] presented a technique based
on modal sensitivity that can detect a crack position in a
thin cracked beam. Huang et al. [35] suggested the CS
algorithm could be combined with PSO to predict
structural damages under temperature variation. Also,
Baghmisheh et al. [36] combined PSO with Nelder-Mead,
using NM-PSO to determine edge-crack position and
depth in a cantilever beam. This method gave results with
high accuracy. Next, the last authors used the GA for
cracks detection in beam-like structures in Ref. [37]. In
order to improve the ANN training performance, many
other researchers also combined ANN with bio-inspired
algorithms [38—44]. Chatterjee et al. [45] trained the
neural network with PSO for failure prediction of
multistoried RC buildings. The suggested ANN-PSO
classifier could solve the problem of predicting structural
failure of multistoried reinforced concrete structures by
detecting the possibility of future structural failure.

This paper considers a combined approach based on
ANN and BOA for structural damage identification by
discussing a typical benchmark and emphasizes the need
for a proper specification of the error function that
assesses the differences between experimental data and
FE model results. The main objective of this paper is to
look into the use of the developed hybrid algorithm BOA-
ANN to determine the crack depth in a cracked steel
beam by minimizing the cost function and to compare
BOA-ANN with existing approaches, GA-ANN and
PSO-ANN, to assess its accuracy via both numerical and
experimental tests.

2 Optimization method description using
BOA and ANN

This section discusses the hybrid strategy for optimizing
the parameters of ANN prediction models after combi-
ning local and global search algorithms. Thoroughly
linked layered feedforward networks are used in ANN
prediction models. Each unit in the network, except input
units, has a bias.

2.1 Artificial Neural Network

ANN is one of the disciplines of Al that involves
automating the learning of an algorithm based on data
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collecting. This article uses a supervised learning model
to estimate the potential crack depth. In order to predict
the size of the damaged part, the regression function is
explored. Three layers of nodes, including a hidden layer,
input layer, and output layer, were the subject of the ANN
model, as presented in Fig. 1.

frequency
crack depth

output layer

input layer hidden layer

Fig. 1 ANN structure for crack depth identification.

Based on the data chosen from experimental or
numerical studies, the number of neurons per layer that
can be selected depends on the problems to be analyzed.
For more detail, two formulations can be used to study
the gathered data from the first phase to the last one.

@ = (D wufi+b), j=(1-m), (1
1
0=—1_ @)
1+e®

where @; is the data obtained from jth element of the
hidden layer, m determines the number of neurons used in
the hidden layer, and n indicates the number of elements
introduced into the input layer, f; Indicates the output
data, w and b are the weight and bias, respectively, used
for the training. Equation (1) denotes the summation
function based on the training parameters. Equation (2) is
used to calculate the hidden layer output after @; is
defined. Collected data, following training, are used to
understand how to categorize the knowledge from
experience. To find network quality during the training,
the validation dataset is used. If the performance is poor,
the network must change those parameters dynamically to
achieve precision. One of the most important design
difficulties in ANN applications is determining the
number of hidden nodes (HN). Under-fitting is more
common when there are fewer HN. However, if HN are
too numerous, the network will suffer from an over-
fitting problem, following which it will only can generate
robust predictions during the training phase but will
perform poorly during the testing phase [46].

2.2 Butterfly optimization algorithm

BOA [20] is a nature-inspired meta-heuristic algorithm
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representing butterfly foraging and mating behavior. Each
butterfly has its own distinct fragrance, which sets BOA
apart from other meta-heuristics. As a function of the
physical intensity of stimulation, the fragrance is created
as follows:

fi=cl, 3)

where f; denotes the perceived fragrance magnitude, c is
the sensory modality, / is the stimulation intensity, and a
is the power exponent depending on the degree of
fragrance absorption. The global and local search phases
are the two most essential phases in the algorithm. The
following Eq. (4) is a mathematical model of the
butterflies global search movements:

X = 4 (P X Goes — X)X @)
where x! is the ith butterfly’s solution vector x; in iteration
number ¢ g, is the current best solution identified
among all the solutions in the current iteration. The ith
butterfly’s fragrance is represented by f,, while r is a
random number [0,1]. The following formulation can
present the local search phase:

xi_+1:x;+(r2><x{f_x})xﬁ, &)

where x; and x/ are jth and kth butterflies selected
randomly from the solution space. The butterfly
transforms into a local random walk if x/ and x{ belong to
the same iteration. If not, the solution will become more
diverse due to this random movement. In nature,
butterflies can look for food and a mating partner on a
global and local scale. To convert between the usual
global search and the intense local search, a switch
probability p is specified. The BOA produces a number in
the range [0,1] at random in each iteration, and this is
compared with the switch probability p to determine
whether to execute a global or local search.

2.3 Method statement

In this work, a computational intelligence approach based
on BOA-ANN as a hybrid technique is used for damage
prediction. Each butterfly (solution) in the proposed
technique has three parts: connection weights between the
input, hidden and output layer connection weights, and
biases. The connections are represented by the network
weights, which are real numbers in the range [—1,1]. To
put it another way, each solution is represented by a
vector of real numbers in the range [—1,1]. The number of
elements in this vector may be estimated using the
following formula:

vector length = (nxXm)+ 2 xm)+ 1, 6)

where n denotes the number of input features in the
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dataset, and m is the number of nodes in the hidden layer.
Classification Error Percentage (CEP) is used to evaluate
the accuracy of cli)ssiﬁcation problems as described in
Egs. 3) and (4). Op = (Oyy,...,0p,) and tp = (tpy,...,tp,)
where 7 is the number of ANN output units and Op; and
tp; are predicted and target values of ith output unit.

73) =(Py,...,P;) is an input pattern in which k is the
number of ANN inputs, and P is the number of patterns [47].

- =

1,if Op # tp,

sv(?’): HCp#f )
0, otherwise,

ﬁ
P ‘P(P)
CEP = 100x ZT .

P=1

®)

The Root Mean Squared Error (RMSE) is used as a
fitness function to solve the approximation problem. In
this study, all numerical studies are implemented in
MATLAB R2017a. The following steps are programmed
while using BOA-ANN.

Step 1: Data preparation and initialization of the
number of populations and search agents.

Step 2: Creation of a population that is completely
random.

Step 3: Retrieval of the selected feature and HN size,
calculation and evaluation of the fitness values for each
butterfly and assignment of the vector of parameters
(biases and weights).

Step 4: Creation of a network and start of training using
the provided training dataset.

Step 5: Calculation of the mean square error (MSE),
simulation of the final network using validation data.
Computation of each individual’s fitness based on the
validation MSE.

Step 6: Generation of the next population,
performance of the current optimal butterfly.

Step 7: Repeat of Steps 3 to 6 until the maximum
generation is reached.

Step 8: Achievement of the final performance
(classification accuracy and HN size), and use of the test
data to simulate the optimal network.

and

(a)
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3 Numerical simulations

A model-dependent vibration-based analysis requires an
accurate numerical model prior to experiments. A
commercial software, ABAQUS 16.4, is used to create
the FEM of intact and damaged steel beam with boundary
condition (Free-Free). The geometrical and mechanical
properties are presented in Table 1. Figure 2(a) shows the
finite element mesh of the steel beam having 350
continuum elements, and the locations of the damages
(Fig. 2(b)) are represented by cracks of various depths
which have been produced at two points along the beam’s
length, in the center; and on the right side. Table 2 shows
the frequencies for intact beams based on numerical and
experimental studies using a different number of
elements. The torsional modes have been ignored for
practical reasons. The three first mode shapes are
presented in Fig. 3.

4 Results and discussion

In order to evaluate the BOA-ANN technique for crack
depth prediction, two damage cases are explored. In the
first case, the crack was produced across the middle width
of the beam by gradually increasing the crack depth from
3 to 30 mm in 0.5 mm steps. In the second case, the crack
was formed on the beam’s right side by increasing the
crack depth from 3 to 30 mm with a 0.5 mm step. BOA-
ANN is trained considering two different numbers of
neurons, which are 4 and 8. The power exponent a is
taken between [0.1,0.3], and the switch probability p =
0.5. To investigate the performance of BOA for ANN

Table 1 Geometrical and mechanical characteristics of beam mode

item value
length, L (mm) 700
width, W (mm) 50
thickness, ¢ (mm) 6
density, p (kg/m3 ) 7850
Young’s modulus, £ (GPa) 210
Poisson’s ratio, v 0.3

side crack \QQ'

middle crack

(b)

Fig. 2 (a) Finite element model and (b) considered beam model with considered damage location (mm).
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Table 2 FEM and Measured Frequencies of the intact beam model

cases element number frequency
length width thickness total Model 1 (Hz) Model 2 (Hz) Model 3 (Hz)
Case 1 70 5 1 350 521.78 1394.2 2622.8
Case 2 140 10 1 1400 530.13 1416.4 2663.9
Case 3 175 13 2 4550 531.26 1419.4 2669.5
Case 4 700 50 6 210000 532.78 1423.5 2677.0
experimental - - — - 531.05 1420 2645.5
(@) (®) (©

Fig.3 The first three mode shapes of the intact beam. (a) Model 1; (b) Model 2; (c) Model 3.

training, a comparative study is investigated with GA-
ANN and PSO-ANN, and the selected number of
generations and populations is 1000. In this study, the
computer characteristics used are Intel Core TM i7 and
16 Go DDR4 3200 MHz. Four scenarios are considered Side crack 3.5,11,18.5,29
for each side, as presented in Table 3.

Table 3 Considered cracks depths scenarios

damage cases crack depth (mm)

middle crack 6,13.5,21,29.5

Table 4 Predicted crack depth for middle crack damage case using

i ANN trained by BOA-PSO-GA
4.1 Middle crack damage case rained by

n real crack  predicted crack  error in predicted computational
depth (mm)  depth (mm) results (%) time (s)
In this damage case, we apply BOA-ANN to predict ; 6 BOA: 6.2022 337 76.0815
middle crack depth. The regression study of BOA—ANN PSO: 6.2888 281 145.1284
compared with PSO-ANN and GA-ANN of each hidden
layer size is presented in Fig. 4. The obtained results are GA: 6.3621 6.04 1923.1515
summarized in Table 4. The given results for each test 13.5 BOA: 13.4271 0.54 78.1111
demonstrate that BOA-ANN has the best performance PSO: 13.2867 1.58 1482450
study compared to PSO and 'GA. The regression is GA: 13.9275 317 1992,7564
extremely close to 1, and the hidden layer size of n = 8
gives the best performance case. The maximum error of 21 BOA: 21.0050 0.02 76.0105
the the most results is within the range of 0.2 mm when PSO: 21.1000 0.48 145.1212
the predicted and desired results are compared. The GA: 21.4322 206 1899.1122
results also 1ndlca.te that PSO and GA can predict the 295 BOA: 29,5312 011 200021
crack depth but with lower performance than BOA. The
. o - PSO: 29.4912 0.03 140.2121
error range is more significant and requires a large
number of generations and populations, up to 1000, GA:29.1112 1.32 1920.2000
which requires more time for calculation. The best 8 6 BOA: 5.8710 2.15 88.8415
computational time can be found in BOA-ANN between PSO: 5.8520 247 162.3422
76 and 88 s, compared with a significant difference in
L . GA: 5.5110 8.15 2127.2667
GA-ANN. However, the number of training points needs
to be increased as well, so that accuracy can be further 13.5 BOA:13.3726 0.94 81.8498
improved by choosing more extensive networks. Figure 5 PSO: 13.1229 2.79 141.3353
shows a summary of the obtained results. GA: 13.9912 3.64 2008.3022
. 21 BOA: 21.0919 0.44 83.1111
4.2 Side crack damage case
PSO: 21.3000 1.43 149.9874
We apply BOA-ANN to predict the side crack depth in GA:20.3211 3.23 1992.9911
this damage case. Figure 6 shows the BOA-ANN 29.5 BOA: 29,4955 0.02 84.2201
regression st.udy compared .Wl'[h PSO-ANN and GA-ANN PSO: 29,1911 1,05 1411019
for each hidden layer size. Table5 summarizes the
GA: 28. 5212 3.32 2083.0199

obtained results. The given results for each test
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Fig. 4 Regression using different numbers of hidden layer sizes for middle crack damage case. BOA with (a) n = 4 and (b) n = 8; PSO

with (¢) n =4 and (d) n = 8; GA with (¢) n=4 and (f) n =8.

demonstrate that the regression is extremely close to 1
and that the hidden layer size of n = 8 provides the best
performance study. Nevertheless, BOA requires fewer
iterations and less computational time. The maximum
error is less than 0.3 mm for BOA when the predicted and
desired results are compared. The obtained results also
indicate that by applying various hidden layer sizes, ANN
enhanced by BOA can more reliably predict the crack
depth for this damage case than PSO and GA. However,
GA requiring more computational time and less accuracy.
The best computational time can be found in BOA-ANN
between 74 and 87 s, compared with a significant
difference in GA-ANN. The MSE error decreases with
increase in number of training points. Increase in the

number of training points also further improves accuracy
by using more extensive networks. Figure 7 shows a
summary of the obtained results.

5 Experimental validations

Using a particular impact hammer to activate the
structural component and accelerometers to calculate
device acceleration and experimental dynamic testing
were carried out on a free-free beam model with
mechanical characteristics mentioned in Table 1. The
dynamic analysis of the beam model was conducted
utilizing the LAN-XI TYPE 3050-Briiel & Kjaer data
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Fig. 5 Real and predicted crack depth by changing the hidden layer size for middle crack damage case.
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acquisition system to evaluate the experimental vibration
findings via frequency domain measurement expressed by
Frequency Response Function (FRF). The piezoelectric

Table 5 Predicted crack depth for side crack damage case using ANN
trained by BOA-PSO-GA
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accelerometer and the impact hammer were connected to
the data collecting system via the input channels,
respectively, as shown in Fig. 8, whereas a piezoelectric
accelerometer (Type 4508) was inserted at regular 150
mm intervals on four points. A measuring system capable
of extracting frequency values by converting signals in

1 k i i tational . . .
" depth (mm) predicied redicted tme (8) the frequency domain using the Fast Fourier Transform
depth (mm) results (%) (FFT) technique and Pulse software was used. A set of 10
4 3.5 BOA: 3.7922 8.35 74.0215 hits for each accelerometer location was performed, and
PSO: 3.8188 911 141.1114 the average value was obtained. Next, frequency values
GA: 3.9121 L7 18831215 were measured. A mechanical saw _was used to mqke
specimen cracks depths, as shown in Fig. 8. The scenarios
1 BOA: 10.9011 0.90 76.2211 of each crack depth are presented in Table 6.
PSO: 10.5327 425 148.6660 FRF with measurements of vibration recorded by the
GA: 10.1222 7.98 1922.6784 accelerometer for damaged beam models by a middle
185 BOA: 18,5848 0.46 26,0100 crack with 5 and 25 mm depth apd side crack w1th 10 and
20 mm depth are presented in Figs. 9—12, respectively. In
PSO: 18.6811 0.98 148.0102 Table 7, the experimental frequency values for damaged
GA: 18.7848 1.54 2002.1211 beams by middle and side cracks.
29 BOA: 29.1012 0.35 77.0001
PSO: 262912 1.00 1521111 5.1 Results and discussion
GA:29.2800 0.97 2093.0000 In this section, BOA-ANN is trained using the
8 3.5 BOA:3.7520 7.20 87.1422 experimental frequencies dataset given in Table 7 in order
PSO: 3.6112 3.18 159.1123 to predict the crack depth for the middle and side crack
GA: 3.8523 10.07 2032.0432 damage cases. The parameters for BOA-ANN are .the
. power exponent a taken between 0.1 and 0.3, the switch
BOA: 105011 0-90 86.8888 probability p = 0.5, and » = 8 for hidden layer size. In
PSO: 10.7111 2.63 140.3553 Fig. 13, BOA-ANN regressions compared to those for
GA: 10.2888 6.47 2099.9992 PSO-ANN and GA-ANN are presented. The results are
185 BOA: 18.7999 L62 847681 summarized in Table 8. The results for each test show
SO 18,9360 236 1491074 that the regression is extremely near to 1 and the
T : ‘ maximum error is found to be less than 0.2 mm for BOA
GA: 19.0221 282 2032.1927 when the predicted and desired results are compared with
29 BOA: 29.1911 0.66 84.2423 those for PSO and GA, for which the error range reaches
PSO: 294215 145 141.1010 up to 2.5 mm with a number of generations and
populations reaching 1000. The results indicate that
GA:27.7211 4.41 2011.1192 . .
applying ANN enhanced by BOA can predict the crack
side crack
35
mreal mpredicted BOA mpredicted PSO mpredicted GA
n=4 n=238
30
25
:
E = =8
= 20 n=4 n
&
Tis
g n=4 n=2_8
o
10
5 n= 4 n=28 I I
o 2 3 4 5 6 7 8

test

Fig. 7 Real and predicted crack depth by changing the hidden layer size for side crack damage case.
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accelerometer

mpact hammer

d

Fig. 8 Setup of cracked beam modal analysis. (a) Experimental setup; (b) impact and accelerometer position; (c) middle crack specimens;

(d) side crack specimens.

Table 6 Considered cracks depths for experimental study

damage cases crack depth (mm)

middle & side crack 5
10
15
20
25
30

depth for both damage cases with the best accuracy.

Figures 14—15 show a summary of the results.

6 Conclusions

This study developed a hybrid approach based on BOA-
ANN for damage prediction using finite element models
as a tool to extract data. ANN is used as the basic
architecture of the prediction model. Next, BOA is used
to improve ANN parameters for better training. The
approach is based on frequencies as input data and cracks
depth as output data. Experimental modal analysis was
used to acquire data for BOA-ANN, and a comparison is
made with GA and PSO to test the accuracy of the
presented approach. The predicted results appear to be
very close to the expected output. The most significant
error was 0.3 mm for BOA-ANN, whereas it was larger

model 3
100 model 1 model 2 f=26422
F=p2rl f=14375

[
&
=]
= 10
z
(‘\l‘.”
g
g 1 ‘
ER 500 000 1500 2000 2500
=
=
<

0.1
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Fig.9 FRF diagrams for middle crack damaged beam with 5 mm depth.
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Fig. 11 FRF diagrams for side crack damaged beam with 10 mm depth.
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Fig. 12 FRF diagrams for side crack damaged beam with 20 mm depth.
Table 7 Experimental frequency values for damaged beam by middle and side crack
crack depth (mm) middle crack (Hz) side crack (Hz)
model 1 model 2 model 3 model 1 model 2 model 3
5 527 1437.20 2642.12 544.23 1420.22 2642.89
10 508.80 1431.28 2566.80 542.28 1407.23 2607.67
15 474.13 1428.10 2478 540.12 1393.65 2512.44
20 414.56 1411.80 2357.10 537 1341.44 2399
25 373.20 1392.71 2224.98 531.08 1240.65 2231.11
30 344.13 1380.22 2083.11 519 1111.31 2011,76
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Table 8 Predicted crack depth for middle and side crack damage case using experimental data and ANN trained by BOA-PSO-GA

damaged case n real crack depth (mm) predicted crack depth (mm) error in predicted results (%)
middle crack 8 5 BOA: 5.0699 1.40
PSO: 5.1890 3.78
GA: 53777 7.55
10 BOA: 9.9065 0.94
PSO: 9.8911 1.09
GA:9.7221 2.78
15 BOA: 15.0604 0.40
PSO: 14.9200 0.53
GA: 14.9001 0.67
20 BOA: 20.0640 0.32
PSO: 209132 4.57
GA: 21.0921 5.46
25 BOA: 25.2289 0.92
PSO: 26.2763 5.11
GA:26.7321 6.93
30 BOA: 29.9715 0.10
PSO: 30.3938 1.31
GA: 32.5864 8.62
side crack 8 5 BOA: 4.9915 0.17
PSO: 5.1511 3.02
GA: 5.3887 7.77
10 BOA: 9.2565 7.43
PSO: 9.5341 4.66
GA:9.0891 9.11
15 BOA: 15.0933 0.62
PSO: 14.8220 1.19
GA: 14.5231 3.18
20 BOA: 20.1110 0.56
PSO: 20.7132 3.57
GA:20.2921 1.46
25 BOA: 25.2289 0.92
PSO: 25.3763 1.51
GA: 25.7101 2.84
30 BOA: 29.9719 0.09
PSO: 30.3915 1.31
GA: 31.9004 6.33

for PSO-ANN and GA-ANN and these also required
more computational time. The BOA-ANN accuracy
confirms that it provides a reliable way of obtaining the
necessary results and, as a result, identifying the crack
with the lowest number of errors. The training set can be
increased even more to improve the accuracy of the
results. The proposed approach will be enhanced in future

work based on new input parameters and more complex
structures.
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