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Abstract    A  significant  clinical  challenge  in  lung  cancer  treatment  is  management  of  the  inevitable  acquired
resistance to third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs),
such  as  osimertinib,  which  have  shown  remarkable  success  in  the  treatment  of  advanced  NSCLC  with  EGFR
activating mutations, in order to achieve maximal response duration or treatment remission. Apoptosis is a major
type of programmed cell death tightly associated with cancer development and treatment. Evasion of apoptosis is
considered a  key  hallmark of  cancer  and acquisition  of  apoptosis  resistance  is  accordingly  a  key  mechanism of
drug acquired resistance in cancer therapy. It has been clearly shown that effective induction of apoptosis is a key
mechanism for third generation EGFR-TKIs, particularly osimertinib, to exert their therapeutic efficacies and the
development  of  resistance  to  apoptosis  is  tightly  associated  with  the  emergence  of  acquired  resistance.  Hence,
restoration  of  cell  sensitivity  to  undergo  apoptosis  using  various  means  promises  an  effective  strategy  for  the
management of acquired resistance to third generation EGFR-TKIs.
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Background

Lung cancer, which consists of small cell lung cancer and
over  80% non-small  cell  lung  cancer  (NSCLC),  is  the
leading cause of cancer death in the United States [1] and
worldwide  [2].  For  decades,  the  5-year  survival  rate  of
lung  cancer  remained  below  20% worldwide  despite
advances  in  early  diagnosis  and  various  therapeutics.
Encouragingly,  5-year  survival  has  recently  increased  to
over  20% for  the  first  time  in  the  United  States  after
decades  of  effort  [1],  largely  due  to  the  application  of
effective targeted therapies and immunotherapy.

Treatment  of  NSCLC  patients  with  epidermal  growth
factor receptor (EGFR) activating mutations such as exon
19  deletions  (19del)  and  exon  21  L858R  point  mutation
using  EGFR-tyrosine  kinase  inhibitors  (EGFR-TKIs)
represents the successful targeted therapy of lung cancer.
To  combat  acquired  resistance,  EGFR-TKIs  have
developed  rapidly  from  first  generation  (e.g.,  gefitinib
and  erlotinib)  to  second  generation  (e.g.,  afatinib)  and
currently  mutation-selective  third  generation  (e.g.,
osimertinib/AZD9291) agents over the past two decades.

The  third-generation  EGFR-TKIs  were  developed  to
primarily  target  the  EGFR  resistance  mutation,  T790M,
which develops during application of the first and second-
generation  EGFR-TKIs,  in  addition  to  efficacy  against
other  common  EGFR  activating  mutations.  Because  of
limited  activity  against  wild-type  (WT)  EGFR,  these
agents are considered mutation-selective EGFR-TKIs [3].
Among them, osimertinib is the first FDA-approved drug
for the second-line treatment of EGFR mutant (EGFRm)
NSCLCs  relapsed  from  first  generation  EGFR-TKI
therapy due to T790M mutation and for a first-line option
for  advanced  EGFRm  NSCLC  due  to  its  promising
overall clinical efficacy in terms of both progression-free
survival  (PFS)  and  overall  survival  (OS)  [4,5].
Aumolertinib  (formerly  almonertinib;  HS-10296)  was
recently  approved  in  China  for  the  treatment  of  NSCLC
patients  harboring  EGFR  T790M  mutation  who  have
relapsed  to  other  EGFR-TKI  therapy  based  on  the
promising outcomes of the open-label phase II APOLLO
study [6,7],  thus  being second marketed third  generation
EGFR-TKI.

Despite  this  promising  clinical  activity,  all  patients
eventually  relapse  due  to  the  inevitable  emergence  of
acquired resistance to these third generation EGFR-TKIs,
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regardless  of  whether  they  are  used  as  a  first-line  or
second-line  treatment  option  [8].  Therefore,  there  is  an
urgent  clinical  need  for  the  effective  management  of
acquired  resistance  to  third  generation  EGFR-TKIs  in
order  to  improve  patient  survival  duration.  Through
effective management of acquired resistance, patients will
have  a  higher  chance  to  continue  to  benefit  from
treatment with third generation EGFR-TKIs.

Apoptosis represents a major form of programmed cell
death involved in cancer. Evasion of cell death including
apoptosis  is  considered  a  key  hallmark  of  cancer  [9,10].
Thus,  acquisition  of  apoptosis  resistance  has  become  a
major  mechanism  accounting  for  the  emergence  of
acquired  resistance  to  cancer  therapeutic  agents.
Accordingly,  targeting  the  induction  of  apoptosis  is  a
valid  cancer  therapeutic  strategy  accompanied  with  the
successful  development  of  anticancer  drugs  that  directly
target  the  apoptosis  machinery,  such  as  BH3-mimetic
drugs  [11].  Considering  the  critical  role  of  apoptosis
induction  in  mediating  therapeutic  efficacy  of  third
generation  EGFR-TKIs,  this  review  will  focus  on  the
topic  of  effective  management  of  acquired  resistance  to
osimertinib  and  other  third  generation  EGFR-TKIs
through targeting induction of apoptosis. 

Apoptotic pathways

It  is  well  recognized  that  there  are  two  major  apoptotic
pathways:  the  extrinsic  apoptotic  pathway  that  involves
signals  transduced  through  cell  surface  death  receptors
and the intrinsic apoptotic pathway that relies on a signal
from  mitochondria  (Fig. 1).  Both  pathways  are  centered
by  a  coordinated  and  sequential  activation  of  several
cysteine  proteases  named  caspases  that  in  turn  cleave
cellular  substrates,  resulting  in  the  characteristic
morphological  and  biochemical  changes  of  apoptosis
[12,13]. 

Extrinsic apoptotic pathway

The key component of the extrinsic apoptotic pathway is
the  cell  surface  death  receptors,  which  belong  to  the
tumor  necrosis  factor  (TNF)  receptor  superfamily
(TNFRSF) including Fas (CD95 or Apo1), TNFR1, DR3,
DR4  (TRAIL-R1),  DR5  (TRAIL-R2),  and  DR6  [14].
They  share  similar  cysteine-rich  extracellular  ligand
binding  domains,  transmembrane  domains,  and
intracellular death domains, which enable transmission of
death  signals  after  ligand  binding  or  receptor
trimerization  [14].  There  are  also  other  related  cell
surface  receptors  called  decoy receptors  (e.g.,  DcR1 and
DcR2) that contain no death domain or a truncated death
domain.  These  decoy  receptors  can  still  bind  ligand  but
cannot  transmit  death  signal,  and  thus  function  as
antagonists  to  compete  with  death  ligands  for  inhibiting

death ligand/death receptor-induced apoptosis [15].
Once  bound  to  their  own  ligands,  e.g.,  FasL  or  tumor

necrosis  factor-related  apoptosis-inducing  ligand
(TRAIL),  trimerization  of  the  death  receptors  is  induced
at  the  cell  surface,  triggering  apoptosis  through  the
recruitment  of  the  adaptor  protein,  Fas-associated  death
domain  (FADD),  and  pro-caspase-8  and  subsequent
formation  of  the  death  inducing  signaling  complex
(DISC).  Within  the  DISC,  pro-caspase-8  recruited  by
FADD is converted via cleavage into activated caspase-8,
which in turn activates effector caspases such as caspase-
3.  Activation  of  the  death  receptors  can  also  indirectly
activate  effector  caspases  by  caspase-8-dependent
cleavage  of  Bid,  a  BH3  only  Bcl-2  family  protein,
facilitating  Bax  activation,  subsequent  pore  formation  in
the  mitochondrial  membrane,  release  of  cytochrome  C
and  Smac/DIABLO,  and  final  activation  of  caspase-9
(Fig. 1)  [14,16].  Hence,  a  crosstalk  between  death
receptors  and  activation  of  the  intrinsic  mitochondrial
apoptotic pathway can occur in certain types of cells.

The  extrinsic  death  receptor-mediated  apoptotic
pathway  is  primarily  negatively  regulated  by  cellular
FLICE-inhibitory  protein  (c-FLIP),  which  inhibits
caspase-8 activation by preventing FADD recruitment of
caspase-8 to the DISC [17,18].  There are multiple splice
variants  of  c-FLIP;  however,  only  two  of  them,  the  26
kDa  short  form  (c-FLIPS)  containing  two  death  effector
domains and the 55 kDa long form (c-FLIPL)  containing
an  inactive  caspase-like  domain  in  addition  to  the  two
death  effector  domains,  have  been  well  characterized  at
the protein levels in human cells [19,20]. Both FLIPL and
FLIPS are unstable proteins and their levels are modulated
by ubiquitin/proteasome-mediated degradation [21–23].

Because  immune  cells  such  as  cytotoxic  T  cells  and
natural  killer  (NK)  cells  can  generate  and  secrete  death
ligands  such  as  FasL  and  TRAIL,  the  ligation  of  these
endogenous death ligands with their corresponding death
receptors  on  cancer  cells  eliminates  cancer  cells  via
induction  of  apoptosis.  Thus,  activation  of  the  extrinsic
death receptor-mediated apoptosis has been recognized as
a  critical  mechanism  by  which  immune  surveillance
eradicates malignant cancer cells [24–26]. 

Intrinsic apoptotic pathway

The  intrinsic  apoptotic  pathway  is  centered  on  the
activation  of  death  signal  from mitochondria  and  is  thus
also  known  as  the  mitochondria-mediated  apoptotic
pathway. In response to DNA damage and other different
stimuli,  mitochondrial  membrane  permeability  is  altered
due  to  Bax/Bak  insertion  into  mitochondrial  membrane,
causing  release  of  cytochrome C into  the  cytoplasm and
subsequent  formation  of  a  complex  named  the
apoptosome,  together  with  apoptotic  protease  activating
factor 1 (APAF1) and the inactive form of pro-caspase-9.
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Within this complex, pro-caspase-9 is cleaved to become
active  caspase-9,  which  then  cleaves  and  activates  the
effector  caspases-3/6/7,  resulting  in  apoptosis.  The
mitochondrion  also  releases  another  protein  named
Smac/DIABLO  into  the  cytosol,  which  indirectly
facilitates  apoptosis  by  counteracting  the  effects  of  anti-
apoptotic  proteins  called  inhibitor  of  apoptosis  proteins
(IAPs).

The  intrinsic  apoptotic  pathway is  tightly  regulated  by
the  group  of  B  cell  lymphoma  2  (Bcl-2)  protein  family
proteins,  which  function  as  either  pro-apoptotic  or
apoptotic  proteins.  Bax and Bak,  which contain  multiple
BH domains, function as “effector” pro-apoptotic proteins
exclusively  responsible  for  triggering  cytochrome  C  and
Smac/DIABLO  release  from  mitochondria  via  altering
mitochondrial  membrane  permeability  by  inserting  into

 

 
Fig. 1    Schema  for  two  major  apoptotic  pathways.  Ligation  of  death  ligands  (e.g.,  TRAIL)  with  their  receptors  (e.g.,  DR5)  or  death  receptor
aggregation induces formation of the death-inducing signaling complex (DISC). In the DISC, pro-caspase-8 is recruited through the death adaptor
protein  FADD and  cleaved  to  generate  activated  caspase-8.  This  process  is  negatively  regulated  by  c-FLIP,  a  truncated  pseudo-protein  of  pro-
caspase-8. Signals that activate BH3 only proapoptotic proteins and/or inhibit Bcl-2 antiapoptotic proteins facilitate the insertion of Bax and Bak
protein into mitochondrial membrane, increasing mitochondrial outer membrane permeabilization (MOMP); this leads to cytochrome C (Cyt C)
and  Smac/DIABLO  release  from  the  mitochondria  into  the  cytosol.  The  released  cytochrome  C  then  activates  pro-caspase-9  by  forming  an
apoptosome  through  binding  to  Apaf-1.  Both  activated  caspase-8  and  caspase-9  further  cleave  downstream  effector  caspases  including  pro-
caspase-3, -6, and -7, to generate activated caspase-3, -6, and -7 that cleave a variety of substrate proteins such as PARP and cause eventual cell
death. Caspase-8 also cleaves the BH3 only protein, Bid, to generate truncated Bid (tBid) that facilitates insertion of Bax into the mitochondrial
membrane. Thus, tBid connects the extrinsic and intrinsic apoptotic pathways together. Inhibitors of apoptosis proteins (IAPs) such as XIAP and
survivin  can  bind  to  caspase-9  and  prevent  its  effect  on  cleavage  of  effector  caspases,  whereas  Smac/DIABLO  binds  to  IAPs,  allowing  free
caspase-9 to activate the effector caspases.
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mitochondrial  membrane.  In  contrast,  other  Bcl-2 family
proteins primarily function to regulate this process either
positively  or  negatively.  BH3-only “activator” proteins
including Bim, Bid, and PUMA can bind directly to, and
activate  Bax  and/or  Bak.  In  addition,  they  also  bind  to
and  sequester  anti-apoptotic/pro-survival  Bcl-2  family
proteins  such  as  Bcl-2,  Bcl-XL,  and  Mcl-1.  Other  BH3-
only  proteins  (Bad,  Noxa,  HRK,  Bik,  and  Bmf)  lacking
the  capability  to  directly  engage  Bax  and  Bak  can
function as “sensitizer” proteins and predominantly act by
inhibiting  anti-apoptotic  proteins.  All  anti-apoptotic
members of the Bcl-2 family (Mcl-1, Bcl-2, Bcl-XL,  and
Bcl-W)  contain  all  four  BH  domains  and  function  to
prevent  cytochrome  C  and  Smac/DIABLO  release  from
mitochondria by directly binding to and sequestering pro-
apoptotic Bcl-1 proteins (Fig. 1) [11,27,28]. 

Critical role of apoptosis induction in
mediating therapeutic efficacy of third
generation EGFR-TKIs

Our early work has clearly demonstrated that osimertinib
potently induces apoptosis primarily in sensitive EGFRm
NSCLC cell lines, leading to decreased cell survival [29].
Mechanistically,  osimertinib  rapidly  inhibits  MEK/ERK
signaling  accompanied  by  Bim  elevation  and  Mcl-1
reduction.  Both  Bim  and  Mcl-1  are  phosphorylated  by
ERK1/2 at S69 and T163, respectively, leading to protein
destabilization  (Bim)  or  stabilization  (Mcl-1).  Osimer-
tinib  effectively  inhibited  phosphorylation  of  both  Bim
(S69)  and  Mcl-1  (T163),  leading  to  enhanced  Mcl-1
degradation  and  compromised  Bim  degradation.
Consequently,  Bim  levels  were  elevated  while  Mcl-1
levels  were  decreased  (Fig. 2).  These  two  events  are
critical  for  the  induction  of  apoptosis  by  osimertinib  in
EGFRm  NSCLC  cells  since  gene  knockdown-mediated
blockade of Bim elevation or Mcl-1 overexpression in the
sensitive  EGFRm  NSCLC  cells  attenuated  or  abolished
induction  of  apoptosis  by  osimertinib  [29].  Therefore,
inhibition  of  ERK1/2-dependent  modulation  of  Bim  and
Mcl-1  is  a  key  mechanism  accounting  for  osimertinib-
induced  apoptosis  in  EGFRm  NSCLC  cells.  Beyond
osimertinib,  a  recent  study  has  demonstrated  that
aumolertinib  also  exerts  therapeutic  efficacy  through
inducing apoptosis, likely via enhancing ROS production,
in EGFRm NSCLC cells [30].

Beyond  activation  of  the  intrinsic  apoptotic  pathway,
osimertinib  induces  the  activation  of  caspase-8  since  we
detected  clear  cleavage  of  pro-caspase-8  accompanied
with  caspase-3  activation  in  sensitive  EGFRm  NSCLC
cell  lines  exposed  to  osimertinib  [29],  suggesting  the
possible  activation  of  the  extrinsic  death  receptor-
mediated  apoptotic  pathway.  Indeed,  we  have  demon-
strated  that  osimertinib  reduces  c-FLIP  levels  via

facilitating its degradation primarily in NSCLC cells with
EGFR  activating  mutations  (Fig. 2).  Moreover,
modulation of  c-FLIP expression levels,  to  some degree,
also  altered  the  sensitivities  of  EGFRm  NSCLC  cells  to
undergo osimertinib-induced apoptosis, suggesting that c-
FLIP suppression is also an important event contributing
to  the  antitumor  activity  of  osimertinib  against  EGFRm
NSCLC [31].

Although  DR4  is  generally  thought  to  be  a  pro-
apoptotic  protein  in  transducing  death  signaling  upon
binding to its ligand TRAIL, osimertinib as well as other
EGFR-TKIs,  paradoxically,  robustly  decreased  DR4
levels  in  EGFRm  NSCLC  cells  and  tumors;  this  effect
was  tightly  associated  with  induction  of  apoptosis.  This
modulation was lost once EGFRm cells became resistant
to these inhibitors. Interestingly, increased levels of DR4
were  detected  in  cell  lines  with  acquired  osimertinib
resistance  and  in  NSCLC  tissues  relapsed  from  EGFR-
targeted therapy. DR4 knockdown induced apoptosis and
augmented apoptosis when combined with osimertinib in
both  sensitive  and  resistant  cell  lines,  whereas  enforced
DR4  expression  significantly  attenuated  osimertinib-
induced apoptosis, suggesting that DR4 downregulation is
coupled  to  therapeutic  efficacy  of  osimertinib  and  other
EGFR-TKIs  [32].  As  discussed  above,  co-inhibition  of
MEK/ERK  signaling  effectively  overcomes  acquired
resistance  to  osimertinib  via  enhancing  induction  of
apoptosis  [29].  The  combination  of  osimertinib  with  a
MEK  inhibitor  further  augmented  reduction  of  DR4  in
osimertinib-resistant  cells  accompanied  with  enhanced
induction of apoptosis [32]. This finding also supports the
connection  between  DR4  downregulation  and  induction
of apoptosis.

Mechanistically,  osimertinib  induced  MARCH8-
mediated  DR4  proteasomal  degradation  and  suppressed
MEK/ERK/AP-1-dependent  DR4  transcription,  resulting
in  DR4  downregulation  (Fig. 2)  [32].  Unfortunately,  we
currently  do  not  know  the  underlying  mechanisms
accounting  for  DR4  downregulation-induced  apoptosis.
Further investigation in this aspect is warranted. 

Resistance to apoptosis as a critical mechanism
accounting for emergence of acquired resistance to
third generation EGFR-TKIs

In agreement with the critical roles of Bim elevation and
Mcl-1  reduction  in  mediating  therapeutic  efficacies  of
third  generation  EGFR-TKIs  as  discussed  above,  we
found that all EGFRm NSCLC cell lines with osimertinib
acquired  resistance  were  resistant  to  modulation  of  both
Bim  and  Mcl-1  by  osimertinib,  suggesting  that
acquisition of apoptosis resistance is a critical mechanism
for EGFRm NSCLC cells  to  develop acquired resistance
[29]. Given the critical role of the MEK/ERK signaling in
modulation  of  Bim  and  Mcl-1  protein  stability  (Fig. 2),
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enhanced  expression  of  MET,  HER2,  IGF1R,  AXL
and/or  FGFR  and  Ras  activation,  which  represent
common  resistance  mechanisms  to  osimertinib,  can  all
induce bypass activation of the MEK/ERK signaling [33],
resulting  in  apoptosis  resistance  to  osimertinib  or  other
third  generation  EGFR-TKIs,  likely  through  downregu-
lation of Bim levels and elevation of Mcl-1 levels.

Epithelial-mesenchymal  transition  (EMT)  has  been
tightly  associated  with  development  of  acquired
resistance to EGFR-TKIs including osimertinib, likely via
insufficient  expression of BIM, preventing apoptotic cell
death [34–39]. While Slug was significantly increased in
gefitinib-resistant PC-9/GR compared with parental PC-9
cells,  silencing  of  Slug  in  gefitinib-resistant  cells  caused
Bim  upregulation  and  caspase  activation,  restoring  the
ability  of  gefitinib  to  induced  apoptosis  of  the  resistant
cells  [36].  Consistently,  ZEB1  and  TWIST1,  both  of
which  are  critical  EMT  transcription  factors,  were
reported to confer apoptosis resistance to EGFR-TKIs via
inhibiting Bim expression by binding directly to the Bim
promoter  and  repressing  transcription  [35,37].  De-
repression of Bim expression, e.g., by depletion of ZEB1
or  treatment  with  the  BH3  mimetic  ABT-263  enhanced
“free” cellular  Bim  levels,  leading  to  re-sensitization  of
mesenchymal  EGFRm  NSCLC  cells  to  EGFR-TKIs

[35,37]. These findings are in line with the critical role of
Bim  elevation  in  mediating  therapeutic  efficacy  of
osimertinib [29].

In a clinical study that detected Bim expression in pre-
treatment  tumors  from  patients  with  EGFRm  NSCLC,  a
lower  response  rate  to  EGFR-TKIs  in  patients  with  low
Bim  expression  compared  to  those  with  high  Bim
expression was observed, although the difference was not
significant  [40].  Consistently,  the  European  Tarceva
(EURTAC)  trial  showed  that  both  PFS  and  OS  were
significantly  shorter  in  patients  with  low/intermediate
BIM mRNA levels in primary tumors than in those with
high mRNA levels [41]. It will be interesting to determine
whether  the  finding  is  applied  for  EGFRm  patients  to
osimertinib as well.

It  was  reported  that  a  common  intronic  deletion
polymorphism  in  BIM  gene  was  present  in  12% of  an
Asian  population  although  it  was  absent  in  individuals
from  African  and  European  populations  and  was
significantly  associated  with  a  shorter  PFS  in  patients
receiving EGFR-TKI treatment  [42].  This  polymorphism
switched Bim splicing from exon 4 to exon 3, resulting in
increased  expression  of  BIM  RNA  isoforms  lacking  the
pro-apoptotic  BH3  domain,  such  as  BIM-γ [42].  A
subsequent  pilot  study with 33 EGFRm NSCLC patients

 

 
Fig. 2    Summary  of  potential  molecular  mechanisms  accounting  for  induction  of  apoptosis  by  osimertinib  in  EGFRm  NSCLC  cells  and  by
combinations in resistant EGFRm NSCLC cells. The bold red arrows indicate modulations of key apoptosis-regulatory proteins by osimertinib or
combinations, which occur at transcriptional and/or posttranslational levels.
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treated  with  gefitinib  found  that  BIM-γ expression  was
significantly  higher  in  patients  with  BIM  deletion
polymorphism  than  among  those  without  BIM  deletion
polymorphism  inside  and  patients  with  BIM-γ had
significantly shorter  PFS than those without BIM-γ [43].
However,  there  were  also  clinical  studies  that  failed  to
demonstrate  the  association  between  BIM  deletion
polymorphism and the treatment response of EGFR-TKIs
[44–46].

An  early  preclinical  study  also  showed  that  EGFRm
NSCLC  cell  lines  with  the  BIM  deletion  polymorphism
exhibited  apoptosis  resistance  to  osimertinib  [47].  In  a
clinical  study  with  a  total  of  152  Chinese  Han  NSCLC
patients including 143 T790M-positive and nine T790M-
negative  patients  with  osimertinib  therapy,  BIM deletion
polymorphism was detected in 17.5% of T790M-positive
patients. Patients with BIM deletion polymorphism had a
poorer objective response rate than those without and was
associated  with  a  significantly  shorter  PFS  and  a
moderately shorter  OS [48].  A recent  clinical  study with
quantification of BIM mRNA in circulating tumor cells of
osimertinib-treated  EGFRm  NSCLC  patients  found  that
the  response  rate  to  osimertinib  was  worse  in  patients
with  high  than  in  those  with  low  BIM-γ mRNA
expression, but did not see a significant impact of BIM-γ
expression  on  PFS  [49].  Nonetheless,  these  studies  also
suggest  a  critical  role  of  Bim  in  modulation  of  the
response  of  EGFRm  NSCLC  to  the  treatment  with
osimertinib  and  possible  other  third  generation  EGFR-
TKIs.

Although  osimertinib  potently  decreased  DR4  levels,
including  cell  surface  DR4  levels  in  sensitive  EGFRm
NSCLC  cells  [32],  it  still  enhanced  TRAIL-induced
apoptosis  in  these  cell  lines  as  we  reported  [31].
Consistently,  transient  knockdown  of  DR4  further
enhanced  TRAIL-induced  apoptosis;  this  finding  is  in
agreement  with  our  previous  finding  that  DR4
knockdown enhanced apoptosis induced by TRAIL or the
combination  of  TRAIL  and  GGTI-298  (a  gerany-
lgeranyltransferase  I  inhibitor)  in  NSCLC  cells  [50].
Interestingly,  osimertinib-resistant  cell  lines  had
compromised  sensitivities  to  TRAIL,  and  even  the
combination  of  osimertinib  and  TRAIL,  compared  with
their  corresponding  parental  cell  lines  [31],  despite  the
elevated  basal  levels  of  DR4  [32].  Endogenous
TRAIL/death  receptor  interaction  in  TRAIL-resistant
cancer  cells  may  activate  NF-κB  signaling  and  induce
inflammatory  cytokine  (e.g.,  CCL2)  secretion,  which
inactivates  immune  cells  and  promotes  a  tumor-
supportive immune microenvironment  and tumor growth
[51,52]. It is possible that, in addition to the direct effects
of  osimertinib  on  EGFRm  NSCLC  cells,  including
induction  of  apoptosis,  there  may  also  be  an  indirect
effect of osimertinib on enhancing the immune clearance

of  EGFRm  NSCLC  cells,  contributing  to  osimertinib’s
therapeutic efficacy. Accordingly, the acquisition of resis-
tance  to  extrinsic  apoptosis  that  compromises  immune
clearance  may  also  contribute  to  the  development  of
acquired resistance. 

Targeting apoptosis to overcome acquired
resistance

Since the acquisition of  apoptosis  resistance represents  a
key  mechanism  accounting  for  acquired  resistance  to
osimertinib  and  other  third  generation  EGFR-TKIs  as
discussed  above,  science-driven  means  or  regimens  that
can  restore  cellular  sensitivity  to  undergo  apoptosis
should  have  high  potential  to  overcome  acquired
resistance to third generation EGFR-TKIs.

In  the  setting  of  osimertinib-resistant  EGFRm NSCLC
cells,  the  inability  of  osimertinib  to  modulate  Bim  and
Mcl-1  levels  by  altering  ERK1/2-dependent  Bim  and
Mcl-1 degradation is a key mechanism for the acquisition
of  osimertinib  resistance.  This  leads  logically  to  the
speculation  that  enforced  elevation  of  Bim  levels  and/or
decrease  in  Mcl-1  levels  via  abrogation  of  ERK1/2-
dependent  Bim  and  Mcl-1  phosphorylation  with  a  MEK
or  ERK  inhibitor  could  restore  the  sensitivity  of
osimertinib-resistant  EGFRm  NSCLC  cells  to  undergo
apoptosis,  when  combined  with  osimertinib,  achieving
the  goal  of  overcoming  osimertinib  acquired  resistance.
With  different  MEK  inhibitors  including  trametinib,
selumetinib,  and  mirdametinib  (PD0325901),  our  pre-
vious  study  generated  identical  results,  i.e.,  osimertinib
combined  with  either  MEK  inhibitor  synergistically
decreased  the  survival  and  induced  apoptosis  of  osimer-
tinib  resistant  cell  lines  irrespective  of  the  underlying
resistance  mechanisms.  This  combinatorial  strategy  also
generated  promising in  vivo activity  against  osimertinib-
resistant  tumors  with  both  concurrent  and  intermittent
schedules [29]. In agreement, osimertinib also synergized
with  an  ERK  inhibitor  such  as  GDC0994  (ravoxertinib)
or  VRT752271  (ulixertinib  or  BVD-523)  in  decreasing
the  survival  and  enhancing  apoptosis  of  osimertinib-
resistant  cell  lines  with  impressive in  vivo effects  on
inhibiting the growth of osimertinib-resistant tumors [53].
Activation  of  MEK5/ERK5,  another  mitogen-activated
protein  kinase  (MAPK)  signaling  pathway,  also
contributes  to  cell  survival,  proliferation,  epithelial-to-
mesenchymal  transition  (EMT),  and  radioresistance  in
lung  cancer  [54–57].  Our  recent  study  has  shown  that
inhibition of this signaling with either a MEK5 or ERK5
inhibitor  in  combination  with  osimertinib  synergistically
decreased  cell  survival  and  enhanced  induction  of
apoptosis  in  several  osimertinib-resistant  NSCLC  cell
lines  primarily  via  upregulation  of  Bim.  Moreover,  this
combination  was  also  very  effective  in  suppressing  the
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growth  of  osimertinib-resistant  tumors  with  increased
Bim  and  apoptosis in  vivo [58].  These  findings  thus
provide solid preclinical support for overcoming acquired
osimertinib  resistance  by  co-targeting  MERK5/ERK5
signaling.

Several  other  studies  have  shown  different  strategies
for  overcoming  acquired  resistance  to  osimertinib  and
other  third  generation  EGFR-TKIs  through  enhancing
induction of apoptosis primarily via modulation of Bcl-1
family  members,  particularly  Bim,  despite  of  aiming  to
different target. EGFRm NSCLC cell lines with the BIM
deletion  polymorphism  exhibited  apoptosis  resistance  to
osimertinib;  this  resistance  could  be  overcome  by  com-
bined use with the histone deacetylase (HDAC) inhibitor
vorinostat  (also  known  as  suberoylanilide  hydroxamic
acid  (SAHA)).  It  was  shown that  vorinostat  affected  the
alternative splicing of BIM mRNA in the deletion allele,
increased  the  expression  of  active  Bim  protein,  and
thereby induced apoptosis in osimertinib-treated resistant
cells  [47].  Our  own study with  another  HDAC inhibitor,
LBH589  (panobinostat),  has  also  shown  that  the
combination  with  osimertinib  synergistically  decreased
the  survival  of  different  osimertinib-resistant  cell  lines,
including those harboring C797S mutations and enhanced
Bim-dependent  induction  of  apoptosis  in  osimertinib-
resistant  cells  with  enhanced  growth  suppression  of
osimertinib-resistant xenograft tumors in nude mice [59].

Bufalin  is  a  natural  product  and  has  been  shown  to
restore  the  sensitivity  of  osimertinib-resistant  cells  to
osimertinib-induced  growth  regression  and  apoptosis in
vitro and in  vivo,  when  combined  with  osimertinib,  by
downregulation  of  Mcl-1  through  inhibition  of  Ku70-
mediated  Mcl-1  stabilization  [60].  Similarly,  another
natural  product,  honokiol,  when  combined  with  osimer-
tinib  synergistically  decreased  the  survival  of  several
osimertinib-resistant cell lines with enhanced induction of
apoptosis  through  enhancing  Mcl-1  reduction  by  facili-
tating  its  degradation.  Importantly,  this  combination
showed  greater  growth  suppression  of  osimertinib-
resistant  xenograft  tumors  including  those  with  19del,
T790M, and C797S triple mutations in nude mice [61]. In
our  recent  study,  the  natural  product  berberine  functions
as  a  naturally-existing  MET  inhibitor  and,  when  com-
bined  with  osimertinib,  synergistically  and  selectively
decreased  the  survival  of  several  MET-amplified
osimertinib-resistant  EGFRm  NSCLC  cell  lines  with
enhanced  induction  of  apoptosis  likely  through  Bim
elevation  and  Mcl-1  reduction.  This  combination
effectively  enhanced  the  growth  suppression  of  MET-
amplified  osimertinib-resistant  xenografts  in  nude  mice
and was well tolerated [62].

Acetylsalicylic  acid  (aspirin)  is  one  of  the  most
commonly  used  non-steroidal  anti-inflammatory  drugs
and  also  widely  used  as  an  antiplatelet  agent  to  prevent

myocardial  infarction  and stroke.  It  has  been shown that
aspirin  synergistically  enhances  the  antitumor  activity  of
osimertinib  in  osimertinib-resistant  NSCLC  cells  and
tumors through promoting Bim-dependent apoptosis [63].
Our recent studies have shown that both sterol regulatory
element  binding  protein  1  (SREBP1)  activation  and  c-
Myc  elevation  are  associated  with  acquired  resistance  to
third  generation  EGFR-TKIs  [64,65].  Targeting  either
SREBP1  or  c-Myc  with  both  genetic  knockdown  and  a
pharmacological  inhibitor  sensitized osimertinib-resistant
cells  and  tumors  to  osimertinib  primarily  through
enhancing Bim-dependent induction of apoptosis [64,65].
Similarly,  inhibition  of  aurora  B  kinase  combined  with
osimertinib  was  recently  shown  to  have  promising
activity in overcoming acquired resistance to osimertinib
by enhancing Bim- and PUMA-mediated apoptosis.  This
is  because  aurora  B  inhibition  stabilizes  Bim  protein
through  reduced  Ser87  phosphorylation,  and  transa-
ctivates  PUMA  expression  through  removal  of  Akt-
mediated suppression of FOXO1/3 (Fig. 2) [66]. The Src
inhibitor,  dasatinib,  when  combined  with  osimertinib  or
ASP8273,  another  third  generation  EGFR-TKI,  showed
activity  in  overcoming EGFR-TKI resistance  in  T790M-
positive  NSCLC  cells.  This  combination  enhanced
induction  of  apoptosis  in  T790M-positive  resistant  cells,
involving downregulation of Bcl-XL [67].

Interestingly,  some  combination  treatments  do  not
always  elevate  Bim  levels  accompanied  with  Mcl-1
reduction.  In fact,  we found that  targeting MEK5/ERK5,
c-Myc  or  SREBP1,  when  combined  with  osimertinib,
increased  Mcl-1  levels  while  substantially  enhancing  the
levels  of  Bim  [58,64,65].  Given  that  the  combinations
still  augmented  Bim-dependent  apoptosis,  presenting
promising activities in overcoming acquired resistance to
osimertinib,  it  is  very  likely  that  Bim  elevation  plays  a
dominant role in triggering apoptosis, which can override
the potential inhibitory effect caused by Mcl-1 elevation.

Since activation of the intrinsic apoptotic pathway is  a
key  mechanism  for  the  therapeutic  efficacy  of  osimer-
tinib,  and  acquisition  of  apoptosis  resistance  is  a  critical
mechanism  of  acquired  resistance  to  osimertinib  [29],  it
can be logically speculated that activation of the intrinsic
apoptotic  pathway  through  directly  inhibiting  Mcl-1,
activating  Bax,  or  both  should  sensitize  osimertinib-
resistant  cells  to  osimertinib,  achieving  the  goal  of
overcoming  acquired  resistance  to  osimertinib  and  even
other  third  generation  EGFR-TKIs.  Indeed,  our  recent
study has demonstrated that osimertinib, when combined
with  Mcl-1  inhibition  or  Bax  activation,  synergistically
decreased  the  survival  of  different  osimertinib-resistant
cell  lines,  enhanced  the  induction  of  intrinsic  apoptosis,
and inhibited the growth of osimertinib-resistant tumor in
vivo.  Remarkably,  the  triple-combination  of  osimertinib
with  Mcl-1  inhibition  and  Bax  activation  exhibited  the
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most  potent  activity  in  decreasing  the  survival  and
inducing  apoptosis  of  osimertinib-resistant  cells  and  in
suppressing  the  growth  of  osimertinib-resistant  tumors.
These effects were associated with increased activation of
the  intrinsic  apoptotic  pathway  evidenced  by  augmented
mitochondrial  cytochrome C and  Smac/DIABLO release
[68].  Our  study  thus  convincingly  demonstrates  a  novel
strategy  for  overcoming  acquired  resistance  to  osime-
rtinib  and  other  third  generation  EGFR-TKIs  by  directly
targeting  activation  of  the  intrinsic  apoptotic  pathway
through  Mcl-1  inhibition,  Bax  activation  or  both,
warranting further clinical validation of this strategy.

Another  study  by  Lu et  al. [69]  reported  upregulated
expression  of  Bcl-2  and  Bcl-XL in  osimertinib  resistant
HCC827/OR  cells.  Suppression  of  Bcl-2  and  Bcl-  XL
through  gene  knockdown  or  using  the  small  molecule
inhibitor,  ABT-263,  re-sensitized  HCC827/OR  cells  to
osimertinib  treatment  with  enhanced  induction  of
apoptosis  through  the  mitochondrial  apoptotic  pathway.
Moreover,  the  combination  effectively  inhibited  the
growth  of  HCC827/OR  tumors.  Similarly,  significant
upregulation  of  Bcl-2  was  also  observed  in  AZD9291-
resistant  H1975  (H1975/AR)  cells.  The  combination  of
osimertinib with the Bcl-2 inhibitor, ABT263 or ABT199,
synergistically  decreased  the  survival  of  H1975AR  with
enhanced induction of apoptosis [70]. 

Targeting apoptosis to delay or prevent
the emergence of acquired resistance

The  greatest  clinical  challenge  in  targeted  cancer
therapeutics,  including  EGFR-targeted  therapy,  is  their
inability  to  eradicate  all  tumor  cells  to  achieve  clinical
cure.  During  sustained  treatment,  the  surviving  residual
cancer  cells  can serve as  sources  for  the development  of
acquired  resistance  to  the  given  targeted  therapy.  It  is
generally thought that resistance may arise from selection
and expansion of pre-existing resistant clones and/or from
so-called  dormant  drug-tolerant  persister  cells  or  drug-
tolerant cells  (DTCs).  These DTCs can often survive the
initial  phase  of  treatment,  possess  reversible  feature  of
drug  insensitivity  upon  drug  removal,  are  typically  slow
cycling  or  dormant,  and  do  not  carry  classical  drug
resistance  driver  gene  alterations  (see  reviews  [71,72]).
Upon  sustained  treatment,  e.g.,  with  an  EGFR-TKI,
dormant DTCs can eventually acquire resistance through
gaining  additional  genetic  mutational  or  non-mutational
mechanisms [71–75]. Hence, any approaches or strategies
that can result in maximal removal or elimination of pre-
existing  resistant  clones  and/or  DTCs  should  have  high
potential  to  substantially  improve  the  outcome  of  the
initial  treatment  with  third-generation  EGFR-TKIs  via
delaying  or  even  preventing  the  emergence  of  acquired
resistance.  To do so,  the most  effective way is  to induce

death,  particularly  apoptosis,  of  these  pre-existing
resistant  clones  and/or  dormant  DTCs  during  the  initial
phase of the treatment.

We found that the combination of osimertinib with the
MEK  inhibitor  trametinib,  or  the  ERK  inhibitor
ulixertinib  (VRT-752271 or  BVD-523),  synergistically
decreased the survival  of  several  pre-existing clones that
are intrinsically resistant to osimertinib and were derived
from  sensitive  PC-9  cells  via  effectively  enhancing
induction  of  apoptosis,  demonstrating  that  these
combinations  have  the  potential  to  eradicate  pre-existing
osimertinib-resistant  clones.  The  combinations  were  also
more  effective  than  either  agent  alone  in  decreasing  the
survival  and  inducing  apoptosis  of  sensitive  EGFRm
NSCLC  cell  lines,  suggesting  the  capacity  to  eliminate
DTCs  as  well.  Indeed,  both  concurrent  and  intermittent
applications  of  trametinib  and  osimertinib  combination
remarkably  delayed  the  development  of  osimertinib
acquired  resistance  both in  vitro and in  vivo [76].
Intriguingly,  some  mice  were  even  tumor-free  in
combination treatment  groups  with  a  collective  cure  rate
of 27.8% (5 of 18 mice in total) [76], suggesting that this
intervention  strategy  may  achieve  long-term  remission,
which is a clinically meaningful benefit.

Despite  these  promising  results,  it  has  been  recently
shown  that  acquired  resistance  still  occurs  to  this
therapeutic  strategy  of  co-targeting  MEK/ERK signaling
[75].  This  is  largely  because  EGFR/MEK  co-inhibition
can  result  in  the  activation  of  YAP/TEAD  survival
signaling causing the development of acquired resistance
given  that  single-agent  osimertinib  treatment  can  lead  to
reactivation  of  both  ERK1/2  and  YAP/TEAD  signaling
[75].  The  activated  YAP/TEAD  facilitates  EGFRm
NSCLC cells  to enter  a  senescence-like dormant state  or
drug-tolerant  state  via  suppression  of  apoptosis  by
regressing the expression of pro-apoptotic BMF gene via
the  EMT  transcription  factor  SLUG  (Fig. 1)  [75].
Accordingly,  co-targeting  YAP/TEAD,  with  either
genetic  or  pharmacological  approaches,  eliminated
dormant  DTCs  by  enhancing  EGFR/MEK  inhibition-
induced  apoptosis  via  Bmf  upregulation  [75].  Therefore,
co-targeting EGFR, MEK/ERK, and YAP/TEAD may be
an  attractive  strategy  to  enhance  the  initial  treatment
efficacy  of  osimertinib  as  well  as  other  third  generation
EGFR-TKIs  in  EGFRm  NSCLC  by  causing  synthetic
lethality  of  pre-existing  resistant  clones  and/or  DTCs
through  enhanced  induction  of  apoptosis.  Consequently,
prolonged treatment responses or long-term remissions in
cancer patients may be achieved. Of course, this strategy
needs to be validated in the clinic. 

Summary and perspectives

Cancer  would  be  cured  if  we  could  eliminate  all  cancer
cells  and  residual  tumors  from  a  patient’s  body.  In
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general, apoptosis is known to be a major form of cancer
cell  death  during  cancer  therapy  [12,77,78].  Given  the
predominant role of apoptosis induction in mediating the
therapeutic  efficacy  of  osimertinib  as  well  as  other  third
generation  EGFR-TKIs  and  the  acquisition  of  apoptosis
resistance  as  a  key  mechanism  accounting  for  the
emergence  of  acquired  resistance  to  third  generation
EGFR-TKIs, there is strong scientific rationale to manage
the  challenging  issue  of  acquired  resistance  through
targeting  apoptosis.  Only  by  maximally  eradicating  the
source  cells  (pre-existing  resistant  clones  and/or  DTCs)
that can become resistant cells during the initial phase of
treatment,  we  will  have  high  likelihood  to  substantially
improve  the  outcome  of  initial  therapy  with  third
generation  EGFR-TKIs  via  abrogating  emergence  of
acquired  resistance.  There  are  some  related  preclinical
studies  with  promising  outcomes.  Well-designed  clinical
trials  are  thus  urgently  needed  to  validate  these  clinical
findings. Currently, there are some ongoing clinical trials
that  test  the  efficacies  of  osimertinib  combined  with
direct apoptosis-inducers or with other agents that lead to
enhanced  induction  of  apoptosis  either  as  an  initial
treatment strategy (overcoming primary resistance and/or
delaying emergence of acquired resistance) or a treatment
option for  overcoming acquired resistance to  osimertinib
(Table 1).

Although  apoptosis  has  a  critical  role,  there  are  other
types of cancer cell death such as ferroptosis, necroptosis,
and  pyroptosis.  Whether  induction  of  these  cell  death
mechanisms plays a role in mediating therapeutic efficacy

of  third  generation  EGFR-TKIs  and  whether  targeting
different  cell  death  processes  beyond  apoptosis  can  help
with  overcoming  acquired  resistance  is  largely  unknown
and needs to be studied in the future.

The  potential  for  increased  toxicity  may  be  a  concern
while  considering  the  enhanced  therapeutic  efficacy  of
different  combinations,  particularly  for  delaying  or
preventing  the  emergence  of  acquired  resistance,  which
would require long-term drug administration. Fortunately,
the  third  generation  EGFR-TKIs  are  mutation-selective
drugs  with  limited  effect  against  WT  EGFR.  We  found
that  several  combinations  such  as  osimertinib  combined
with a MEK or ERK inhibitor or with an Mcl-1 inhibitor
and Bax activator had no enhanced effects on decreasing
the  survival  of  human  NSCLC  with  WT  EGFR  [68,76],
strongly  suggesting  that  these  combinations  essentially
enhance  the  efficacy  of  osimertinib.  These  findings  may
also  imply  that  these  combinatorial  strategies  may  not
affect the growth of cells or tissues (e.g., normal tissues)
with  WT  EGFR.  Indeed,  these  combinations  were  well
tolerated in mice even after a sustained treatment of over
3 months [68,76], suggesting their safety. These data may
provide  valuable  information  to  facilitate  the  clinical
validation of these promising preclinical findings. 
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Table 1    Ongoing clinical trials for osimertinib combined with an apoptosis-inducing agent and an agent that leads to enhanced induction of
apoptosis
Clinical trial title Trial registration ID

Combinations with direct apoptosis-inducers

A study of APG-1252 plus osimertinib (AZD9292) in EGFR TKI resistant NSCLC patients NCT04001777

Osimertinib and navitoclax in treating patients with EGFR-positive previously treated advanced or metastatic NSCLC NCT02520778

Combinations that lead to enhanced induction of apoptosis

A phase 2 study of osimertinib in combination with selumetinib in EGFR-inhibitor naïve advanced EGFR mutant lung cancer NCT03392246

Alisertib in combination with osimertinib in metastatic EGFR-mutant lung cancer NCT04085315

Dasatinib and osimertinib (AZD9291) in advanced non-small cell lung cancer with EGFR mutations NCT02954523

A study comparing savolitinib plus osimertinib vs. savolitinib plus placebo in patients with EGFRm+ and MET amplified
advanced NSCLC

NCT04606771

Osimertinib in combination with alisertib or sapanisertib for the treatment of osimertinib-resistant EGFR mutant stage IIIB or IV
non-small cell lung cancer

NCT04479306

Combination of osimertinib and aspirin to treat osimertinib resistance NSCLC NCT03532698

MRX-2843 and osimertinib for the treatment of advanced EGFR mutant non-small cell lung cancer NCT04762199

Aurora kinase inhibitor LY3295668 in combination with osimertinib for the treatment of advanced or metastatic EGFR-mutant
non-squamous non-small cell lung cancer

NCT05017025

A study of tepotinib plus osimertinib in osimertinib relapsed MET amplified NSCLC (INSIGHT 2) NCT03940703

Clinical study on savolitinib + osimertinib in treatment of EGFRm+/MET+ locally advanced or metastatic NSCLC NCT05009836

The information was obtained from clinicaltrials.gov website.
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