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ABSTRACT

The biochemical consequences induced by xenobiotic stress are featured in dose-response and time-
resolved landscapes. Understanding the dynamic process of cellular adaptations is crucial in
conducting the risk assessment for chemical exposure. As one of the most phenotype-related omics,
metabolome in response to environmental stress can vary from seconds to days. Up to now, very few
dynamic metabolomics studies have been conducted to provide time-dependent mechanistic
interpretations in understanding xenobiotics-induced cellular adaptations. This study aims to explore
the time-resolved metabolite dysregulation manner and dynamically perturbed biological functions in
MCF-7 cells exposed to bisphenol A (BPA), a well-known endocrine-disrupting chemical. By
sampling at 11 time points from several minutes to hours, thirty seven significantly dysregulated
metabolites were identified, ranging from amino acids, fatty acids, carboxylic acids and nucleoside
phosphate compounds. The metabolites in different pathways baswally showed distinct time-resolved
changing patterns, while those within the common class or same pathways showed similar and
synchronized dysregulation behaviors. The pathway enrichment analysis suggested that purine
metabolism, pyrimidine metabolism, aminoacyl-tRNA biosynthesis as well as glutamine/glutamate
(GABA) metabolism pathways were heavily disturbed. As exposure event continued, MCF-7 cells
went through multiple sequential metabolic adaptations from cell proliferation to energy metabolism,
which indicated an enhancing cellular requirement for elevated energy homeostasis, oxidative stress
response and ER-o mediated cell growth. We further focused on the time-dependent metabolite
dysregulation behavior in purine and pyrimidine metabolism, and identified the impaired glycolysis
and oxidative phosphorylation by redox imbalance. Lastly, we established a restricted cubic spline-
based model to fit and predict metabolite’s full range dysregulation cartography, with metabolite’
sensitivity comparisons retrieved and novel biomarkers suggested. Overall, the results indicated that 8 h
BPA exposure leaded to global dynamic metabolome adaptions including amino acid, nucleoside and
sugar metabolism disorders, and the dysregulated metabolites with interfered pathways at different
stages are of significant temporal distinctions.
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1 Introduction

Biological systems are highly refined processes subject to
dynamic metabolism regulation (Chen et al., 2012; Link
et al., 2015). Being the terminal products of transcript-
omic and proteomic activities, intercellular metabolites’
change in response to metabolic syndrome factors can
vary from seconds to days (Yanes et al., 2010; Jain et al.,
2012; Linketal., 2013). Given that metabolites are
among the most phenotype-relevant cellular components
under environmental stress (Moreno-Sanchez et al, 2008),
dynamic metabolomics study exhibits its advantages in
characterizing the real-time metabolome dysregulation
pattern both comprehensively and comparatively (Guo
etal., 2022; Wuetal., 2022). Although techniques like
quantitative metabolic flux provides a promising perspec-
tive for time-dependent omics exploration, acquisition of
high-quality dynamic metabolomics data remains
challenging in regard to non-invasive in situ sampling,
improper labeling, insufficient model options and
intensive workload (Zamboni et al, 2009; Link et al.,
2015; Tugizimana et al., 2019). Time-resolved metabo-
lomics, acting as an indispensable compartment under
dynamic metabolomics framework, plays an important
role in providing unbiased information about mechanisms
of metabolic disorders, guidance on drug development
and prognostic advice (Spégel et al, 2013; Kowalski et al.,
2015; Geng et al., 2016; Krycer et al., 2017; Halama et al.,
2019; Lu et al., 2020). Hannes et al. constructed a time-
of-flight mass spectrometry (TOF-MS) auto-sampling
system which enables bacteria’s metabolome real-time
monitoring (Link et al., 2015), and observed an inhibition
effect of nucleotide synthesis under starvation which
suggested salvage pathway is preferred than de novo for
less energy consumption. Lee et al. investigated multiple
metabolic response alterations along cell’s canceration
procedure, including upregulation of nucleotide biosyn-
thesis, downregulation of oxidative phosphorylation and
epigenome maintenance breakdown (Lee et al., 2017). In
practice, researchers have allocated antimalaria drug’s
performance from time-resolved metabolomics study, to
achieve the mode of action determination as well as
pharmacokinetics  optimization  (Allman et al., 2016;
Cobbold et al., 2016; Cobbold and McConville, 2019).

As time-resolved metabolomics being utilized as a
potential tool, new challenges have been posed by the
annotation and information extraction from the massive
amount of dynamic omics data generated (Liang et al.,
2020). Up to date, various solutions have been established
to parameterize the time-resolved metabolomics, furtherly
to interpret the underlying biological principles (Zampieri
etal., 2017). Zak et al. developed a supervised machine-
learning based protocol to unbiasedly predict time-series
metabolic pathway dynamics, which proves a supreme
performance compared with traditional Michaelis—Menten

kinetics fitting (Costello and Martin, 2018). Nyamundanda
et al. proposed an automated regression algorithm to
identify biomarkers with time-resolved dysregulation
importance (Nyamundanda et al., 2014). On top of that,
researchers are paying increasing attention on multi-
omics informatics development, ranging from tensor
factorizations, smooths, mean-variation-weighted, and
dimension-reducing principal component analysis, etc.
(Smilde et al., 2010; Zhang et al., 2015; Li et al., 2021).
Though ambiguities and false positive conclusion reached
occasionally, the generated algorithm along with
prediction models have brought novel and promising
insights into the underlying correlation of metabolic
features with disease status and prognostic impacts
regarding time influence (Zhang et al., 2015; Zeng et al.,
2022). However, very few studies are concerned with
environmental factors’ contributions through time-
resolved metabolomics. Furthermore, one knowledge gap
to fill is the derivation of chemical exposure’s metabolic
toxicokinetics and extrapolation modelling from time-
series metabolomics data consequently (Fu etal., 2021;
Liu et al., 2021; Luan et al., 2021).

Bisphenol A (BPA), an endocrine disrupting chemical
of great public health concern, is an ideal model
compound of toxicological research interest due to its
multiple molecular targets (Chen et al., 2014; Howdeshell
et al., 1999). Sufficient evidence has demonstrated BPA’s
estradiol-mimic effect which induces pleiotropic toxicity
by affecting endocrine, immune and reproduction system
(Alonso-Magdalena, et al., 2006;Alonso-Magdalena et al.,
2012; Engin and Engin, 2021). In our recent study, multi-
omics research has reported BPA exposure with
consequences on metabolic pathways perturbation includ-
ing glycolysis, purine metabolism, tricarboxylic acid
cycle with a clear dose-response dependence (Yue et al.,
2019; Jia et al., 2022; Zhao et al., 2022). Yet, no previous
research has adopted time-resolved metabolome strategies
to carry out BPA’s dynamic hazard identification and risk
assessment.

Here, we adopted time-resolved untargeted metabo-
lomics to characterized global temporal metabolite
profiles during 8 h BPA exposure. The dysregulated
metabolites and interfered pathways were firstly
identified, with the biochemical mechanisms interpreted.
We further detailed the time-resolved metabolism
patterns with distinct predominant pathways derived on
each stage, and observed significant metabolic transitions
which related to varying cellular event requirements.
Furthermore, the fitting models of dysregulated
metabolites within application domain are established, to
provide a solid real-time full range prediction of
metabolite dysregulation, as well as an insight into the
relative sensitivity extrapolation and novel biomarkers
discovery. Collectively, this dynamic metabolomics study
demonstrated a unique time-resolved metabolome
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dysregulation behavior and explored the distinct
metabolic adaptions due to temporal cell function
emphasis.

2 Materials and methods
2.1  Cell Culture and reagent preparation

MCEF-7 cell line was purchased from the American Type
Culture Collection. Cells were kept in liquid nitrogen
vapor phase until reviving. After reviving, cells were
maintained in humidified 37 °C atmosphere containing 5 %
CO,. Dulbecco’s modified eagle medium (DMEM;
supplemented with additional glucose, fetal bovine
serum, L-glutamine and sodium pyruvate as instructed)
was applied as the growth medium. BPA used for cell
treatment was purchased from Sigma-Aldrich, with stock
solution (20 mmol/L) prepared in dimethyl sulfoxide
(DMSO, 99.8 %). All of the analytical reagents applied in
this study are of high-performance liquid chromatograph
grade or higher unless otherwise stated.

2.2 BPA exposure and metabolite extraction

MCEF-7 cells were seeded in 6-well plates with starting
density of 0.4 x 10° for each well. When they reached
about 80 % confluency, the cells were exposed to BPA
with final concentration of a fixed 100 umol/L at ten
varying time points (each time point with four biological
replicates). The selection of this concentration was based
on our previous study and most metabolic dysregulation
yet no obvious toxicity has been observed (Aghajanpour-
Mir et al., 2016; Zhao et al., 2021). Cells (n = 4 replicates
for each) after treatment with duration of 0.25 h, 0.5 h,
0.75h, 1 h, 1.5h,2h,3h,4h, 6h, and 8 h, respectively
were quickly quenched and stored in —80 °C fridge (one
sample at 1 h was lost due to centrifuge operations). As
reported previously, the doubling time for MCF-7
proliferation ranges from 31.2 h to 80 h (Sweeney et al.,
1998; Jain et al., 2012; Cowley et al., 2014 ). It can be
derived that the theoretically maximum proliferation rate
falls around 7 %—-18 % at t = 8 h, which is supported by
our preliminary survival test (Fig. S2). Taking cell cycle,
observable outcome and nutrient limit into consideration,
we finally decided to use 8 h as final exposure point. As
expected, the effect of undulated cell counts at each time
point have been treated as marginal and negligible.
Control samples (n = 3) were prepared by quenching
the cells instantly after BPA was added into the system.
Metabolite extraction protocol was modified based on our
previous studies (Fang et al., 2015; Beyer et al., 2018; Liu
et al., 2020; Zhao et al., 2021). After rinsing with PBS
twice rapidly, metabolites were collected with 1.6 mL
ice-cold methanol: acetonitrile: water (2:2:1, v/v/v) and
harvested by a cell scraper. To preserve and extract the

pure metabolite, freeze-thaw steps were conducted thrice
using liquid nitrogen followed by sonication in an ice
bath for 10 min. After placed at —40 °C for 1 h, the
samples were violently vortexed and centrifuged for 15-min
at a speed of 13000 r/min at 4 °C to precipitate proteins.
The supernatant was collected and evaporated to almost
dryness by a CentriVap centrifugal vacuum concentrator
(Labconco, USA). The resulting extracts were then
reconstituted by 100 pL acetonitrile: water (1:1, v/v),
sonicated on ice for 10 min, and centrifuged for 15 min at
13000 r/min and 4 °C to remove insoluble debris. The
final metabolite products were transferred to HPLC vials
with insert and stored at —40 °C for further instrumental
analysis (Xu et al., 2020; Xu et al., 2021).

2.3 Metabolite profiling and QA/QC

Instrumental analysis was performed on High-
performance Liquid Chromatography (HPLC) system
coupled with Quadrupole Time-of-Flight (QTOF) mass
spectrometer. Details of the profiling method was a
modified version from our previous study (Fang et al.,
2015; Beyeretal,, 2018; Zhao etal.,2022). In our
previous study, most of the altered metabolites were
shown in the HILIC negative mode (ESI-), and thus we
only used this method due to the large number of samples
analyzed. For instrumental analysis, the analyzed
components were separated by UPLC (Ultra performance
liquid chromatography) Acquity BEH amide column
(1.7 pm, 2.1 mm x 100 mm), with a running time of
12.5 min per sample. Briefly, mobile phase A was
25 mmol/L NH,OH with 25 mmol/L NH,OAc in water,
and mobile phase B was acetonitrile. Mobile phase linear
gradient as well as other parameters were set as
previously reported (Zhao et al., 2022). To correct mass
accuracy, retention time shift and response drift, a
mixture consists of all samples (QC sample) was prepared
by pooling all treated and control cell samples. QC
analysis was conducted by injecting a QC sample and a
blank sample (acetonitrile: water, 1:1, v/v) once among
every eight injections of biological samples. Data-
dependent acquisition and targeted MS/MS of selected
precursors were also run on the QC sample for metabolite
identification purposes (Xu et al., 2021b).

2.4 Metabolite identification, metabolic pathway analysis
and data visualization

The metabolite profiling data (MS1 full scan) were
processed with Agilent Masshunter Acquisition Software
6.0 and further analyzed on cloud-based XCMS Online
platform (Smith et al, 2006). 11 groups of time-dependent
MSI1 profiling data were analyzed through multigroup
analysis. Briefly, after peak picking, alignment and
annotation, the candidature features were firstly screened
with principles listed: signal-to noise (S/N) ratio > 10,
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maximal intensity > 10000, |fold change| = 1.1, to obtain
the dysregulated metabolites with significant biological
meaning. To compare the metabolite changes at various
time points, one-way ANOVA along with Duncan post-
hoc analysis was applied to examine whether the
treatment group is statistically different; an FDR-adjusted
p-value < 0.05 was considered statistically significant.
After filtering out the insignificantly dysregulated
metabolic features, metabolite identification was carried
out using a few filters including accurate mass match,
MS/MS fragment match (auto/targeted MS/MS) and in-
house retention time match (Zhao et al., 2021). Addi-
tionally, metabolite features were searched against several
open-source platforms, including METLIN (Smith et al.,
2005), KEGG and HMDB databases.

Metabolic Pathway Enrichment Analysis were con-
ducted using Metaboanalyst and Metamapp with data at 8
h point. The calculated nodes and edges were extracted
and visualized by Cytoscape. To characterized time-
resolved metabolites’ dysregulation tendency and
interspecies correlation, restricted cubic spline fitting
(RCS) modelling was applied as previously stressed
(Inoue et al., 2020; Johannesen et al., 2020). Other data
visualization such as heatmap, principal component
analysis, rose diagram and correlation plot were com-
pleted using R-studio (version 4.0.1) (Vienna, Austria)
and GraphPad Prism (version 7), while statistical analyses
were performed by SPSS Statistics (version 22). All data
were processed and optimized in advance (log-
transformed, FDR-adjusted normalized, Pareto scaling,
etc.) as suggested in the workflow summarized in (Fig. 1).

3 Results and discussion
3.1 Metabolomics profiling

To uncover the metabolites of time-dependent dysregula-
tion interest, we conducted untargeted metabolomics
analysis by initiating with semi-quantitatively aligning
the features across all samples and conducting the
multiple group analysis. In total, 6143 significant features
were identified with FDR-adjusted p-value =< 0.05
calculated by one-way ANOVA. Overall, a positive
correlation was observed between exposure time with
significant feature numbers (Fig. 2C), and the upregulated
features were ubiquitously outnumbered than the
downregulated ones. PCA analysis exhibits quite well
grouping pattern (Fig.2A), and the percentage of
explained variances reaches approximately 33.6 % and
19.9 % for the first two components respectively, (Fig. 2B),
which suggests a characteristic distinction for the time-
resolved metabolome change.

We also summarized the overlapping and distinct
features at2 h, 4 h, 6 h and 8 h in a Venn diagram (Fig. 2D).
Among all treatment groups, the overlapped percentage

for dysregulated features were significantly distinct (72.9 %
for t=2h, 64.7 % for t =4 h, 79.5 % for t =6 h and 76.5 %
for = 8 h, respectively). The coverage discrepancy may
imply certain intrinsic relationships between features’
alteration tendency as exposure time increasing.

3.2 Dysregulated metabolite identification

Based on the feature alignment and annotation results, we
manually curated the shifted m/z and retention time.
Combined with in-house standard library matching and
MS/MS  fragmentation validation, 37 significantly
dysregulated metabolites were confidently identified at
either level 1 confirmed structure or level 2 probable
structure (Schymanski et al., 2014), ranging from amino
acids, fatty acids, carboxylic acids and nucleoside
phosphate compounds (Table S1). Hierarchical clustering
heatmap of 37 metabolites was presented in (Fig. 3). The
clustering pattern exhibits quite reasonable dynamically-
distinct features, as well as the simultaneous/ synchro-
nized dysregulation characteristic for certain metabolites
within one shared category, which is consistent with our
previous report (Zhao et al., 2022).

Based on the clustering, a few featured patterns can be
observed. For one thing, different metabolites exhibited
distinct temporal dysregulation patterns. Among all the
identified metabolites, lactic acid showed the highest fold
change (FC = 4.0) at 8 h, while citraconic acid hits the
minimum (FC = 0.1) at 6 h. The intercellular accumul-
ation of lactic acid implied an enhanced glucose uptake
due to Warburg effect (Brodsky etal., 2019). Several
metabolites were significantly upregulated to certain
degree after 8 h exposure (NADH, N-Acetylglutamic
acid, lactic acid, CDP-ethanolamine, etc.), while others
exhibited a monotonic downregulation tendency (glutamic
acid, phosphocreatine, pyroglutamic acid, etc.), which is
consistent with previous studies (Potratz et al., 2017; Liu
et al., 2020; Zhao et al., 2022). The decrease of glucose
and phosphocreatine indicated a higher metabolic
requirement for sugar and energy consumption, which
suggests BPA exposure induced disturbances in TCA
cycle and glycolysis (Azevedo et al., 2019). It is also
worthy to note that a few metabolites were behaving a
global oscillation behavior. For example, UDP-glucose
plays indispensable roles in polysaccharides biosynthesis
by gluconeogenesis and glycogen metabolism, also
extracellular signalling as inflammatory responses
(Zimmer et al., 2021), which suggested a multi-factor and
crossed-pathway co-regulation manner (Kerkhofs et al.,
2020).

On top of that, similar or synchronized dysregulation
patterns were observed for certain metabolites within one
common class, which implies a certain intercorrelated
dysregulation principle. For example, the dysregulation
pattern for amino acids (leucine, lysine, proline, tyrosine,
valine) as well as nucleotide triphosphates (ATP, GTP,
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Fig.1 Tiered approach of the time-resolved metabolomics study. (A) Experimental workflow to harvest MCF-7 cells exposed to

Bisphenol A at 11 varying time points (0 h, 0.25 h, 0.5 h, 0.75 h,

1 h, 1.5h,2 h,3 h,4h, 6 h, and 8 h), with intercellular metabolites

extracted and analyzed by HPLC-MS. (B) Data processing and metabolite identification under untargeted metabolomics framework.
The applied methodology included but not limited to: MS1 profiling, MS2 validation, RT shifted correction, in-house standard
library alignment, one-way ANOVA, t-test, pathway enrichment analysis, etc. (C) Time-resolved metabolomics was implemented to
uncover metabolite time-dependent dysregulation behavior, including metabolite dysregulation analysis, temporal pathway

enrichment and restricted cubic spline-based prediction.

CTP, UTP). The dysregulated amino acids play important
roles in the promotion of energy metabolism, protein
biosynthesis, hormone production and inhibition of
proteindegradation(Slominski et al., 2012; Acevedo et al.,
2013; Duanetal., 2016). In addition, the disturbed
nucleotide triphosphates were explicitly related to
purine/pyrimidine metabolism dysfunction (Liu et al.,
2020), cell cycle maintenance, as well as potentially
linked to BPA provoked DNA damage and degradation.
The differences of metabolomic effect between exposure

time could be partially explained by the gradient
increasing estrogenic activity (Zhao et al., 2022). Overall,
the time-dependent regulation of amino acids, nucleosides
and sugar suggested global metabolome disturbances, as a
consequence from environment estrogen exposure and
concomitant ERa-mediated induction of cell proliferation
(Potratz et al., 2017). Collectively, the continuing BPA
exposure triggered significant time-resolved metabolome
changes for various metabolites.
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features at 2 h, 4 h, 6 h, and 8 h (multigroup analysis).
3.3 Time-series metabolomic pathway analysis

Metabolomic pathway analysis was further conducted by
pathway enrichment of the dysregulated metabolites. The
top interfered pathways within 8 h exposure were purine
metabolism, pyrimidine metabolism, aminoacyl-tRNA
biosynthesis as well as glutamine/glutamate metabolism
(Fig. 4A). The result is also in line with several earlier
studies suggesting that exposure to developmental
toxicants such as BPA can induce disturbances in
arginine metabolism, glutamate metabolism and citrate
cycle (West et al., 2010; Zhao et al., 2021). The perturba-
tion of aminoacyl-tRNA biosynthesis was also supported
by earlier studies which observed an increase in amino
acid concentrations in BPA treated-embryos (Huang
et al., 2017; Ortiz-Villanueva et al., 2017). What is more,
nucleotide phosphate levels were elevated through both
de novo synthesis (glutathione) (Yuan et al., 2016; Fan
et al., 2020) and salvage pathway (Vahdati Hassani et al.,
2018) as reported. Other pathways include amino sugar
and nucleotide sugar metabolism, galactose metabolism
and TCA cycle indicated an upregulation of glucose

oxidation reactions, elevated levels of proteolytic
metabolism and energy consumption (Liu et al., 2020). In
total, the enriched pathways revealed an enhancing
proliferation trend for MCF-7 cells through BPA’s
estrogenic effect, with multi-pathway and multi-ending
adverse effects involving global amino acid, glucose and
lipid metabolism dysfunctions. Compared to previous
studies (24-48 h in vitro), this study demonstrates that
short-term exposure to BPA can lead to similar and
observable disorders in varieties of primary metabolites
and metabolism intermediates.

On top of that, we further specified the time-series
regulatory patterns for certain pathways, in order to
specifically describe the dynamic changes of selected
biological processes with reference to exposure time. To
demonstrate the featured pathway during 8-h BPA
exposure, we identified the top 3 mostly enriched
pathway at each time point (Fig. 4B). From 0.25 hto 2 h,
purine metabolism features the most dominant regulating
pathway, which indicated a temporal metabolic emphasis
on one-carbon unit biosynthesis and tumor cell
proliferation (Yin et al., 2018). The enriched upregulation
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of nucleotide phosphates (AMP, ADP, ATP) was greatly
attributed to enhanced de novo purine biosynthesis (Lv
etal., 2020), as well as the blockage in nucleotides
degradation consequently (Xu et al., 2021). From 2 h to
6 h, glutamate/ glutamine metabolism showed the top
enrichment, which suggested a metabolic alteration to
meet elevated energy requirements. Glutamine is an
essential component in ATP biosynthesis, which fuels
TCA cycle and nitrogen metabolism (Mazat and Ransac,
2019). Its upregulation suggested a higher intercellular
energy demand from enhanced sugar metabolism after 2 h
BPA exposure. The observed metabolic adaption from
cell growth to energy metabolism interpreted the
intercellular metabolic adaptions due to temporal cell
function requirements, which is of great significance in
understanding BPA’s toxicology mode of action, as well
as providing an insight about the time-resolved
biochemical hazard identification (Kalkhof et al., 2015).
We further managed to plot the average abundance
profiles of detected metabolites within four pathways
individually (Fig. 4D), which showed tangible distinc-
tions mutually. The rose diagram showed the number of
significantly affected metabolites as well as pathways
soared with lasting exposure time, and the metabolic
disruption severity continuously increased (Fig. 4C).
Overall, the results suggested that multiple pathways
were distinctly activated or inhibited with reference to

time. Time-resolved changes in metabolic pathway
profiles were achieved through co-regulation of various
metabolites (Metallo and Vander Heiden, 2013).

3.4 Time-resolved metabolite dysregulation pattern
spotlight

To accurately describe the time-response relationship of
metabolites and investigate the time-induced microscale
effects on biological functions, we further focused on the
metabolites in purine metabolism and pyrimidine
metabolism pathways (Fig. 5) as they were comparably
abundant and globally pathway-enriched. As the primary
catabolism compartment for intercellular signalling,
energy transfer and DNA/RNA production, purine and
pyrimidine metabolism are among the rapidest respon-
ding biological processes dealing with Xxenobiotic
exposure (Liu et al., 2020). ATP is the basic cellular fuel
component, whose dysregulation pattern shows an
increasing energy consumption demand. AMP is a crucial
composition for coenzyme (CoA, NAD, etc.), from which
we inferred an enhancing oxidative phosphorylation and
cellular respiration. UTP acts as the energy source for
glucose/ galactose metabolism, and CTP involves energy
transfer in membrane lipid metabolism. The time-
resolved regulation of the mentioned purine/pyrimidine
nucleotides showed a global elevated energy homeostasis,
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Fig. 4 (A) Metabolite enrichment analysis of 37 significant dysregulated metabolites (p < 0.05); (B) Temporal diagram of the top
3 mostly enriched pathway (with minimum p-value) at each time point; (C) Rose diagrams which present the number of significantly
changed metabolites and significantly disturbed pathway (p < 0.05) at each time point; (D) Average abundance profiles of detected
metabolites for four pathways (purine metabolism, pyrimidine metabolism, aminoacyl-tRNA biosynthesis, alanine, aspartate and
glutamate metabolism). The pathway value was set as the mean of the involved metabolite within specified pathway. All abundance

levels are normalized to their mean values at 0 h.

which may be related to membrane lipid biosynthesis,
protein  glycosylation and upregulated cell cycle
progression (Moffatt and Ashihara, 2002; Quéméneur et
al, 2003; Liu et al., 2020). This is reasonable as MCF-7 is
a hormone-sensitive cell line, for which BPA can induce
environmental estrogenic effects (Blom et al., 1998;
Gould et al., 1998). Another evidence is that the oxidized-
glutathione and glutathione metabolism dysfunction
indicated an increasing oxidative stress that cells
experience. This is consistent with multiple studies
suggesting BPA exposure has led to depression of several

antioxidant enzymes, including glutathione reductase and
glutathione peroxidase (Meli et al., 2020). Besides, tumor
cells often tend to enhance glycolysis with extra ATP
produced, as a protection against the inflammatory
damage from xenobiotic intrusion (Brand and Hermfisse,
1997). And it is validated by an earlier trans-omics study
which reported plenty of inflammatory-related genes
along the Nrf2-ARE pathway were substantially
expressed in MCF-7 cells undergoing BPA exposure
(Liu et al., 2020).

To prove this, we focused on two pairs of metabolites:
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Fig. 5 Metabolomic analysis of purine metabolism and pyrimidine metabolism. The time-response plot for detected metabolites
were shown (fold change vs. time), with red dashed line stands for control (FC = 1).

NAD with NADH, and glutathione (GSH) with oxidized
GSH (GSSG) to check the intercellular oxidative stress
and redox metabolism status (Figs. 6B and 6C).
NAD/NADH ratio maintains a redox balance in
mitochondrial activity through the electron transport
chain. The observed excess NADH is linked with reactive
oxygen species (ROS) production by inhibiting pyruvate
dehydrogenase complex, which leads to DNA/protein
damage and various metabolic syndromes (Wu etal.,
2016). GSH/GSSG ratio is another important indicator in
the assessment of redox state and cellular antioxidant
capacity (Owen and Butterfield, 2010). Unlike the mono-
tonic drop in NAD/NADH ratio, the observed GSH/GSSG
value showed an oscillating behavior. For 0.25 h to 2 h,
GSH’s elevation is potentially resulted from cell
proliferation events (Wu et al., 2004), which may also be
attributed to enhanced cellular oxidative stress resistance
(Kennedy et al., 202020). This result suggested that cells

were undergoing time-dependent increased cellular
oxidative stress, which in turn resulted in oxidative
phosphorylation and glycolysis dysfunctions (Moreira
etal., 2016), which is supported by an earlier study
indicating that BPA exposure induced malate-aspartate
shuttle functioning disorders (aspartate aminotransferase,
glutamate-aspartate transporter, etc.) to break the NADH
balance in the mitochondrial respiration chain (Kunz
etal., 2011).

3.5 Metabolite time-response model fitting

To investigate the intrinsic relationship between different
metabolites’ regulation patterns, the Pearson correlation
matrix was adopted to explore the characteristic linear
association (Fig. 6A). Most metabolites exhibited weak
co-dysregulation dependencies, while several showed
regional clustering features. Forexample, N-Acetylglutamic
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acid (C00624) demonstrated quite positive regulation
correlations ~ with  L-Glutamic  acid  (C00025),
Pyroglutamic acid (C01879) and Citric acid (C00158).
This is reasonable as the consumption and regeneration
between glutamic acid and its derivatives maintains a
dynamic balance from the GABA cycle to the TCA cycle
(Petroff, 2007). Similarly, significant negative
correlations were observed between UTP (C00075) with
UDP-glucose (C00029) and UDPGA (C00043), which
may suggest that BPA exposure triggered an enhanced
conversion from UTP to UDP-glucose which fuels the
TCA cycle as well as fulfills cell proliferation require-
ments (Kim et al., 2010). Scatterplots of fold changes at
the adjacent time steps for 37 metabolites were further
presented in Fig. S1. Typically, the metabolite changes
between neighboring time points exhibit positive
correlations, yet the dysregulation pattern and intensity
vary between each period (Lee et al., 2017). The results
also indicated a characteristic dysregulation rate for
different metabolites, also the derivation of accurate and
robust time-resolved models is essential for full-period
cartography prediction.

To systematically evaluate the time-resolved dysregula-
tion pattern for various metabolites, time-response
relationships for each were fitted and several curves were
presented (Fig. 7). Traditional monotonic dose-response
methods can hardly be eligible for the time-resolved

diagram of dynamically changing GSH:GSSG ratio.

metabolism behavior characterization. Hereby, we
implemented a restricted cubic spline fitting (RCS)
protocol, as for its advantage in non-linearity continuous
description and successful application in multiple public
health issues (Desquilbet and Mariotti, 2010; Inoue et al.,
2020; Johannesen et al., 2020). The established models
not only provided an insightful tool to predict the
metabolite dysregulation behavior in untested scenarios,
also illustrate metabolites’ relative sensitivity, which
leads to novel biomarkers identification (Zhao et al.,
2022). For example, the four presented metabolites
(AMP, citrate, guanosine, glutamic acid) perform
different biological functions in separate metabolic
pathways. At 1 h, the predicted FC values for each are
0.75, 1.86, 2.28 and 0.9, respectively, which suggested
metabolites” sequential relative sensitivity to BPA
exposure (guanosine > citrate > AMP > glutamic acid).
The information could further be adopted for potential
biomarkers identification, for metabolites with higher
dysregulation sensitivity (GTP, CTP, proline, etc.) (Zhao
et al., 2022). The time-resolved dynamic metabolomics
study shall provide insights into active metabolomics to
construct a solid framework for elucidating metabolite
real-time dysregulation pattern, which is also promising
in the application of dynamic metabolome monitoring,
prediction and extrapolation (Rinschen et al., 2019; Lai
et al., 2021; Peng et al., 2022).



Haoduo Zhao et al. Time-dependent metabolomics uncover dynamic metabolic adaptions

RCS for AMP

0.3 1.0 3.0
Time (h)
RCS for Guanosine
4-
3.
2
2_
1.
0.3 1.0 3.0
Time (h)

11

RCS for Citrate

[ )
: ’. [ )
M
. A4
o
®
) ° ®
°
"
o
[ ]
03 10 3.0
Time (h)
RCS for Glutamic acid
11-
0 09- ° 's ® :. [
e o oce 8
0.7- o o o3
: 4
05-
03 10 3.0
Time (h)

Fig. 7 Restricted cubic spline fitting curve of four metabolites, with confidence level indicated in grey (p < 0.05).

4 Conclusions

In summary, this study characterized the time-dependent
cellular metabolome changes under BPA exposure.
Thirty-seven significantly dysregulated metabolites were
identified, ranging from amino acids, fatty acids,
carboxylic acids and nucleoside phosphate compounds.
Different metabolites basically showed distinct time-
resolved changing patterns, while ones within common
class showed similar and synchronized dysregulation
manners. The pathway enrichment analysis suggested that
purine metabolism, pyrimidine metabolism, aminoacyl-
tRNA Dbiosynthesis as well as glutamine/glutamate
metabolism pathways were heavily disturbed. As
exposure event lasting, MCF-7 cells went through clear
sequential metabolic adaptions from cell proliferation to
energy metabolism, which indicated an enhancing cellular
requirement for elevated energy homeostasis, oxidative
stress response and ER-o mediated cell growth. We
further focused on the time-dependent metabolite
dysregulation behavior in purine metabolism and

pyrimidine metabolism, and identified the impaired
glycolysis and oxidative phosphorylation by redox
imbalance. Lastly, we established a restricted cubic
spline-based model to fit and predict metabolite’s full
range dysregulation cartography, with metabolites’
sensitivity comparisons retrieved and novel biomarkers
suggested. Overall, the results indicated that 8 h BPA
exposure leads to dynamic global metabolome adaptions
including amino acid, nucleoside and sugar metabolism
disorders, and the dysregulated metabolites with
interfered pathways at different stages are of significant
sequential distinctions. The major highlight of this pilot
study is to explore a novel omics analytical technique
which may be helpful in the depiction of dynamic
metabolism cartography, as well as the induced adverse
outcomes from a well-studied chemical exposure. Taken
the quite short biological half-life of many environmental
chemicals (within several hours) into consideration, this
human-relevant study may inspire increasing research
interests for the developments in chemical’s hazard
identification and risk assessment strategies.
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Limitations of this study are further addressed as
follows. As we investigated the metabolomic effect of
BPA exposure within 8 h, the observed time-response
dysregulation pattern may be incomplete. Also, the
selection of time points isn’t intensive enough to acquire
real-time metabolome monitoring data, which may lead to
key stages’ neglections at which metabolic transition
happens. In vivo and other in vitro models should also be
adopted in future studies to validate the established time-
response dysregulation models. The reached conclusion
requires further validation, like chemical proteomics and
flux studies. And the RCS modelling strategies can hardly
be applied to all metabolites as some of them exhibit an
oscillation dysregulation behavior. Overall, the time-
resolved metabolomics study is promising for elucidation
of the time-dependent metabolome dysregulation and
identification of the sequential biochemical anomalies,
yet still challenging in the interpretation of toxicological
mechanisms, as well as the experiment’s reproducibility
and scalability.
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