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Abstract Industry 4.0 aims to transform chemical and
biochemical processes into intelligent systems via the inte-
gration of digital components with the actual physical
units involved. This process can be thought of as addition
of a central nervous system with a sensing and control
monitoring of components and regulating the performance
of the individual physical assets (processes, units, etc.)
involved. Established technologies central to the digital
integrating components are smart sensing, mobile commu-
nication, Internet of Things, modelling and simulation,
advanced data processing, storage and analysis, advanced
process control, artificial intelligence and machine learning,
cloud computing, and virtual and augmented reality. An
essential element to this transformation is the exploitation
of large amounts of historical process data and large
volumes of data generated in real-time by smart sensors
widely used in industry. Exploitation of the information
contained in these data requires the use of advanced
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machine learning and artificial intelligence technologies
integrated with more traditional modelling techniques. The
purpose of this paper is twofold: a) to present the state-of-
the-art of the aforementioned technologies, and b) to
present a strategic plan for their integration toward the
goal of an autonomous smart plant capable of self-adaption
and self-regulation for short- and long-term production
management.

Keywords big data, machine learning, artificial intelli-
gence, smart sensor, cyber—physical system, Industry 4.0,
intelligent system, digitalization

1 Introduction

The rapid technological progresses in areas, such as the
Internet of Things (IoT), Internet of Services (IoS), Internet
of People (IoP), smart sensing, mobile communication,
process modelling and simulation, advanced data
processing, storage and analytics, artificial intelligence
(AI), edge and cloud computing technologies, cyber-
security, advanced robotics, multiagent technologies, or
virtual and augmented reality, increase the complexity of
current industrial processes that transform into so-called
cyber—physical systems (CPSs) by integrating informa-
tion and communication technology (ICT) with physical
process objects.

Terms, such as Industry 4.0 or the Fourth Industrial
Revolution, embody the vision of such production
systems, where intelligent objects, such as machines,
process units, and robots can measure and assess their
own situation and communicate, make decisions and
dynamically adapt, and reconfigure on the basis of local
and global information (Bendul and Blunck, 2019).

Thus, the production system becomes all-automated,
eventually integrated into a supply chain, where human
intervention is reduced to an indispensable minimum
(Castelo-Branco et al., 2019), and takes advantage of the
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advanced intelligence provided by the abovementioned
technologies to achieve flexibility, reduced complexity,
and modularity (Zhong et al., 2017).

The main implementation principles toward Industry
4.0 are as follows (Mohamed, 2018):

* Interoperability between CPS, enterprises, and humans
connected by IoT and IoS;

* Virtualisation of the physical world, enabling the CPS
to monitor physical processes;

* Real time capability to continuously analyse data and
react to any changes in the environment;

* Decentralisation, which relates to giving autonomy,
resources and responsibility to lower levels of the orga-
nisational hierarchy in the event of failures or complex
situations;

* Service orientation, in which application components
provide services to other components via a communication
protocol;

* Security of information and its privacy.

Digitalisation creates a version of the industrial process,
where all the production operations, simulation and
experimental verification are virtualised. The addition of
the networking, monitoring and analysis, and decision-
making elements of Industry 4.0 transform the digital
process into an intelligent system, with a dynamic
configuration.

Many challenges still need to be resolved for Industry
4.0 to become more applicable (Fatorachian and Kazemi,
2018; Ivanov et al., 2018; Luthra and Mangla, 2018;
Vaidya et al., 2018; Xu et al., 2018; Oztemel and Gursev,
2020):

 For many processes, the existing infrastructure is not
entirely ready to support the digital transformation to
Industry 4.0, which aims at horizontal, vertical and end-
to-end integration.

* Designing Industry 4.0 systems involves complexity
due to the heterogeneous and high-dimensional nature of
the elements that are part of the industrial CPS. This
condition gives rise to increased uncertainty and risks,
multiple feedback cycles and dynamics.

* Scalability, as the number of physical objects con-
nected grows exponentially larger with the size of the
system.

» The more elements connected, the larger the amount
of big data from a variety of heterogeneous sources needs
to be acquired, transferred, stored and analysed.

* At present, no common platform can accommodate
the variety of communications technologies and applica-
tions that should be integrated and interoperable in the
intelligent production systems’ network.

* Need for modularised and flexible physical objects
that can be connected and work together for distributed
decision-making.

* Need to develop global standards and data sharing
protocols.

* Legal, data privacy and security issues need to be
considered in developing sustainable business models.

The application of Industry 4.0 concepts requires the
conversion of regular machines and processes into
resilient, self-aware, self-learning and self-adapting
systems to improve their overall performance and mainte-
nance management (Vaidya et al., 2018). Such a system
does not currently exist, but many of the components
required for its creation are already available.

The rest of this paper is organised as follows. Section 2
introduces the way digitalisation can improve the produc-
tion systems. Section 3 focuses on current process sensing
and monitoring technologies. Section 4 presents the way
in which the big data obtained can facilitate the develop-
ment of smart systems with the utilisation of various
computational approaches, such as machine learning
(ML), to gain understanding on the behaviour of the CPS.
Section 5 focuses on fault detection and prediction, and
Section 6 introduces optimisation solutions that could
enable adaptation and self-regulation of industrial
systems. Section 7 focuses on the elements that can
contribute in facilitating decision-making in the smart
plants of the future: Ontology and multiagent systems
(MASS). Section 8 discusses uncertainty, a key character-
istic of real systems. Section 9 introduces a novel modular
and decentralised framework, which is enabled by the
development of digital twins, for autonomous systems.
Section 10 concludes the work.

2 Digitalisation of production systems

The term digitalisation is regarded as a step towards
enabling, improving and transforming models, functions,
processes and operations by leveraging a multitude of
technological advancements, and is perceived to be a
combination of the followings (Kan et al., 2018; Bendul
and Blunck, 2019; Giirdiir et al., 2019):

* Integration of a multitude of wireless sensors, com-
puting units and machines in a large-scale network that
enables “things” to communicate and exchange data;

* Increased amount of heterogeneous data, computational
power, and connectivity, including big data, open data
and cloud technologies;

* Developments from the field of analytics and Al, such
as automation of knowledge based on advanced analytics;

* Convergence between the real and virtual worlds
through information and communication technologies;

e Improved human—machine interaction and integra-
tion.

The integration between the real and the virtual worlds
leads to complexity emerging from interactions between
cyber systems and the uncertain dynamic behaviour of
physical systems whilst having to deal with limited
resources, usually shared among the components of the
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CPS, creating a resource-constrained environment in
which complex interactions can lead to serious disruptions
undermining the system’s utility (Nayak et al., 2016).

The modelling of a CPS requires a multidisciplinary
approach that should focus on the separate physical and
cyber components, and on their integration and interaction
(Hehenberger et al., 2016). When modelling a CPS, the
following characteristics should be considered (Seiger
etal., 2015):

* The CPSs are highly dynamic with respect to the
number and availability of their components, devices and
services.

* Numerous heterogeneous devices and services are
integrated into a so-called system-of-systems.

* Processes can be extremely complex and contain a
large number of steps, requiring hierarchical structuring
and aggregating.

* Numerous processes can coexist in a CPS and their
execution times and cycles can vary considerably.

* The generation of various model alternatives in line
with the new requirements is needed because of a change
in conditions.

* The execution of the model should be performed in a
distributed manner to account for the structure of the
CPS.

For the purpose of handling such complex systems, the
Reference Architecture Model Industry 4.0 was developed
in Germany (Willner and Gowtham, 2020), a meta-model
that describes the aspects that play an important role in
the Industry 4.0 production systems.

Humans are one of the inevitable components for the
smart plants of the future to be successful, requiring user
interfaces to bridge the human and the components of the
CPS (Dafflon et al., 2021), with the new system defined
as a human—cyber—physical system (HCPS). HCPS appli-
cations are common in most areas of major infrastructure
development, such as smart grids, smart cities, smart
transportation, smart education, smart healthcare and
medicine, and national defence (Liu and Wang, 2020).
Their application in the area of smart plants becomes
essential due to the continuous evolution and integration
between the cyber and physical components in the manu-
facturing area, although not an entirely new concept.

Intelligent manufacturing based on HCPS requires the
human component to have a greater role in the formation
of human—machine symbiosis, which brings diverse chal-
lenges in the form of (Zhou et al., 2019):

* The need to develop effective approaches for division
of work and cooperation between humans and intelligent
machines, which fully utilise the human and machine
intelligence;

» Achievement of human—machine hybrid-augmented
intelligence;

* Requirements to introduce safety, privacy, ethical and
other issues in Al and intelligent manufacturing.

3 Process sensing and monitoring

Efficient sensing and monitoring of the various elements
of the industrial process systems is a key element in
achieving the goal of a self-adaptive and self-repairing
system. The mobile and wireless communication revolu-
tion is entering a new phase with the deployment of the
fifth generation (5G) mobile communication which aims
to furnish a real wireless world, free from present obstacles
of the 4G systems. The multitude of physical devices
connected through IoT require thousands times higher
mobile data capabilities, user data rates greater than
1 Gbps, 10 to 100 times more connected devices, more
battery life, and five times reduced latency (Kumar and
Gupta, 2018).

The declining cost and maturity and adoption of wireless
standards, such as Bluetooth, ZigBee, WiFi and radio
frequency identification, enable global interoperability
between devices and device manufacturers and further
stimulate the deployment of ubiquitous, pervasive and
wireless applications, including wireless sensor networks
(WSNs) (Steinberg and Steinberg, 2009).

WSNs consist of hundreds of sensor nodes that may be
deployed in relatively harsh and complex environments
for remote monitoring, control and surveillance purposes
(Alsheikh et al., 2014; Zhang et al., 2018). The sensors
are capable of measuring one or more desired physical
quantities. A typical WSN usually consists of a base
station (or Sink Node) for data collection, processing and
connection to the environmental area. Modern wireless
sensor nodes usually have microprocessors for local data
processing, networking and control purposes (Moustapha
and Selmic, 2008).

In complex distributed sensory systems, WSNs often
operate in potentially hostile and harsh environments, and
most of the applications are mission critical (Moustapha
and Selmic, 2008; Lv et al., 2016). In chemical process
engineering applications, WSNs are deployed in industrial
plants to monitor or sense various aspects of the environ-
mental or mechanical environments. The states and infor-
mation rotations of machines, moving objects and chemical
reagents can be captured by the WSNs.

In the very specific application of chemical process
fault detection, accidents caused by the system perfor-
mance dissipation and external disturbance result in huge
property losses and casualties; intelligent techniques are
required to detect and identify faults in complex industrial
processes of large and complicated modern industrial
systems (Lv et al., 2016).

4 Big data and machine learning (ML)

The integration between the cyber and physical worlds
facilitated by the Industry 4.0 technologies enables the
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creation and collection of huge amounts of data from
different points in the manufacturing system. These data
will have to be stored and fused into online/cloud-based
databases to be used for tasks, such as predictive mainte-
nance or operation and business decisions. Inferential
sensors predict important variables often difficult or
uneconomical to measure online by using available
process data (Chiang et al., 2017).

Under these circumstances, big data refers to large
amounts of multisource, heterogeneous data generated
through the product lifecycle, which is characterised by
the five-V (Tao et al., 2018):

a) A high Volume (i.e., huge quantities of data);

b) Variety (i.e., the data comes in different forms and is
generated by diverse sources);

¢) Velocity (i.e., the data is generated and renewed at
extremely high speed);

d) Veracity (i.e., the data is associated with a level of
bias, inconsistency, incompleteness, ambiguities, latency,
noise, and approximation);

e) Value (i.e., huge value hidden in the data).

The utility of the data does not hinge solely on the
sheer volume of information available but rather on the
knowledge that lies hidden in it. A systematic computa-
tional analysis of data collected from the chemical or
biochemical system can enable more informed decisions,
which will enhance the efficiency of the process.

The process of mining data streams acquired from the
various heterogeneous monitoring and sensing devices
embedded in the physical components plays an essential
role in the functionality of the CPS because it enables
extraction of insight and knowledge, provides learning
and predictive capabilities for decision support and
autonomous behaviour, enables feedback from physical
and human layers to the cyber counterpart, and facilitates
the integration of the three layers (Fei et al., 2019).

To be of value, data must be available for analysis in a
sufficient volume and velocity, covering a sufficiently
broad variety of relevant factors, and be trustworthy
(Udugama et al., 2020).

Appropriate techniques are needed for the collection,
transmission, storage and processing of all the data and
their record keeping in cloud-based portals. Innovative
and effective analytic techniques are required to operate
continuously and in real time on the data streams and
other data sources, such as the ones based on ML and Al
(Feietal., 2019).

An important critique of the big data era is that often
“manufactured” patterns and correlations can provide
false knowledge, especially in situations when the big
data analytics is applied without context and domain
knowledge. Given that chemical and biochemical
processes are governed by first principles, fundamental
modelling approaches must be combined with ML
approaches to develop accurate dynamic and nonlinear
models.

However, this integration to create enterprise-scale
solutions remains an important technical challenge in
the area of chemical and biochemical process systems
engineering (Chiang et al., 2017).

The computing architecture has an important influ-
ence on the data-driven algorithms, and the integration
between solutions, such as edge, cloud and fog computing
(Xu et al., 2020), into decision-making frameworks based
on hybrid mechanistic and data-driven models is another
benefit that Industry 4.0 brings into the design and opera-
tion of smart plants. An important difference between the
fog and cloud approaches rests in the number of available
resources (Fei et al., 2019):

* Although the cloud is considered to have virtually
unlimited storage and processing capabilities in the fog,
such resources are restricted, and their optimal manage-
ment is crucial;

¢ Interhost communication in the cloud is fast due to
high-speed networks, whereas wireless communication
and varying network types lead to delays in the fog.
Delays can also be observed in the cloud during the
access to remote devices.

ML approaches offer a multitude of solutions for learn-
ing underlying patterns from big sets of data and
making insightful predictions for difficult tasks in
complex scenarios, such as the operation of CPS (Ruan
et al., 2022).

In the following, the focus will be on deep learning
techniques or hybrid learning approaches for fault detec-
tion and prediction tasks.

Convolutional neural networks exploit translational
invariance within their structure by using receptive fields
and learning via weight sharing to extract features and
usually include two elements (Fei et al., 2019):

a) The feature extractor, composed of multiple similar
stages and layers, which automatically learns features
from raw data;

b) The trainable, fully connected multilayer perceptron
or other classifiers (e.g., support vector machines
(SVMs)), which performs classification based on the
learned features from the feature extractor.

A hybrid learning structure can tackle with more
sophisticated data processing models, whereas deep
neural networks (DNNs) usually attempt to find direct
solutions using raw data. DNNs are usually consisted
of more than two hidden layers, where some have
extremely compact and optimised architectures of inter-
layer connections.

This type of neural networks is often able to process
and discover hidden information from extremely large
volumes of data for very specific application-driven tasks
that are usually unattainable using the conventional ML
methods. DNNs circumvent complex data preprocessing
procedures, which usually need to be taken care of manu-
ally by experts.

However, the computational demand is completely
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different when dealing with massive WSNs that will be
collecting data samples from the entire industrial plant(s)
at least one time per second continuously for up to
months or even years. This condition leads to billions or
even trillions of data in the long run. In this case, the
volume of data becomes incredibly large that the conven-
tional ML techniques either cannot be applied or suffer
from serious accuracy performance degradations to find
direct solutions for some extremely challenging applica-
tions, such as high-accuracy fault detection and highly
automated sensor self-managements.

With researchers creating new deep learning algorithms
and industries producing and collecting unprecedented
amounts of data, computational capability (i.e., computing
speed and memory) is the key to unlocking insights from
data and improving learning efficiency, and efficiency
brings direct profits to modern industries.

On the software part, the best that can be done is to
optimise algorithms and code to minimise the computa-
tional cost as much as possible. However, this approach
does not alleviate the computational demand of deep
learning due to its extremely large data processing
throughput.

An alternative choice is connecting a local computer to
a cloud server. However, the approaches inevitably face
limitations, such as per-user availability, and risks like
Internet disruptions, server maintenance, and data recovery
difficulties if the server encounters security issues.

Therefore, a better solution is to improve the local
hardware part (i.e., employ highly featured graphic
processing units) and incorporate advanced open-source
application programming interfaces (e.g., Caffe, Theano,
Google TensorFlow, Microsoft Azure, etc.), which has
been proven to create tremendous value and can be
proven to be the best means to greatly improve computa-
tional capacity.

Figure 1 shows the simplest DNN with only two

hidden layers for data classifications. The hyperparame-
ters, including the number of layers, number of neurons
in each layer, choice of activation functions and optimi-
sation, usually need to be tuned properly to deliver the
optimum potential performance for some specific tasks.

5 Fault detection and fault prediction

As mentioned in Section 4, various ML-based methods
are available to extract information from data. Fault
detection and fault prediction, even for future events
within the processing horizon of a production plant or
facility, play a key role in modern industry so as to
achieve safe operation primarily for safety reasons and
avoidance of industrial accidents to safeguard satisfaction
of environmental impact and legislation, and to ensure
continuous cost minimisation and profit maximisation
(process profitability) in real-time operations and not
only for long-term planning. This process requires a truly
“intelligent” monitoring and optimising control system.

A summary and comparison of using different ML
techniques and WSNs for fault detection and prediction
is shown in Table 1.

Considerably less fault data are readily available
compared with the amount of normal data. A dataset is
imbalanced if the classes are not approximately equally
represented, and the fault data represent only a small
portion of ill process conditions for the majority of indus-
trial processes. This condition prevents a comprehensive
and generalised knowledge of the fault types to be
provided and used in most fault detection algorithms.

The techniques employed for process monitoring and
fault detection are primarily of three types (Abid et al.,
2021; Arunthavanathan et al., 2021):

* Data driven techniques, such as statistical model
based (Baklouti et al., 2018; Wang et al., 2018) or

Variable 1
Variable 2
Class 1
_ ~
Data set Class m
Variable n
Input Hidden
1 L1 layer L3
ayet Hidden Y
layer L2

Fig. 1 DNN architecture with two hidden layers.
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Table 1 Comparison of fault detection and prediction algorithms
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Algorithm Complexity Latency WSN topology Reference
Recurrent adaptive filters/neural network Medium Medium Mesh Alsheikh et al. (2014)
SVM Medium/High Low - Zidi et al. (2018)
SVM Medium/High Low Tree Martins et al. (2015)
SVM, K-nearest neighbour (KNN), Gaussian mixture model (GMM) Medium Low Mesh/Tree Rashid et al. (2014)
Incremental clustering Medium Medium - Kwak et al. (2015)
GMM, K-mean clustering Medium/Low Medium - Yan et al. (2016)
Recursive least squares (RLS) and time series Low Medium - Lu et al. (2018)
SVM variations Medium/Low Low Tree Rajasegarar et al. (2010)
Fisher’s discriminant analysis (FDA), SVM Medium/High Low - Ayadi et al. (2017)
Not illustrated High High - Lv et al. (2016)
Three-level framework backpropagation (TLBP) Medium Low Star/Tree Wang et al. (2016)
Random forest deep learning network (DLN) Medium Medium - Chiu et al. (2020)
Cumulative uncertainty reduction network (CURNet) Medium Medium Mesh Ruan et al. (2022)

Al-based (Jiao et al., 2020; Said et al., 2020) techniques;

* Prior knowledge-based techniques (Polverino et al.,
2017; Harirchi and Ozay, 2018; Dey et al., 2019);

* Hybrid techniques (Amin et al., 2018; Wilhelm et al.,
2021).

The data-driven techniques tend to dominate the
domain. They rely on huge sets of historical process data
and often require reduced insight into the system. They
can detect data integrity issues due to sensor or process
noise (Luo et al., 2021).

Prior knowledge (or model-) based strategies involve
the construction of a mathematical representation of a
system’s functionality. Mechanistic models are the most
detailed, but they may be extremely complex for fault
detection applications. In this case, empirical-based
methods can be used to describe the system or parts of it.
Prior knowledge approaches show better generalisation
capabilities compared with data-based approaches.

Hybrid approaches trace the development of monitoring
and fault detection strategies by combining data- and
knowledge-based approaches to overcome the lack of
data and increase the accuracy of the detection process.

Incorporating process-specific information enables a
more effective use of the data and results in outcomes
complying with the operation principles of the units and
the fundamental laws of nature (Reis et al., 2019).

In particular, conventional classification algorithms
tend to strongly favour the majority class and detect the
minority class at extremely low rates when the class sizes
are highly imbalanced (Kwak et al, 2015). Moustapha
and Selmic (2008) employ a simple multitap delayed
recurrent neural network model to perform sensor identi-
fication and fault detection based on a dynamic WSN
model and compare it with the popular Kalman filter
method to show its effectiveness.

A brief overview of using ML techniques for fault

detection in the applications of computer system security
is introduced in Kaur et al. (2013). More detailed
overviews on the techniques, nature of data, types of
anomalies, detection learning modes, window models,
and dataset and evaluation metrics to evaluate the per-
formance of the proposed techniques are also available
(Al-Amri et al., 2021; Nassif et al., 2021).

As one of standard conventional ML -classification
algorithms, SVM has been adopted with variations by
various authors (Rajasegarar et al., 2010; Rashid et al.,
2014; Kwak et al., 2015; Martins et al., 2015; Ayadi et al.,
2017; Zidi et al., 2018) to perform fault detection tasks
in WSN-assembled systems due to its superiority on
handling moderate-sized high-dimensional data. With
wide feature ranges of the data, the faults can be success-
fully separated between hyperplanes by using either a
linear kernel or nonlinear kernel functions, assuming the
normal and faulty data are distributed in a balanced
manner.

K-nearest neighbour (KNN) and Gaussian mixture
model (GMM) are proposed (Rajasegarar et al., 2010;
Rashid et al., 2014; Ayadi et al., 2017) for the comparison
with the SVM algorithm, which give the best results
regarding sensitivity, specificity and accuracy in pipeline
leakage detections. Yan et al. (2016) propose a mixed
software and hardware assignment clustering scheme to
detect unknown types of faults based on K-mean unsu-
pervised learning and GMMs. The proposed scheme
achieves 75% detection accuracy on the new faults.

However, only detecting the faults in practical scenarios
of real applications is inadequate. In the pure definition of
fault detection, this condition only occurs after it actually
happens, which is meaningless in some cases because
damages and losses are already done and cannot be
reverted. To this end, fault prediction and predictive
maintenance become important areas of research. Thus,
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the WSNs need to be assembled with intelligent fault
prediction algorithms that go beyond the simple task of
fault detection alone.

A recursive least squares (RLS) framework combined
with time series fault prognosis method based on using
variable gradients and forgetting factors on data revolu-
tions is developed in Lu et al. (2018) for mechanical
systems. Wang et al. (2016) propose a three-level frame-
work backpropagation (TLBP) mechanism to show satis-
factory results in petrochemical industrial leakage point
predictions. However, these approaches are not utilising
the high throughput and low latency advantages of 5G
communication-based WSNs.

Although conventional ML techniques are well
exploited in the area of fault detection, deep learning
network (DLN), as an emerging research area in ML,
has drawn increasing attention in various areas of
multidisciplinary research, including computer vision,
natural language processing, speech processing, event
predictions, market price forecasting and biomedical
applications.

DLN-based approaches enable time-series multistep
prediction and can deal with cumulative errors on different
data patterns (Lv et al., 2016; Liu et al., 2017). In Ruan
et al. (2022), an effective end-to-end DLN with its own
novel learning algorithm based on recursive gradient
descent is developed. This DLN shows superior perfor-
mance compared with other state-of-the-art time-series
fault prediction solutions.

6 Optimization of maintenance scheduling

As mentioned in the previous sections, the addition of
Industry 4.0 elements to a processing system increases its
complexity and requires integration and multitasking.
Thus, the system involves numerous interactions and
(inter)dependencies between its individual components,
in addition to operating in highly dynamic environment
characteristic to any industrial environment.

Therefore, the operation of processes with decaying
performance over time gives rise to challenging model-
ling and optimisation issues. As the performance
degrades over time, process shutdown for unit cleaning —
reverse osmosis networks (Saif et al.,, 2019), heat
exchanger networks (Al Ismaili et al., 2018) or catalyst
changeovers — catalytic processes (Adloor and Vassiliadis,
2020) must be planned to enable its restoration.

Parallel processing lines are used in manufacturing to
improve the flexibility of the system and to avoid shut-
down. In this case, one unit is shut down for cleaning
purposes, and the remaining units continue to meet the
production targets. Although this maintenance action
ameliorates the yield, negative effects, such as loss of
production time or increase in energy and labour costs to
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restore performance, are often encountered (Adloor and
Vassiliadis, 2020).

This condition gives rise to a trade-off that must be
addressed for each unit in the system: Frequent cleaning
actions result in high production rates, large maintenance
costs and production loss. The trade-off can be optimally
managed by developing maintenance schedules that
specify which units can be used and optimal use time of
each of them in the parallel production set up over a fixed
time horizon. The schedule may also be required to fulfil
a constraint that no two units can undergo a cleaning
action at the same time due to production requirements or
labour or equipment availability (Al Ismaili et al., 2018).

Identifying the optimal operating condition and ensuring
that the resulting maintenance schedule and the process
operation are tailored are necessary to produce an ade-
quate product inventory for effectively meeting varying
demand across the time horizon and avoiding high storage
costs. An integrated execution of all these decisions in an
optimal manner can greatly minimise the negative effects
of the performance decaying process and maximise the
profit (Adloor and Vassiliadis, 2020).

These medium-term effect control actions aimed at:
a) restoration or maintaining of productivity levels for
decaying performance dynamic processes, and b) preven-
tive maintenance actions to ensure avoidance of produc-
tion breakdown or breakdown events, which include the
safe operation of production processes.

The three main performance measures to characterise
an equipment from the maintenance perspective are the
so-called RAM parameters (Fumagalli et al., 2017):
a) Reliability, the quantification of how long equipment
can operate without failure; b) Availability, the ratio at
which the equipment can operate; and c) Maintainability,
the ease and rapidity with which a system or equipment
can be restored to operational status following a failure.

Maintenance is mainly divided into two categories
(Mazidi et al., 2018): Corrective, denoting remedial
actions performed to restore operation back to its previous
operating state, and Preventive, referring to actions
carried out to maintain operability of an asset at an
acceptable level. Interventions can be performed when
needed (event-controlled actions) or at regular intervals
(time-controlled actions) (Kong and Frangopol, 2003).

However, the maintenance actions should be conducted
proactively to reduce the cost and maintain the operation
at the highest possible level. This process requires the
transformation of the maintenance strategy from the
traditional, fail-and-fix practices to predict-and-prevent
methodologies (Aivaliotis et al., 2019). The goal of
predictive maintenance is to reduce the downtime and
cost of maintenance under the premise of zero failure
manufacturing by monitoring the working condition of
equipment and predicting when the failure might occur
(Lietal., 2017).

Predictive maintenance allows the early detection of
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failures due to the predictive tools based on historical
data (e.g., ML techniques), integrity factors (e.g., visual
aspects, wear, coloration different from original, etc.),
statistical inference methods, and engineering approaches
(Carvalho et al., 2019). Thus, predictive maintenance
applications are a major group considerably dependent
on big data analytics (Yan et al., 2017; Sahal et al., 2020).

Two approaches are commonly employed when deal-
ing with the maintenance scheduling (Santamaria and
Macchietto, 2018):

* Optimal scheduling problem. In this case, the binary
decision variables are associated with the operating states
of the units (cleaning/operating) and the timing and
sequencing of the task. The resulting problem is combi-
natorial in nature and is typically addressed by using
(pseudo-)steady-state models.

* Dynamic optimal scheduling problem. In this case,
the problem involves solution of differential and algebraic
equations (DAEs). The result is a (mixed-integer) non-
linear programming problem, which offers the flexibility
of accommodating various types of models (Assis et al.,
2015)

A maintenance optimisation model is a mathematical
model in which the costs and benefits of maintenance are
quantified, and in which an optimum balance between
them is obtained whilst considering all types of
constraints (Fumagalli et al., 2017). The maintenance
scheduling can be classified as: a) cost-based approaches,
where the objective function is the minimisation of the
maintenance costs; b) availability-based approaches,
where the objective function is the minimisation of
downtimes (maximisation of availability); and c) reli-
ability-based approaches, where the objective function
is the maximisation of the reliability of the system or
the minimisation of maintenance costs whilst respecting
constraints regarding the system reliability (Fumagalli
etal., 2017).

The optimal system maintenance policy may (Sharma
et al., 2011): a) minimise system maintenance cost rate;
b) maximise the system reliability measure; ¢) minimise
the system maintenance cost rate whilst the system reli-
ability requirements are satisfied; and d) maximise the
system reliability measures when the requirements for the
system maintenance cost are satisfied.

Although many techniques can be used to schedule
such operations (Lohmer and Lasch, 2021), the ones
often used in the industry are based on “greedy
approaches”, which have extremely short-term economic
horizons (Khalaf et al., 2010; Hosseini et al., 2020;
Baykasoglu and Madenoglu, 2021; Fadlallah et al., 2021;
Zhou et al., 2021; Hong et al., 2022). Maintenance is
mostly invariably disruptive to the production process,
ranging from reduced capacity operation during mainte-
nance to complete shutdown.

Other processes may have to be overloaded to compen-
sate and maintain production levels during maintenance,

requiring significantly higher operational costs to
perform and with higher longer-term economic influence
if greedy approaches are utilised for the scheduling.
Improved coordination of the operation in industrial sites
can be a source of enormous savings in energy and
resources. This condition motivates the development of
methods and software tools for efficiency monitoring,
coordinated process control, and optimal planning and
production scheduling of factories, industrial plants and
parks under dynamically changing market conditions
(Krdamer and Engell, 2018).

An effective approach to solve the scheduling problem
is by considering its reformulation as a multistage optimi-
sation (optimal control) model. This is cast in a form that
promotes bang-bang type solutions for the control variables
associated with the restorative action periods. The bang-
bang behaviour is entirely equivalent to having a Boolean
variable (integer, binary) within an otherwise smoothly
represented dynamic optimisation model.

This approach has been successfully applied in solving
maintenance scheduling problems for heat exchanger
networks (Al Ismaili et al., 2018) and catalytic reactor
networks (Adloor and Vassiliadis, 2020). It has enabled
reliable and realistic inclusion of process uncertainty in
the resulting models (Al Ismaili et al., 2019; Adloor and
Vassiliadis, 2021).

The accuracy of the model used is of paramount impor-
tance. Maintenance of this type requires extremely well-
defined mechanistic models to predict the evolution of
the underlying processes with high accuracy. In their
absence, big data are used via ML techniques to substitute
for their lack for highly complicated processes.

Rigorous, mechanistic models capture the full represen-
tation of the physical phenomena occurring inside the
system, but can be computationally expensive for large-
scale scheduling problems at the same time. However,
inadequately describing the physics of the process may
affect the validity of the maintenance schedules obtained,
leading to useless results in terms of practical applications
(van Horenbeek et al., 2010).

7 Ontology-based multiagent system
(MAS)

An ontology serves as a library of knowledge components
to efficiently build intelligent systems and as a shared
vocabulary for communication between interacting
human and/or software agents. It can be defined as a
formal representation of a set of concepts within a
domain and the relationships between these concepts.
Every field creates ontologies to limit complexity and
organise information into data and knowledge.

Ontology engineering is a field that studies the methods
and methodologies for building ontologies. An ontology
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language is a formal language used to encode the ontol-
ogy, and the Web Ontology Language (OWL) is the most
commonly used ontology language. This language is
originally used for better information exchange between
Internet agents (McGuiness and van Harmelen, 2004).

One of the strengths of using an ontology is that hidden
relations between things can be inferred by the logic
reasoners or the inference engines. Thus, ontology is
useful for generating hidden new conclusions from exist-
ing data due to its mathematical logic foundation. The
information you obtain from the ontologies can be
validated because of its structure and semantics.

Applying domain knowledge in tasks, such as process
representation and modelling using an expert system,
facilitates the development of a conceptual hierarchy
supporting system integration and interoperability of its
components in an easily interpretable manner (Wan et al.,
2021).

In the Industry 4.0 concept (Gilchrist, 2016; Lu, 2017),
a huge amount of data and information regarding different
aspects of the potential process member need to be shared
among the system’s components. This information should
be shared and exchanged autonomously amongst the enti-
ties. Ontology technology has received great attention in
the past decade as an advanced tool to tackle these chal-
lenges (Batres, 2017; Ekaputra et al., 2017).

Several ontologies have been developed in the past,
paving the way towards emergent ones in the field of
industrial process engineering. The ISO 15926 ontology
is one example. Its objective is to enable long-term data
integration, access and exchange. ISO 15926 supports the
evolution of data through time. It belongs to the category
of ontologies that define basic classes and relations from
which subclasses and relations can be defined (Batres
etal., 2007).

OntoCAPE (Morbach et al., 2009) introduces perhaps
the most widely used ontology in process systems engi-
neering. This modular ontology is structured into layers
so that the general classes and relations are separated
from those related to domains or applications. The meta-
layer describes the OntoCAPE design concepts and the
explanation of how to extend the ontology. The upper
layer represents the general theory knowledge about the
process. Subsequently, the conceptual layer (the domain
layer) covers the engineering classes and its relations for
entities, such as unit operations, equipment, materials,
physical properties and mathematical models. The appli-
cation layer extends the ontology to more specific classes,
such as specific process units, including chemical reactor.

PetroHAZOP is an ontology built by using concepts
from OntoCAPE and ISO 15926. It consists of four
modules, namely, the case base, the case based reasoning
(CBR) engine, the knowledge maintenance, and the
graphical user interface module. Within the case base,
HAZOP (hazard and operability) analysis is represented
as cases that are organised with a hierarchical structure

(Zhao et al., 2009).

Another example of ontology, OntoSafe provides the
semantics for process anomaly management (Natarajan
et al., 2012). It integrates the information necessary for
forming a judgment of the condition and state of the
process. It also captures the hidden links so that changes
in the process descriptors are reported consistently. The
existing concepts in OntoCAPE have been used for
developing OntoSafe in addition to new classes and
relations specific to process supervision. The process
supervision task is to determine the state or condition
of the process, for example, to confirm the presence or
absence of a fault.

In the newly developed CPS, new ontologies need to be
developed to account for the new layers/modules created
by the addition of the cyber level and through the integra-
tion between the physical process and the computational
elements.

Agent-based technology is becoming a powerful tool
for engineering applications, and MASs have received
great attention from scholars in various fields (Kravari
and Bassiliades, 2015; Xie and Liu, 2017; Dorri et al.,
2018). The agent is defined as an entity that senses
parameters in the environment, which are used to make
decision in accordance with his/her goal.

The MAS is a computerised system composed of mul-
tiple interacting agents exploited to solve problems that
are difficult or impossible for an individual agent to
solve. The distinguishing features of the MAS include
efficiency, low cost, flexibility and reliability, thereby
making it effective for complex tasks. The MAS efficiency
stems from the fact that a complex task is divided into
smaller subtasks, each of which is assigned to an agent.
Each agent decides on the action to solve his subtask
using multiple inputs: A history of actions, interactions
with the neighbours, and its task. Agents use these inter-
actions to learn new contexts. Hence, agents use their
knowledge to decide an action to solve their allocated
subtasks.

Agents can have several properties as
(McArthur et al., 2007; Dorri et al., 2018):

* Sociability: Agents can share their knowledge or
request information from other agents to achieve their
tasks;

* Autonomy: Each agent can work independently and
execute the appropriate action;

* Proactivity: Each agent uses its own history, sensors’
information, and other agents’ knowledge to predict
future actions;

 Connectivity: The performance and functionalities
highly rely on the communication layer, especially the
connection topology and associated protocols;

* Mobility: Agents can be static or mobile agents.

Intelligent agents are classified into several types with
respect to the decision-making mechanisms. Purely
reactive agents make decisions using only the present

follows
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information without referring to historical data, while
belief-desire-intention agents are built by using symbolic
representations of the intentions, beliefs and desires of
agents, and layered architectures incorporate several soft-
ware layers. An MAS also can be classified in accordance
with its topology, referring to the location and relations
of agents, into the static or dynamic topology. A compar-
ative review of the existing agent platforms that can be
used is presented in Kravari and Bassiliades (2015) based
on a universal comparison and evaluation criteria. This
review proposes classifications for helping readers to
understand which agent platforms broadly exhibit similar
properties and what choices should be made in various
situations.

Ontologies and MASs have been used extensively in
the past decades to solve problems or improve or add
new capabilities for industrial processes and for the
chemical processes in particular.

An ontology-based scheme has been used to describe
sensors and their features for sensor networks (Xue et al.,
2015). The sensor nodes are deployed to collect informa-
tion for environmental monitoring, but these sensor
networks have management problems and issues in data
sharing between sensors. The ontology scheme can help
in providing an effective management system for the
sensor networks.

Another application is focused on manufacturing
process ontologies, which combine formal concept anal-
ysis with a set of criteria for characterising classes of
processes (Akmal and Batres, 2013). In an ontology-
based manufacturing for flexible production (Shi et al.,
2017), the description of physical entities, such as
production processes, equipment and products, and the
relationships of operation logic and operation sequences
in the manufacturing process are defined. Thus, the
system can make automatic adjustments to ensure the
completion of the process when changes occur in internal
manufacturing requirements or external environment.

An agent-based method has been used for the coor-
dination of tasks in chemical plants, stemming from the
growing complexity of the current industrial processes
(Nikraz and Babhri, 2005).

A process monitoring and supervisory system is an
example of application in which ontology and intelligent
agents play a key role. A multiagent technology-based
chemical plant supervisory system that realises the
connection between the chemical equipment and monitors
the entire enterprise, which can be integrated with the
current systems through an interface agent, is proposed in
Wang and Zhang (2008). ENCORE contains three types
of agents that can cooperate with each other: The plant
information manager agent, the process supervision agent,
and the user interface agent. An offshore oil and gas
production process was used to test the effectiveness of
the system.

Knowledge-driven approach to construct ontologies

can be used to demonstrate how description logic reason-
ing can be used to support process supervision and fault
detection and prediction without the help of external
agents (Musulin et al., 2013).

Ontology-based methods can be used to enhance main-
tenance decisions through the knowledge gathered during
process monitoring (Elhdad et al., 2013). The monitoring
process is based on signals that are triggered during the
plant safety shutdown process. The implemented frame-
work defines the logical structure and operation of the
plant with the objective of monitoring the cause and
effect of the plant shutdown process.

An agent-based model has been used to evaluate the
dynamic behaviour of a global enterprise by considering
the system-level performance and the components’
behaviour. Thus, it can be used to predict the effects of
local and operational activities on plant performance and
improve the tactical and strategic decision-making at the
enterprise level (Behdani et al., 2009).

One of the strengths of ontology-based approaches is
that they can integrate heterogeneous data, and ontology-
based data integration is recommended to tackle this
challenge (Ekaputra et al., 2017). Reconfigurability is an
important feature for the system, especially in abnormal
situations. Within the context of Industry 4.0, personalised
customisation requires more agile and flexible processes,
indicating that the reconfigurable system is crucial for the
enterprise to remain competitive. MASs can be introduced
to intelligently bring about reconfigurations that restore
the system performance back to its original level (Farid,
2015).

However, most of the existing systems have to be
suspended when reconfiguring because the online recon-
figuration may lead the system to disorder and uncer-
tainty. IEC 61499 function blocks combined with MASs
and ontology can be used to minimise the leading time
of reconfiguration whilst ensuring system stability (Wan
et al., 2017).

8 Influence of process uncertainty on
smart systems

Uncertainty comes from various sources, ranging from
the fact that the models used are approximations based on
assumptions of the physics and chemistry involved, and
have parameters that can be inaccurate and flawed in
facing real case scenarios (e.g., unplanned changes,
disturbances, elements of the system break down,
communication system fails, etc.). It should be considered
in the design phase to ensure robust solutions (Bogle,
2017, Palacin et al., 2018).

Uncertainty can lead to the system not being able to fulfil
its requirements and production quality goals, or even lead
to safety hazards for the operators, local communities and
the environment (Bandyszak et al., 2020).
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In a CPS, the model predictions may be affected by
uncertainty sources from (Nannapaneni et al., 2020): The
computing (cyber) subsystem (resource and communica-
tion uncertainty), manufacturing (physical) subsystem
(input uncertainty, process variability and modelling
errors), and sensors (measurement uncertainty). The
interaction between the physical and cyber components
further increases the complexity by aggregating and
compounding these uncertainty sources over time.

The major challenges in the development of HCPS are
as follows (Zhou et al., 2019; Liu and Wang, 2020):

» The mismatches of the abstractions among physical,
cyber and human systems. In the case of physical systems,
their state change is continuous and in real time, and
results in representations, such as ordinary differential
equations (ODEs), DAEs or partial differential equations.
In the case of cyber systems, the changes are discrete,
resulting in automata or state machine representations.
In case of the humans, the abstraction of their behaviour
is an important source of uncertainty although they are
treated as physical systems.

* The need to develop abstractions for the interaction,
concurrency and synchronisation among humans, humans
and machines, and humans and physical systems to analyse
and design monitoring and control systems for the human
behaviour and to coordinate the behaviour of humans
with the ones of the CPS.

Approaches to assess the uncertainty in a CPS require a
degree of flexibility to accommodate complexity whilst
maintaining a degree of robustness for satisfying key
objectives within the specified confidence boundaries
(Grenyer et al., 2021). This process facilitates the miti-
gation of unknown/unexpected changes, enabling the
system to evolve in the presence of such unpredictable
challenges to the point of being reconfigurable with high
degrees of freedom (Ahmed et al., 2020).

Identifying the various types of uncertainties present
within the system and having suitable methods that can
deal with them together with the knowledge on how to
apply such methods are important to enable the incor-
poration of approaches for handling uncertainty in the
design of CPS or HCPS (Al-Ali et al., 2022).

Robustness is the capability of handling a certain
degree of uncertainty and dealing with unexpected
disruptions without having to modify the production
schedule; it has to be embedded into a smart system
(Negri et al., 2021). The scheduling must be able to
quickly identify and respond to these disturbances (Qiao
etal., 2021).

The integration of the elements discussed in the previous
sections provides solutions to achieve these goals: Big
data analytics facilitates the knowledge support; the CPS
technologies play a key role in real-time data monitoring
and exchange; and optimisation of the maintenance
schedules enables the computational solution. Their
combination can be used to develop a decision-making

framework that can transform the chemical or biochemical
process into autonomous systems capable to quickly
respond to changes in the environment.

9 Digital twin-based decision-making
framework

The connection between the virtual (cyber) world and the
real (physical) world provides the ability to create and
update real-time virtual representations of physical assets
to populate a digital twin that can be manipulated within
the cyber world via simulation or optimisation to actuate
the physical world supporting greater control of production
facilities or individual machines (Sharpe et al., 2019).

As the number of IoT devices in the industrial environ-
ment is constantly increasing, the systems are given
certain intelligence by using instruments, such as smart
sensors, controllers, meters, machine-to-machine commu-
nication, Al and other computational devices using big
data analytics for decision-making (Lee et al., 2011).

The increasing networking and digitisation give rise
to increasing complexity, requiring spatial-temporal
dynamics, coordination and intelligence, and challenges
related to the interaction between human actors and the
cyber and physical components of the HCPS, especially
for situations in which control is required to be switched
between humans and machines (Liu and Wang, 2020).
They also offer the opportunity for using IoT technologies
to augment above the human abilities and develop novel
diagnostics and maintenance methodologies, realising
intelligent industrial systems that are able to learn, self-
adapt and self-repair.

The structural scale and the dynamic complexity of the
modern industrial systems make it challenging for opera-
tors to infer the conditions in the plant quickly and make
timely decisions, especially during abnormal situations.
Technology needs to help in preventing human errors and
stop chain reactions that can transform small incidents
into catastrophic failures. This condition can be achieved
by forming an integrated system modelling, self-adaptive
and self-repairing sensing network, and autonomous soft-
ware architecture that exhibits rapid information selection,
scene understanding and decision-making capabilities.

The general framework of such an architecture is
shown in Fig. 2. A decentralised, modular plug-and-play
structure is envisaged, with the following main modules:
The holistic process system and cooperative control, the
massive connectivity resilient communication network,
the ML-based fault detection and prediction, the intelligent
adaptive decision-making framework, and the virtual
reality (VR) system for visualisation and interaction.

The structure considers the two levels of the CPS: The
physical layer, with the industrial process itself, the wire-
less sensors and actuators, the physical controllers, and
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the inspector robots; the cyber layer, with the wireless
communication network, the centres for data and model
storage, the fault detection/prediction algorithms, and the
decision-making framework. The human level is consid-
ered, to include the involvement of humans in the deci-
sions or their partial involvement in the operation of
the systems by robot-human cooperation. The wireless
network is working as the connecting element between
the two layers.

One of the main parts of this system is the decision-
making framework, which aims to achieve the process
goals, monitor the system operation, control the inspector
robots, reconfigure the operation (when possible) in
response for any faults or changes in the process, and
report to the operator. Reconfigurability is required when
the system needs to cope with the changes in hardware,
environment or a failure in a subsystem.

The decision-making tasks include:

* Monitoring;

* Adaptation (Reconfiguration);

* Planning (Model selection);

* Online learning.

The design of the resulting systems requires a multidis-
ciplinary knowledge and multiple modelling paradigms
for the development of the various process stages, such as
gathering requirements, architecture design, simulation,
and process optimisation and control. In order to handle
various characteristics of the system, such as hetero-
geneity and collaborative behaviour of the components,
a source of inherent uncertainties, with varying effect
on the overall system behaviour should be considered
(Al-Ali et al., 2022).

Systematic and robust scheduling solutions, such as the
ones discussed in Section 6, are required for modern
smart manufacturing systems to facilitate their ability to
adapt to changeable manufacturing environments (Qiao

etal., 2021).

Context models can facilitate the analysis of potential
runtime situations and consequently aid in the design
of a system capably to automatically cope with uncer-
tainties (e.g., able to identify potential uncertainties
during runtime and self-adapt to resolve uncertainties)
(Bandyszak et al., 2020).

A multilayer structure (Fig. 3) is proposed for the
decision-making module, with the following elements.

For the decision-making module, an MAS approach
with two layers is used:

a) The abstraction layer — deals with the normal
system operations, or in other words, the operations that
do not require decisions to be taken. The key characteristic
of the abstraction layer is that it is located between the
decision-making layer and the rest of the general frame-
work. This abstraction layer provides a continuous to
discrete translation, taking streams of data from the
subsystems and passing on discrete abstractions of this
to the agent itself. Specifically, it aims to identify data
of interest to the agent and packages this together into
a concise form.

b) The decision-making layer — deals with the deci-
sions. It takes a discrete information from the abstraction
layer and replies with decisions by using the knowledge
represented in the ontology and the inference engine that
can reason the required rational agent’s enquiries from
the ontology.

Each layer has its own modular substructure, which
will be described as follows.

I. The abstraction layer has the following components:

a) The inspection agent — responsible for controlling
the monitoring via the sensors and inspector robots, and
making the routine inspection plans. These plans can be
interrupted by a decision from the rational agent that may
require more information or to make more inspections on
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a specific section of the process/system. This agent will
follow the monitoring agents and send data to the rational
agent in case of any anomalies.

b) The control agent — responsible to follow the
control module operation and keep track of the system’s
behaviour and its relation with the control module. On
the basis of the information from the control module, this
agent decides the optimal connectivity between the
controllers based on the information from the system
model resources and its previous knowledge. This condi-
tion enables better and safer control system operation.

¢) The monitoring agent — responsible on the upper
layer of the monitoring and management module. The
agent analyses the information gathered from the fault
detection and prediction modules and the process
behaviour models to detect abnormalities and system
behaviour deviations, and reports the failures and recom-
mendations to the rational agent.

d) The learning agent — keeps track of all the operation
states that include: The current models, the agent’s
actions, the rational agent decisions, and their effect on
the system. The agent tries to learn from the history of
the system behaviour. To sum up, it aims to learn the
optimal process operation from the previous process
operation data.

II. The decision-making layer has the following
components:

a) The ontology — a formal representation of the
knowledge about the system that includes the system’s
models, flowcharts, the standard operating procedures,
and the general knowledge about process engineering.
This formal knowledge is available for the rational agent
to infer about process operation.

b) The inference engine — a module that can infer
logical consequences from the ontology. When the rational
agent needs to know an information about the process, it
sends the query to the engine and infers the ontology to
find the requested information.

c¢) The rational agent — makes high-level decisions for
the system on what actions to perform given its beliefs,

desires and intentions. This agent has explicit reasons for
its decisions. It should be aware of the system components
and their expected behaviour. The rational agent monitors
the overall system performance. One of its main tasks is
to reconfigure the system’s structure and models to over-
come deficiencies. The rational agent decisions are made
and sent to the operators with the reasoning for the final
confirmation via the VR module.

A key characteristic of this structure is that the overall
architecture remains distributed (rather than centralised),
enabling evolutionary capabilities, such as modulation/
adjustment, robustness, adaptation and reconfigurability
with respect to changing environments whilst keeping
relatively low computational costs.

The traditional manufacturing process becomes a smart
factory, which is characterised by self-perception, opera-
tion optimisation, dynamic reconfiguration and intelligent
decision-making (Wan et al., 2021).

The modular framework for decision-making enables
the implementation of a digital twin of the CPS, a virtual
environment centred on the integration of modules at
different levels and complexity of representation. With
the whole process described as an object, various models
involved in planning, design and operation can be used in
an all-round manner, including modelling and collabora-
tion of control, production, management and other levels.

The current situation of the actual real system can be
synchronised to the virtual environment via the IoT
elements in a timely manner, and the virtual system
calculates the future operating state in a rolling horizon to
manage and control the operation of the physical system,
realising the ability of reliable and real-time system
monitoring, risk prediction, smart regulation and operation
optimisation.

10 Conclusions and outlook

Human beings acquire information from their surround-
ings through sensory receptors. The sensory stimulus is
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converted to electrical signals as nerve impulse data
communicated with the brain. At this point, using the
mechanism of reasoning, the sensory data are effectively
analysed and used to generate a vision of the future.

This paper presents a state-of-the-art of various tech-
nologies facilitated by Industry 4.0 that can enable
improved sensing of chemical and biochemical processes,
together with enhanced data analysis that can be used to
develop a decision-making capability similar to reasoning.
The integration of these technologies can promote the
creation of autonomous smart systems that can self-adapt
and self-regulate, even with limited data, and predict a
sequence of events for short- and long-term.

Thus, a new generation of production systems char-
acterised by smart sensing and intelligent services,
connected via ubiquitous sensors, intelligent hardware,
control systems, computing facilities and information
terminals can be developed via model-based agent
intelligent networks of HCPS. Key capabilities include
overall location awareness, forecast and early warning,
collaborative optimisation and decision-making.

This decentralised, modular and hierarchical model-
based approach will also support the industry-wide
automation, digitalisation, visualisation, local and global
modelling, and interconnection of people, devices, and a
wide variety of information resources and knowledge.
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