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Abstract Electricity consumption is one of the major
contributors to greenhouse gas emissions. In this study, we
build a power consumption carbon emission measurement
model based on the operating margin factor. We use the
decomposition and decoupling technology of logarithmic
mean Divisia index method to quantify six effects (emission
intensity, power generation structure, consumption elec-
tricity intensity, economic scale, population structure, and
population scale) and comprehensively reflect the degree
of dependence of electricity consumption carbon emissions
on China’s economic development and population changes.
Moreover, we utilize the decoupling model to analyze the
decoupling state between carbon emissions and economic
growth and identify corresponding energy efficiency poli-
cies. The results of this study provide a new perspective to
understand carbon emission reduction potentials in the
electricity use of China.

Keywords electricity consumption carbon emission
measurement, LMDI model, decoupling model, data
driven

1 Introduction

The rapid growth of China’s economy has led to draw-
backs, such as massive energy consumption and a sharp
increase in carbon emissions, to which the power industry
is the major contributor. The national carbon market was
implemented in 2021. The power industry, which
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accounts for more than 40% of the country’s total carbon
emissions, was included first. As the level of end-use
electrification continues to grow, some carbon emissions
will be gradually transferred from the direct fossil fuel
consumption to the power consumption, the power
sector will become the most important source of carbon
emissions. In 2016, China officially pledged to reduce
its carbon emission intensity per unit of gross domestic
product (GDP) by 60%—-65% compared with that in
2005, to hit peak carbon emissions by 2030 and achieve
carbon neutrality by 2060 (Zhou et al., 2022). However,
China’s current economy is characterized by a large
volume and high intensity of carbon emissions, and
considerable challenges need to be resolved to achieve
carbon neutrality.

Carbon emission measurement models are key to
understanding the emission structure and designing
effective decarbonization policies. A carbon emission
measurement model can be categorized into production-
based (Zhang and Da, 2015; Liu et al., 2015a; 2015b) and
consumption-based (Feng et al., 2013; Lin et al., 2014;
Shan et al., 2016) methods. The production-based method
attributes the responsibility of carbon emissions to the
principle of the place of production, whereas the
consumption-based method attributes the same responsi-
bility to the principle of the place of consumption. The
local electricity consumption in each province is
measured to help obtain the actual total carbon emissions
contributed by electricity in each province. Electricity
consumption needs to be calculated and decomposed to
explore the causes of carbon emissions because it remains
to be the primary contributor to carbon emissions.

Existing studies have focused on exploring power
generation-based approaches (Yousuf et al., 2014; Quick,
2014; Howard et al., 2017; Jiang et al., 2021), and some
power consumption models use the multi-regional
input—output (MRIO) method. MRIO is a carbon emission
assessment model based on the principle of consumption.
It can measure carbon emission of electricity consump-
tion through an input—output table. Its disadvantage is
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that, first, in the input—output table, electricity consumption
is the sum of renewable energy and thermal power gener-
ation, and thermal power generation is not separated from
it. Second, due to data availability, fully obtaining each
electricity sector’s consumption by province is difficult.
Lastly, the calculation is performed from the perspective
of the economic input—output ratio table, and the unit
is the economic unit; meanwhile, extant literature
performed calculations from the perspective of the power
consumption end, including the power generation factor
and electricity consumption of power plants, thus certain
differences exist in the calculation (Kucukvar et al., 2016;
Mi et al., 2018). Some studies have examined carbon
emissions from the power consumption side (Zhang et al.,
2019; 2021; Abokyi et al., 2021). For the Clean Develop-
ment Mechanism Project, the Ministry of Ecology and
Environment of China calculated the emission factor
“operating margin” (OM) and “build margin” (BM) of
China’s regional power grid baselines. The OM factor is
used to analyze pure thermal power plants, calculated
based on the total net power generation, fuel type, and
total fuel consumption of all plants in the power system
(excluding low-cost/must-run units), whereas the BM
factor is a comprehensive analysis factor for both
thermal and renewable energy power plants, calculated
by the weighted average of the power supply emission
factors of the selected m newly added unit samples with
electricity as the weight.

Most researchers have utilized the logarithmic mean
Divisia index (LMDI) decomposition model to obtain the
emission factors of carbon emissions (Zhang and Da,
2015; Zhao et al., 2017; Chen et al., 2020; Liu et al.,
2021). Carbon emission intensity and Tapio decoupling
(Tapio, 2005) models are currently available in literature
and can be used to measure the relationship between
carbon emissions and the economy. Carbon intensity is
the ratio of carbon emissions to GDP. It is an important
indicator for evaluating the level of urban development,
mainly used to measure the relationship between the
economy and carbon emissions. The level of intensity
does not indicate the level of efficiency. Countries with
high GDP per capita tend to have low carbon intensity. In
other words, using carbon intensity indicators is ineffective
because these indicators mask the net increase in carbon
dioxide emissions, but economic development has not yet
been decoupled from carbon emissions. For developing
countries, the expansion of the economic scale requires
the reuse of the same technology, so the intensity does
not decrease linearly with economic growth. Therefore,
in the long run, it may be unfavorable for developing
countries. The rate of decline in carbon intensity is deter-
mined by the elasticity of carbon emissions to GDP and
directly related to the growth rate of GDP. The future
economic growth rate of a country is uncertain, and the
reduction rate of carbon emission intensity, as the
country’s commitment indicator for reducing greenhouse
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gas emissions, has some uncertainty. Therefore, a decou-
pling model is generally adopted, and decoupling empha-
sizes trends. Decoupling is not a random fluctuation and
deviation of energy consumption or carbon emissions in
the short term; it can be maintained stably and continuously
at a low level for a certain period from the economic
growth trend, and it quantitatively reveals the relationship
between carbon emissions and economic growth in one
or more sectors to facilitate the decarbonization of coun-
tries or enterprises (Chen, 2011; Andersson and Karpes-
tam, 2013; Ma and Cai, 2019; Liu et al., 2021; Xi et al.,
2021). On the basis of the decomposition results, a
decoupling index is introduced to analyze the decoupling
relationship between China’s carbon emissions and
economic growth. Then, policy recommendations are
provided to measure the relationship between carbon
dioxide emissions and China’s economic growth at the
national level, and the decoupling relationship of the
influencing factors is explored. The motivation for study-
ing decoupling is to analyze the relationship between the
economy and carbon emissions. This analysis can help
policy makers understand how decarbonization could
interact with economic growth for an effective policy
design. These data provide the basis for China’s decision-
making to achieve carbon neutrality. Decoupling of
carbon emissions is an idealized process in which the
relationship between economic growth and greenhouse
gas emissions is constantly weakening or even disappear-
ing, that is, energy consumption is gradually reduced due
to economic growth (Andreoni and Galmarini, 2012; Lu
etal., 2015; Wang et al., 2016).

In existing literature, carbon emission estimates are
mainly based on input—output tables and carbon emissions
from initial energy calculations, while electricity con-
sumption carbon emission analysis is primarily based on
the evaluation of the electricity consumption of power
plants. Research on electricity consumption mostly
involves the use of coal, oil, natural gas, and traditional
input-output models, and only a few studies have
explained the relationship between electricity consumption
carbon emissions and the economy, power generation
structure, and population.

Given this context, a carbon emission model for elec-
tricity consumption based on the OM factor is developed
in the current study to analyze the carbon emissions of
electricity consumption in each provincial-level region in
China (Hong Kong, Macao, and Taiwan are not included)
from 2015 to 2019. The calculation results help understand
the electricity consumption intensity of each region. On
the basis of calculation results, an LMDI decomposition
model is utilized to decompose the carbon emissions of
the electricity consumption of each region. The carbon
emissions of electricity consumption are decomposed
into six effects (emission intensity, power generation
structure, consumption electricity intensity, economic
scale, population structure, and population size) to study
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the main influencing factors of electricity consumption
carbon emissions. Then, the Tapio decoupling elasticity
index is adopted to measure the decoupling relationship
between carbon emissions and economic development
in China’s provinces and regions during the five-year
period of 2015-2019. The decoupling index is further
decomposed into a causal chain. Combining the elasticity
index and the complete decomposition, this method is
free of measurement unit and is a decomposition of
relative indicators. It has strong implications and applica-
tion values in emission reduction and regional decar-
bonization policies.

The rest of the paper is organized as follows. Section 2
introduces the mathematical theory behind the electricity
consumption carbon emission measurement model based
on the OM factor, the LMDI decomposition model, and
the decoupling model. Section 3 analyzes the results of
the calculation and presents the corresponding perspec-
tives on carbon emission reduction. Section 4 concludes
the paper.

2 Methodologies and data descriptions
2.1 Electricity consumption carbon emission model

China’s power generation structure comprises thermal
power, hydropower, wind power, and so on, but carbon
emissions are primarily generated by thermal power.
Therefore, only the CO, emissions of thermal power need
to be calculated as a proportion of power generation.

The carbon emissions from electricity consumption in a
region can be expressed as

EMXszchchwaEFmMQ

Ca:EaX s
F, EG,

(M

where C, and E, represent the carbon emissions of
electricity consumption and electricity consumption in
provincial region a, respectively; F, and F,, represent the
total and the thermal power generation in provincial
region a, respectively; EG, represents the total net power
generation of the power system in year y, i.e., the total
power (MWh) supplied to the grid by all units except for
the low-operating cost/must-operate units; F'C,, represents
the total consumption (mass or volume unit) of fuel 7 by
the above-mentioned unit in year y; NCV,, represents the
average low calorific value of fuel ¢ in year y (GJ/mass or
volume unit); EF¢,,,, represents the CO, emission factor
of fuel ¢ in year y (tCO,/GJ); t represents the type of
fossil fuel consumed by the power system for the power
generation in year y; and year y denotes each of the most
recent three years for which data were available at the
time of the submission of the project design documents
(pre-calculation).
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Equation (1) can be rewritten as
C,=E,XF,,xOM,, 2)

where F,;, and OM, represent the proportion of thermal
power in provincial region a to the total electricity gener-
ation, and carbon emission factor of OM power generation
in provincial region a, respectively.

2.2  LMDI model

The LMDI model has advantages, such as path indepen-
dence, absence of residuals, ability to deal with zero
values, and aggregation consistency (Zhang and Da,
2015; Zhao et al., 2017; Chen et al., 2020; Liu et al.,
2021). The LMDI model is used to decompose carbon
emissions from electricity consumption. The total carbon
emissions in year ¢ can be expressed as

E' GDP, P!

F.
C =OM x - x X X=<xP, (3)
“ R T GppT P TP

where C,, E,, F,,, F,, OM,, GDP,, and P, represent the
carbon emissions of electricity consumption, electricity
consumption, thermal power generation, total power
generation, carbon emission factor of OM power genera-
tion, GDP value, and population, respectively, of provin-
cial region a in year . Furthermore, P' represents the
population of the country in year ¢.

Therefore, by simplifying Eq. (3), we derive
C,=OM,xF,, X EG,XGP,x PP, X P', 4)

where F,,, EG,, GP,, and PP, represent the power
generation structure, electricity consumption intensity,
economic scale, and population structure, respectively,
of provincial region a in year ¢.

The overall effects are expressed by AC?™ and can be

decomposed into

AC™ =C.-C°

=OM,XF,,,

X EG) XGP, x PP, x P'
—OMxF,, x EG)XGP)x PP,x P’
= AOM," +AF, + AEG," + AGP,"
+APPY + AP, 5)
where
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2.3 Decoupling method

Tapio (2005) proposed the Tapio decoupling index to
understand the relationship between the relative incre-
mental values of carbon emissions and economic growth.
The carbon emission decoupling model of each province
and region in China is set as

;o ACOCOy _ GDP' ACO;
AGDP/GDP' ~ COS ~ AGDP
_GDP’ ~ C0,-CO; ©
C0) " GDP —-GDP"’

where 7' denotes the decoupling index elasticity between
carbon emissions and economic growth in year ¢ for each
province and region in China; CO} and CO) represent the
carbon emissions (million tons of CO,) for each province
and region in China in target year ¢ and the base year,
respectively; and GDP' and GDP° are China’s GDP
(billion yuan) in target year ¢ and the base year, respec-
tively.

The Tapio model provides guidelines for evaluating
eight decoupling/coupling states based on hook elasticity
value 7' (Table 1); the evaluation thresholds of 0.8 and
1.2 in the guidelines are empirical values. Decoupling can
be classified as weak, strong, and recessive. Negative
decoupling can be classified as expansionary negative,
strong negative, and weak negative. Coupling can be
classified as expansionary and recessive. Among these,
strong decoupling is the most desirable state for achieving
low-carbon economic development; accordingly, strong

negative decoupling is the most unfavorable state.
When the total economic volume continues to grow
(AGDP > 0), the lower the GDP elasticity of energy
carbon emissions is, the more significant the decoupling
is, i.e., the higher the degree of decoupling is.

On the basis of the improved decomposition technique
described above, decoupling elasticity was divided into
six variables according to Eq. (5) and tested in this study
to determine the contribution of the various influencing
factors on the decoupling elasticity of carbon emissions
from economic growth in each province and region of
China. The specific change in the contribution of each
variable can be calculated using

. ACO,/COY
~ AGDP/GDP®
_ GDP°
oy
AOM®" + AF%! + AEGY" + AGPY" + APP’"' + AP
x AGDP
_GDP XAOMS“ GDP° " AFy
C0? © AGDP = CO} = AGDP
GDP* AEGY' GDP’ AGP’'
+ X X
C0? " AGDP = CO} ~ AGDP
GDP’* APP"" GDP" AP

+ X + X
CO)  AGDP CO) AGDP
=Hh4bh+t+t 41,

(7
where 1,, t,, t3, 1, 15 and t; represent the contribution of the
provincial region’s generation factor, generation structure,
electricity consumption intensity, economy size, popula-
tion structure, and population size to decoupling elasticity,
respectively.

2.4 Data source
The OM factor data used in this study were derived from

those published by the Ministry of Ecology and Environ-
ment of China in 2019; the factor part was excluded in

Table 1 Decoupling/Coupling states in the Tapio decoupling model
Categories Status ACO, AGDP Tt Practical implications
Negative Expansionary negative >0 >0 T'>1.2 Both GDP and CO, emissions are growing; the growth rate of
decoupling decoupling GDP is slower than that of CO, emissions
Weak negative decoupling <0 <0 0<T'<0.8 Both GDP and CO, emissions are declining; the decline rate of
GDP is faster than that of CO, emissions
Strong negative decoupling >0 <0 T' <0 CO; emissions are growing, but GDP is declining
Decoupling Recessive decoupling <0 <0 T!'>12 Both GDP and CO; emissions are declining; the decline rate of
GDP is slower than that of CO, emissions
Weak decoupling >0 >0 0<T'<0.8 Both GDP and CO; emissions are growing; the growth rate of
GDP is faster than that of CO, emissions
Strong decoupling <0 >0 T'<0 CO, emissions are declining, but GDP is growing
Coupling Expansionary coupling >0 >0 08<T'<1.2 CO; emissions and GDP are growing at similar rates
Recessive coupling <0 <0 08<T'<12 CO; emissions and GDP are declining at similar rates
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this study because of the small annual changes. The thermal
power share data and electricity consumption data are
provincial data from the China Electric Power Statistical
Yearbook 2015-2019. The economic and population data
are provincial data values from the China Statistical
Yearbook 2015-2019.

3 Empirical results and analyses

3.1 Results of electricity consumption carbon emission
data and thermal power generation data for each
provincial-level region

As can be seen in Fig. 1, from a spatial perspective, the
top five provinces with the highest electricity consumption
carbon emissions in 2019 were Shandong, Jiangsu,
Guangdong, Hebei, and Inner Mongolia with 493, 418,
337, 284, and 264 million tons of CO; emissions, respec-
tively. Guangdong, Jiangsu, and Shandong were the top
three provinces in terms of overall economic value added
and secondary industry value added in 2019. Guangdong,
Shandong, Jiangsu, and Hebei were among the top six
provinces in the country in terms of population size.
Although Inner Mongolia ranked in the middle in terms
of overall economic value and population, it ranked fifth
in terms of the electricity consumption of the secondary
industry. Thermal power generation accounted for more
than 80% of the total power generation in all regions,
except for Guangdong. The overall economic value
added of the secondary industry, population, and propor-
tion of thermal power may explain the high carbon emis-
sions of electricity consumption in the five provinces.
From a temporal perspective, the carbon emissions of
electricity consumption in most of the regions showed an
overall upward trend in 2015-2019, and Anhui, Shan-
dong, Shaanxi, Zhejiang, and Jiangsu had the largest
increases. The overall economic growth of Zhejiang,
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Jiangsu, and Anhui was at the forefront of the country,
and the growth of Shaanxi and Shandong was at the
middle. In addition, the overall electricity consumption
of the five provinces (Shandong, Jiangsu, Guangdong,
Hebei, and Inner Mongolia) and the secondary industry
ranked high in terms of growth rate during the five years.
North China and East China also showed large carbon
emission increases in the five years (2015-2019); four of
the above-mentioned provinces (Zhejiang, Anhui, Jiangsu,
Shandong) belong to East China.

The estimated total carbon emissions from electricity
consumption suggest that the total economic value added,
the economic value added from the secondary industry,
population, and the proportion of thermal power are the
main contributors to the large carbon emissions of elec-
tricity consumption and the increase in emissions.

Figure 2 has showed an upward trend for the overall
proportion of renewable energy in China. The proportion
of renewable energy in each province and region after
5 years showed a change of about 5%. In 2019, China’s
thermal power accounted for an average of 67.1%, and
12 regions had values lower than the average, which are
located mainly in the natural resource-rich regions of
Southwest and Northwest China, implying that these
regions generate more clean power. Except for Hainan,
Fujian, and Guangdong, the 9 remaining regions are
dominated by hydropower (more than 30%). Hainan,
Fujian, and Guangdong have relatively low overall thermal
power because of the high proportion of nuclear power,
and their electricity consumption carbon emission ranks
are in the middle and late stages. The overall electricity
consumption of Sichuan Province ranks 9th in the
country; however, in terms of the proportion of renewable
energy, it ranks 4th. Therefore, it ranks 27th in carbon
emissions of electricity consumption. Replacing thermal
power generation with renewable energy generation
could considerably reduce the overall carbon emissions
of electricity consumption.
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Fig. 1

2015-2019 overall electricity consumption carbon emission data.
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Fig. 2 Proportion of China’s thermal power generation in 2015 and 2019, respectively.

3.2 LMDI decomposition results

3.2.1 China’s overall LMDI results for 2015-2019

Figures 3 and 4 show the overall LMDI decomposition
results of China’s provincial-level regions from 2015 to
2019. From a holistic perspective, the power generation
structure and consumption electricity intensity effects
were the main factors that reduced carbon emissions from
electricity consumption in most regions. The results for
these five years suggest that most regions have achieved
varying degrees of progress in terms of integrating
renewable energy, leading to a considerable reduction in
carbon emissions from electricity consumption. Electricity
consumption intensity is an indicator of electricity
consumption/economic value that reflects the amount of
carbon emissions per unit of economic value. The five-
year results suggest that electricity consumption intensity
is one of the main reasons for suppressing carbon

Carbon emissions (million tons)

emissions. In most regions, the rate of economic growth
is faster than that of electricity consumption, resulting in
a decrease in electricity consumption per unit of economy.
Most regions achieve economic growth along with elec-
tricity efficiency improvement partially from digitaliza-
tion. Meanwhile, the agglomeration of urban industrial-
ization is expected to transform electricity consumption
patterns, which can help enterprises achieve highly effi-
cient electricity consumption.

In the past five years, economic and population scales
were the main factors contributing to an increase in
carbon emissions from electricity use. The economic
scale represents the value of carbon emissions analyzed
per capita economic contribution; the rate of population
change is slower than the rate of economic change given
the growth of the population and economy in recent years.
The GDP per capita and economic energy consumption
per unit of population increase, which introduces a
certain amount of carbon emissions related to electricity
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Fig. 3 Accumulation map of the contribution value of each provincial-level region for 2015-2019.
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Fig. 4 Contribution rate of each provincial-level region in China from 2015 to 2019.

consumption. The population scale reflects the compre-
hensive effect of the nation’s population on the carbon
emissions from electricity consumption of a region. The
increase in the population of the country in the past five
years has resulted in a certain degree of pressure on
the comprehensive carbon emissions from electricity
consumption.

The population structure is a neutral indicator of the
overall scenario of a country. Hainan and Qinghai
Provinces showed a downward trend in the overall elec-
tricity consumption carbon emissions during the five-year
period; however, the population structure showed a posi-
tive upward trend in carbon emissions, so it was classified
as an indicator that drives electricity consumption to
increase carbon emissions. As shown in Fig. 4, 14
regions showed an inhibitory effect in terms of popu-
lation structure, and the remaining regions showed a
driving effect.

3.2.2 2015-2019 LMDI results for various regions of
China

From the value added part of Table 2, it can be seen that
the carbon emissions from electricity consumption in

Northeast region (Heilongjiang, Jilin, and Liaoning)
showed an overall upward trend. The power generation
structure was the main reason that helped curb the carbon
emissions from 2015 to 2019. The non-thermal power
generation in Liaoning Province, mainly nuclear and
wind power, accounted for 30%. Liaoning is the greenest
province in Northeast China.

Electricity consumption intensity, economic scale, and
population scale are the main factors that increase the
carbon emissions in Northeast China. However, the inten-
sity of electricity consumption is a factor that inhibits
carbon emissions in the country; this indicator reflects the
amount of carbon emissions per unit of economic value,
indicating that the three provinces of Northeast China
consume high energy while realizing economic growth.
This situation is related to the actual large-scale industries
in the three provinces. Furthermore, a certain economic
gap exists relative to the rest of the country due to the
relatively stagnant development of the Northeast region
in recent years. Only Liaoning Province showed that the
indicator of electricity consumption intensity inhibited
the growth of carbon emissions in the two periods of
20162017 and 2017-2018. Therefore, the three North-
east provinces need to accelerate their pace of energy
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Table2 2015-2019 LMDI decomposition results of some provincial-level regions in China

Province/City Time period Contribution value (million tons) Contribution rate (%)
Value added AF AEG AGP APP AP AF AEG AGP APP AP
Heilongjiang 15-16 0.83 —-1.83 0.97 1.98 —0.79 0.50 -219 117 237 95 60
16-17 0.64 -2.36 0.17 3.05 —0.68 0.46 -367 27 476 —106 71
17-18 2.02 -2.12 1.67 2.84 —-0.70 0.33 -104 82 140 -34 16
18-19 —0.14 —2.08 1812  -15.66  —0.81 0.29 1485  —12925 11173 576 =210
Jilin 15-16 -1.96 -333 -1.50 3.30 —-0.77 0.34 171 77 -169 39 -17
16-17 1.71 -1.29 2.34 —0.65 0.31 76 138 59 -38 18
17-18 3.04 -0.91 3.43 0.81 —0.52 0.23 =30 113 27 -17 8
18-19 2.37 —-0.08 18.31 -15.55 -0.52 0.21 —4 771 —655 —22 9
Liaoning 15-16 —5.34 -9.87 4859 4390 -1.18 1.02 185 —911 823 22 -19
16-17 3.08 -5.04 —-0.67 9.14 -1.27 0.92 —164 —22 297 —41 30
17-18 4.58 -8.68 —0.54 14.21 -1.08 0.67 —-189 -12 310 -23 15
18-19 3.34 —4.26 10.52 —2.63 —0.89 0.60 -127 315 =79 =27 18
Guizhou 15-16 7.45 4.31 -3.28 6.02 0.07 0.33 58 —44 81 1 4
16-17 7.17 0.25 -1.93 8.40 0.11 0.34 4 -27 117 1 5
17-18 4.13 -0.55 -1.48 5.78 0.12 0.26 -13 -36 140 3 6
18-19 5.19 2.34 —6.32 8.70 0.22 0.25 45 -122 167 4 5
Sichuan 15-16 -4.20 =529  -0.80 1.75 0.02 0.12 126 19 —42 -1 -3
16-17 0.10 -0.81 -1.26 2.08 —0.01 0.10 —824 —1289 2121 -9 102
17-18 5.65 3.30 0.30 1.95 0.02 0.08 58 5 34 0 1
18-19 3.88 2.05 -1.76 3.48 0.02 0.09 53 —46 90 0 2
Yunnan 15-16 —-1.85 -1.62 -1.18 0.88 0.00 0.07 88 64 —48 0 —4
16-17 —0.63 -1.52  -0.16 0.99 0.01 0.05 244 26 -159 -2 -9
17-18 2.03 1.07 0.00 0.90 0.02 0.04 53 0 44 1 2
18-19 1.32 0.35 -2.35 3.25 0.03 0.04 26 =179 247 2 3
Chongqing 15-16 0.59 -2.15 329 5.52 0.22 0.29 -363 —556 933 37 49
16-17 4.85 0.93 —0.84 4.30 0.18 0.28 19 -17 89 4 6
17-18 10.80 3.83 4.13 2.31 0.30 0.23 36 38 21 3 2
18-19 2.20 -0.23 745 9.41 0.25 0.22 -10 —338 427 11 10
Tibet 15-16 / / / / / / / / / /
16-17 0.01 0.00 0.00 0.00 0.00 0.00 49 12 34 4 2
17-18 0.06 0.05 0.00 0.01 0.00 0.00 82 5 11 2 0
18-19 —0.01 —-0.02 0.00 0.01 0.00 0.00 207 20 -109 -15 -3

transformation and improve the overall efficiency of their
electricity consumption to minimize carbon emissions
from electricity consumption.

Table 2 shows that the carbon emissions of electricity
consumption in the Southwest region excluding Tibet
(i.e., Guizhou, Sichuan, Yunnan, and Chongqing) are
generally on the rise. The power generation structure
from 2015 to 2019 showed that the four regions demon-
strated increased carbon emissions from electricity
consumption. The proportion of renewable energy power

generation in the four regions is higher than the national
average, and the renewable energy in the four regions is
hydropower. The proportion of thermal power generation
in Sichuan and Yunnan is around 10%, and the proportion
of hydropower exceeds 80%. Thus, compared with other
regions, the Southwest region has a higher proportion of
renewable energy, and its sensitivity is greater than that
of regions dominated by thermal power generation
because of the unstable characteristics of hydropower
availability.
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The intensity of electricity consumption in the South-
west region curbed carbon emissions from electricity
consumption. The economic scale, population structure,
and population scale were manifested as the effect of
driving electricity consumption on carbon emissions. The
electricity consumption intensity, economic scale, and
population scale were consistent with the overall scenario
of the country. For the population structure of Chongqing
and Sichuan, these two places drove the growth of carbon
emissions from electricity consumption, indicating that
the two places have attracted many migrant settlers. This
result is in line with the actual scenario. With the agglom-
eration of Beijing, Shanghai, Guangzhou (Guangdong),
and Shenzhen (Guangdong), an increasing number of
people are migrating to new first-tier cities, leading to an
increase in the number of permanent residents in areas
such as Chengdu (Sichuan) and Chongqing. It has also
caused an increase in carbon emissions from electricity
consumption. Thus, new first-tier cities need to be aware
of such a migration effect. The migrant population is
expected to introduce a large amount of carbon emissions,
and the future population inflow needs to be considered
when formulating future emission reduction plans.

3.3 Decoupling model measurement results

The decoupling relationship between economic develop-
ment and carbon emissions in each province and region
was determined by obtaining the decoupling elasticity
between carbon emissions and economic development in

HE, HN,

JX, SD,
SN
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each province and region from 2015-2019. This task
was achieved by dividing the average rate of change in
GDP by the contribution of carbon emissions in each
province and region based on previously calculated
carbon emissions of 31 provincial-level regions in China
from 2015 to 2019 (Fig. 5).

During 20152019, 19 regions, including Anhui, Beijing,
and Fujian, showed a weak decoupling scenario wherein
the economic growth increased in tandem with overall
carbon emissions from electricity consumption; however,
carbon emissions grew at a slower rate than economic
growth. Heilongjiang, Jilin, Liaoning, Inner Mongolia, and
Tianjin were strongly negatively decoupled, which is the
most undesirable state where economic development
shows a decreasing trend while carbon emissions are
increasing. This phenomenon corresponds to the above-
mentioned LMDI decomposition, which indicates that the
three Northeast provinces consume much energy while
developing their economies; they are weaker than the
developed provinces in various aspects, such as economy,
talents, and digital technology. Hebei, Hunan, Jiangxi,
Shandong, and Shaanxi are in expansionary coupling state,
which indicates that economic and carbon emission
growth remain relatively synchronized, so economic
development and carbon emissions from electricity
consumption in these regions are closely related. Guangxi
and Tibet are expansionary-negatively decoupled, which
implies that economic growth and carbon emissions are
both increasing, and the growth rate of the economy is less
than that of carbon emissions.

AH, BJ, FJ, etc.
(19 regions)

AGDP

= Expansionary negative decoupling
= Expansionary coupling
= Weak decoupling
= Strong decoupling
= Recessive decoupling
= Recessive coupling
Weak negative decoupling
Strong negative decoupling

Fig. 5 Decoupling elasticity between carbon emissions and economic development by province and region (Notes: 1) BJ: Beijing, XZ:
Tibet, GX: Guangxi, HE: Hebei, HN: Hunan, JX: Jiangxi, SD: Shandong, SN: Shaanxi, AH: Anhui, FJ: Fujian, HL: Heilongjiang, JL: Jilin,

LN: Liaoning, IM: Inner Mongolia, TJ: Tianjin; 2) The formula T’ =

and economic development in each region).

ACO,[ €O}
AGDP|GDP®

2 js used to calculate the decoupling status of carbon emissions
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Equation (7) was applied to decompose carbon emis-
sions in China’s provinces and regions. The contribution
values of the generation factor, generation structure, elec-
tricity consumption intensity, economic size, population
structure, and population size in China’s provinces and
regions during the five years were calculated, and the
contribution values were divided by the average rate of
change in GDP in accordance with Eq. (7) to explore the
relationship between carbon emissions and economic
growth in China’s provinces and regions during
2015-2019. We performed a causal chain decomposition
to derive the decoupling elasticities of carbon emissions
and economic growth for each province and region, as
shown in Fig. 6.

Given that the rate of change of generation factor t,
from 2015 to 2019 was 0, it had little impact on the
decoupling elasticity indicator; therefore, it is not shown
in the figure. Figures 6(a) and 6(b) show that most
regions in China (e.g., Anhui, Beijing, and Fujian)
showed strong decoupling between the elasticity of the
generation structure and the elasticity of electricity
consumption. This result implies that the economy is
growing while the decomposed carbon emissions of elec-
tricity consumption in terms of generation structure and
electricity consumption intensity are decreasing, which is
the most ideal state for economic development and decar-
bonization. As the economy grows, most regions in
China rely less on thermal power and focus on effective
use of renewable energy and improvement of electricity
efficiency. However, Heilongjiang, Liaoning, and Inner
Mongolia presented a declining link between the structural
elasticity of electricity generation and consumption
(Fig. 6(a)). This result suggests that the reduction in
economic development indicators and the reduction in
carbon emissions in the three provinces remain relatively
synchronized due to the relatively stagnant development
of industries that are not energy-intensive in the Northeast
region in recent years.

Figure 6(c) shows that the decoupling states between
economic scale and economic growth are distributed in
the first and third quadrants, with more than half of the
cities/provinces, such as Anhui, Beijing, and Jiangsu,
showing economic scale elasticities greater than 0.8 and
being in an expansionary coupling state. This finding
indicates that economic growth and the growth of carbon
emissions remain relatively synchronized.

Figures 6(d) and 6(e) show that the population structure
elasticity and population size elasticity of the vast majority
of regions, such as Anhui, Fujian, and Guizhou, are less
than 0.8; this result indicates that the economic develop-
ment of most regions and the corresponding carbon emis-
sions are weakly decoupled, implying further that China
is currently in the process of transitioning from labor-
intensive to technology-based manufacturing. The corre-
lation between economic and population growth has
weakened.
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4 Conclusions
4.1 Summary

On the basis of the OM factor, this study estimated
China’s carbon emissions from electricity consumption
from 2015 to 2019. It used the LM DI method to decompose
the CO, emissions of electricity consumption and the
changes in carbon emission intensity to determine the
main influencing factors. Meanwhile, a decoupling index
was introduced to analyze the decoupling relationship
between CO; emissions and economic growth. The main
conclusions of this study are as follows.

(1) The average carbon emissions of electricity
consumption in North and East China were the largest,
and the carbon emissions of electricity consumption in
most regions in China showed an overall upward trend.
The overall electricity consumption carbon emissions
suggested that the overall economic value added,
secondary industry economic value added, population,
and proportion of thermal power were the main factors
that contributed to the high carbon emissions and incre-
ments in emissions from electricity consumption.

(2) The changes in the power generation structure and
power consumption intensity were the main factors that
reduced carbon emissions from electricity consumption
in most regions. The main reason was that the increase in
the amount of electricity generated by renewable energy
led to a considerable decrease in carbon emissions from
electricity consumption. In most regions, the rate of
economic growth was faster than that of electricity
consumption, resulting in a decrease in electricity
consumption per unit of economy. Economic and popula-
tion scales were the main factors that increased carbon
emissions from electricity consumption. The population
structure was a neutral indicator in the overall scenario
of the country.

(3) The changes in carbon emissions and GDP in
China’s provinces and regions were generally positive,
and they continued to grow. The decoupling relationship
between carbon emissions and economic growth in each
province and region showed four states: Weak decou-
pling, expansionary negative decoupling, expansionary
coupling, and strong negative decoupling. Weak decou-
pling was the dominant state.

4.2 Policy implications

(1) According to the results on population, economic
value added, and secondary industry value added, China
is currently at a critical stage of industrialization and
urbanization. In terms of the future economic and popula-
tion growth, increased amounts of electricity will be
inevitably consumed, which will lead to increased CO,
emissions. Although economic growth and electricity
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AH, BJ, FJ, etc.
(20 regions)
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FJ, HI, NX, etc.
(8 regions)
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AH, FJ, GZ, etc.
(25 regions)
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GZ, HB, SD,
CQ, SN
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AH, BJ, FJ, etc.
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FJ, GZ, etc.
(18 regions)
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(7 regions)

s

= Expansionary negative decoupling
= Expansionary coupling
= Weak decoupling
= Strong decoupling
= Recessive decoupling
= Recessive coupling
Weak negative decoupling
Strong negative decoupling

Fig. 6 Decoupling elasticity of carbon emissions and economic growth and its decomposition for each province and region in China
(Notes: BJ: Beijing, XZ: Tibet, GX: Guangxi, HN: Hunan, SD: Shandong, SN: Shaanxi, GZ: Guizhou, HB: Hubei, CQ: Chonggqing, AH:
Anhui, FJ: Fujian, HL: Heilongjiang, JL: Jilin, LN: Liaoning, IM: Inner Mongolia, TJ: Tianjin, HI: Hainan, NX: Ningxia, HA: Henan, GS:
Gansu).
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consumption carbon emissions in most regions showed a
weak decoupling relationship in this study, a certain
correlation still exists between the two. The current
economic growth remains inseparable from energy-inten-
sive industries. We must not slow down the pace of the
economy to ensure stable and sustained economic growth
while achieving the goal of carbon neutrality. Regions
with abundant renewable energy should be preferred
locations for energy-intensive industries. Regions with
relatively low proportion of renewable energy should
learn from the development mode of regions with high
penetrations of renewable energy, study their transitioning
plans, consider own regional conditions, and select a well-
informed transitioning path that suits themselves. For
example, regions with increased electricity density, such
as Heilongjiang and lJilin, can improve their unit
economic electricity consumption efficiency and adopt a
more energy-saving means to increase the economic
value. Coastal regions can refer to Guangdong, Fujian,
and Hainan and appropriately develop nuclear and wind
energy to increase renewable energy generation.

(2) The relatively stagnant development of the Northeast
region in recent years, the serious brain drain, and other
reasons have led to a certain economic gap with the other
regions in China; the level of digital technology is also
relatively weaker than that of economically developed
regions. The Northeast region should therefore increase
the introduction of talents, accelerate the pace of energy
transformation and digital transformation, and improve
the overall efficiency of electricity consumption to
reduce the carbon emissions of electricity consumption
effectively.

(3) To formulate a carbon neutral policy, the government
should consider not only the carbon emissions per unit of
GDP, but also the population carbon emissions. According
to the results in Table 2, new first-tier cities need to focus
on population migration. The populations of second- and
third-tier cities are gradually flowing to new first-tier
cities, such as Hangzhou (Zhejiang) and other places
aside from Beijing, Shanghai, Guangzhou, and Shenzhen,
and the migrating population is expected to bring about a
large amount of carbon emissions, and the future popula-
tion inflow needs to be considered when formulating
future emission reduction plans. The carbon-neutral route
of new first-tier cities needs to consider the additional
power load growth and carbon emissions brought about
by these migrating populations. New first-tier cities in
regions with developed renewable energy, such as
Chengdu, should devise numerous population inflow
plans. Moreover, the development of digital technology
can maximize the flexibility of these incremental loads
and improve the cooperation with renewable-energy-
abundant regions to eliminate the impact of electricity
consumption carbon emissions caused by population
migration. The government should vigorously support
industrial development and appropriately give preferential
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treatment to new first-tier cities with developed renewable
energy in order to attract foreign population inflows.
Doing so will minimize the impact of carbon emissions
from population influx.
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