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ABSTRACT The behavior of rock masses is influenced by a variety of forces, with measurement of stress and strain
playing the most critical roles in assessing deformation. The laboratory test for determining strain at each location within
rock samples is expensive and difficult but rock strain data are important for predicting failure of rock material. Many
researchers employ Al technology in order to solve these difficulties. Al algorithms such as gradient boosting machine
(GBM), support vector regression (SVR), random forest (RF), and group method of data handling (GMDH) are used to
efficiently estimate the strain at every point within a rock sample. Additionally, the ensemble unit (EnU) may be utilized
to evaluate rock strain. In this study, 3000 experimental data are used for the purpose of prediction. The obtained strain
values are then evaluated using various statistical parameters and compared to each other using EnU. Ranking analysis,
stress-strain curve, Young’s modulus, Poisson’s ratio, actual vs. predicted curve, error matrix and the Akaike’s
information criterion (AIC) values are used for comparing models. The GBM model achieved 98.16% and 99.98%
prediction accuracy (in terms of values of Rz) in the longitudinal and lateral dimensions, respectively, during the testing
phase. The GBM model, based on the experimental data, has the potential to be a new option for engineers to use when
assessing rock strain.

KEYWORDS prediction, strain, ensemble unit, rank analysis, error matrix

1 Introduction of granite has been investigated by Yu et al. [2]. He
evaluated the shape of the standard deviation curve of
Rock deformation research is important for estimating surface principal strain. Zhang et al. [3] used a
crack pattern in rock masses. Due to the rising number of ~combination of acoustic emission and ultrasonic
underground excavations under high mountains or at transmission methods in a quasi-static uniaxial
greater depths where the rock mass is subjected to severe ~compression tests to investigate the damage
pressures, recent study on the mechanical behavior of characterizations of granites. Zhao et al. [4] evaluated the
hard rocks has become more significant [1]. Stress-strain energy changes in the brittle granite under uniaxial
relationships are used to describe how rock deforms. compression at loading rates of 0.001, 0.005, 0.01, and
Deformations occur as strains; the three types of 0.05 mm/s. Duan [5] investigated the unloading-induced
deformation that can occur as a result of pressure in rock collapse of brittle rock by conducting experimental and
are elastic deformation, ductile strain, and fracture. Many ~numerical —research on granite. Soft computing
researchers have studied the stress-strain relationship of ~approaches have recently been used to solve science and
rock materials through experiments. The effect of cyclic ~engineering challenges in a further variety of research
thermal shock on the physico-mechanical characteristics projects [6,7, 8—18].
Direct examination is difficult to use in order to assess
Article history: Received Jan 24, 2022, Accepted Feb 12, 2022 the strain in a rock mass [19,20]. To overcome these
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concerns, many researchers have concentrated on nume-
rical and Al-based approaches for determining rock
properties [21-25]. Because it does not require any prior
knowledge of the type of relationship that exists between
the predictors and the forecasted variables, Al is a viable
technique for establishing and simulating such a relation-
ship [26]. A great benefit of Al over traditional empirical
and statistical methods is that it can make predictions that
were previously impossible [27]. Random forests (RF),
also known as neural nets, provide estimates for variable
relevance. They also provide way of dealing with data
that is missing. Missing values are filled in by the value
that appears the most in a specific node. RF outperforms
all other classification methods in terms of accuracy. The
RF algorithm can also handle large datasets with
thousands of variables. When a class is more infrequent
than other classes in the data, it can automatically balance
data sets. The approach also works quickly with varia-
bles, making it suited for more complex tasks [28-30].
Gradient Boosting Machines (GBM) create a series of
shallow and weak trees that learn from and improve on
each other; it frequently gives exceptional forecasting
accuracy, lots of flexibility, without need to pre-process
the data, and handles missing data [31-34]. Support
vector regression (SVR) has been shown to be a useful
method for estimating real-value functions. It is robust to
outliers. It is simple to update the decision model. It has
high prediction accuracy and great generalization capabi-
lities [35,36]. Group method of data handling (GMDH)
can identify the influential variables and generate an
explicit model formulation. It estimates the quantity of
network layers and neurons in each layer automatically,
successfully reducing artificiality in the simulation
process. In contrast to other neural networks using black
box models, polynomials are used to relate the selected
parameters to the output [37,38].

The aim of this paper is to develop and apply soft
computing approaches for estimating strain in rock. This
was performed using a large experimental dataset gene-
rated from uniaxial compression testing on rocks. A well-
equipped test setup was used to measure the rock sample’s
deformation at different locations. The cylindrical rock
material was gradually loaded along its longitudinal axis.
At the same time, the longitudinal and lateral deforma-
tions of the rock material were recorded. The strain
gauge-based transducer was fitted on the perimeter of the
cylindrical rock material at a different angle and height.
After the experiment on the rock sample, the data from
the acquisition system was obtained. The proposed
framework requires input and output in order to predict
model data. The stress and position of stain gauge (height
and angle) in the rock material were employed as input
parameters. The longitudinal and lateral strain of the rock
sample was employed as output parameters. In this work,
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predicting rock strain is performed using developed
algorithms such as GBM, RF, SVR, and GMDH. In order
to compare the developed model, the stress-strain curve,
elastic modulus, and Poisons ratio were used to identify a
robust model.

2 Details of data

During experimental testing, data was collected from the
laboratory to forecast strain in a granite rock material.
The work by Isah et al. [39] contained descriptions of
strain measurements for uniaxial compression testing on
rocks. Uniaxial compression tests were used to assess the
load and deformation of a cylindrical granite rock
(diameter = 40 mm and height = 108 mm). A load cell
and the number of strain gauge-based transducers were
used to measure the load on the longitudinal axis and
deformation on the perimeter of the cylindrical rock. The
details of the location of the strain gauge are shown in
Fig. 1. In total, 48 electronic strain gauges were used on
the perimeter (lateral and longitudinal direction). These
deformation and load data were accumulated in data
acquisition system. According to the dimension of the
rock, the obtained data was used to determine stress and
strain. The uniaxial strength of the granite rock was
336.110 MPa, with maximum strains of 2.9947 x 107
and —0.0037 x 107 in the lateral and longitudinal direc-
tion, respectively. This granite rock material has a
Poisson’s ratio of 0.27. The strain gauge’s height, angle,
and stress in the rock sample are considered input
parameters, whereas the strains in the lateral and longi-
tudinal direction of the rock material are considered
output parameters. Using these input and output data, soft
computing frameworks were employed to forecast the
strain in a rock sample. Finally, 3000 measurements from

uniaxial loading

40 mm electronic strain
gauges
T
27 mm
27 mm ;
108 mm
27 mm
I lateral (x)
27 mm direction
longitudinal (y)
direction

Fig. 1 Details of the strain gauge when a rock sample is
subjected to uniaxial load.
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the granite rock sample were gathered for the sake of this
study [8,23].

These values were standardized between 0 and 1 in
order to use a common scale for numeric column values
in the dataset, using Eq. (1). 70% of the main data (2100
measurements) were used to train the models from the
training data (2100). Similarly, the trained models were
tested using 30% of the main data (900 measurements).

Observed value — Minimum value

Normalized value = - — .
Maximum value — Minimum value

(M

3 Soft computing techniques: design and
details

3.1 Gradient boosting machine

One of the most well-known supervised machine learning
algorithms introduced by Friedman [40] is the GBM. The
standard regression problem can be expressed as follows:

D:{(x]’yl)""’(xN7yN)}’ (2)

where x; is a member of the set y € R™ and represents a
feature vector with m elements, and y; € R™ represents the
actual outcome value such that y,= f(x;)+&. Here &
represents random noise and has an expectation of 0 and
an unknown finite variance; f is an unknown continuous
function that must be computed. The aim of machine
learning is to create a regression model or an approxima-
tion g of a function f that minimizes the predictable risk
or loss function.

L(9) = Buyop L) = | LOug()dPry). ()

where a joint probability distribution of x and y is
denoted by P(x,y), L(-,-) and this is the loss function.
GBMs build an additive ensemble model of size M by
iteratively improving the predictions of y from x with
respect to L by adding new weak or base learners that
improve on the prior ones.

g (x)=c, 4)

g =g ()+yh(x);i=1,...,.M, (5)

where i is the number of iteration level; the ith base
model is /; 7y, is the ith base model weight or coefficient.
The aim of the algorithm is to reduce the loss function
L as much as possible. If decision trees are considered to
be the base models, each iteration results in the
construction of a single decision tree to fit the negative
gradients. The parameters 6, can be used to define the
function £, i.e., h;(x) = h(x,6;). The depths of trees, the
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learning rate, and the number of iterations are all GBM
parameters.

3.2 Random forest algorithm

The aim of RF is to use a number of weak models, such
as decision trees, to make a robust model. It is an
ensemble learning technique for regression, classification
and other tasks that works by creating a large number of
decision trees during training [41,42]. The mean or
average prediction of the individual trees is returned for
regression tasks. The RF algorithm works primarily as
follows.

1) The bagging sampling method is used to generate K
training sets from the initial training set M, with each
training set having a total of N samples.

2) To produce K CART decision tree models, the
model is trained using K training sets.

3) Each time, the ideal division attributes of the current
node is selected according to the GINI index to develop
branch nodes, and finally a single decision tree is
generated for the characteristic attributes of a single
decision tree model.

4) The created K decision trees are developed into a
random forest.

Improving the combined classification model’s extra-
polation prediction performance is critical to the final
result. The final classification choice is made after &
rounds of training, {h,(x),h,(x),...,h(x)}, and a simple
majority vote:

H(x) = arg II‘I;:IXZI(h,' x)=Y), 6)

where H (x) denotes the combined classification model, A;
denote a single decision tree result, ¥ denote output of
model, /(-) denotes an indicative function. The following
is the formula for determining the importance of
variables:

_ A_Al

OOB’ M

where 4 denotes the number of samples properly
categorized prior to re-placement. A, denotes the number
of samples that were correctly classified after being
replaced, OOB is the observed score of RF.

3.3 Support vector regression

The support vector machine (SVM) is a set of learning
methods for handling real issues with a small sample,
non-linearity, and high dimensionality techniques that
were developed in the late twentieth century [36,43]. Con-
sider the following sample set, D = (x;,y,),i=1,2,....n;
x; is the input vector; y; is the goal output; and 7 is the
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sample set’s number of samples. The issue is an
autoregressive problem, with x; denoting daily influence
variables. Many non-linear problems in real life are
solved by mapping the sample point into a high-dimen-
sional space (¢ — ¢(x)) using a mapping function ¢. Only
the dot product of the feature space, ¢(x;)-¢(x;), is
employed to generate the ideal hyper-plane. Consequen-
tly, if a function K(-) satisfies K (x;,x;) = ¢ (x;)- ¢ (x;), it is
considered a kernel function. The Gaussian function,
given by Eq. (8), is the most commonly utilized type of
kernel function.

x2
K(.xi,.xj') = eXp (_0.5)(:,' - _/2) . (8)
g

The SVM was developed to resolve classification
problems, but it’s also useful for regression analysis,
which comes in two types: linear and non-linear. The
linear regression function is defined as follows:

y=f(x)=w-x+b. 9)

The original data can be written as {(xi,yi)}ll.zl; the
regression function in Eq. (9) must be as small as possible
to that it is flat. Consequently, its Euclidean space norm
should be minimized. In Eq. (9), w and b are the
regression function’s normal vectors and offsets,
respectively. A linear function with an error of € is
considered to fit all of the training data. The following
optimization problem can then be solved.

1
min® (w) = sz, (10)
with the limitations,

=1,2,....n. (11)

yi—wx;—b<e,

wx;+b—-y; <e,

When the above limitations cannot be totally satisfied,

the relaxation variables & and & are introduced, and the

optimization problem is converted into the following
issue,

mind (w) = %w2+CZ(§;+§f), (12)

with the limitations,

£.620,i=1,2,...,I1C>0.
(13)

The constraints are linear since function @(w) is
quadratic, hence the problem is a standard quadratic
programming problem that can be resolved using
Lagrange multipliers.

yi—wxi—b<e+&,
wx;+b-y, <e+é&,
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3.4 Group method of data handling

GMDH is a collection of methods for estimating system
behavior and solving various challenges. The GMDH
algorithm is used to develop an adaptable, supervised
learning network that has been used in a wide range of
applications, including medical, automobile systems, and
so on. It is predicted that this method can find the best
answer by minimizing the value of an external criterion
[44]. The GMDH algorithms allow for the automatic
selection of mathematical expressions such as polyno-
mials, non-linear models, and probabilistic functions in
order to discover the best modelling structure or network
depending on the input data.

This method consists of a primary layer of neurons
connected by a polynomial that generates new neurons in
succeeding layers. The following procedure was
employed for a given set of ‘n’ observations of the m
independent variables (x;, x,,...,x,) and their correspon-
ding matrix of dependent values (y;,y,...,y,). The total
number of combinations for a pair of variables is
mx(m—1)/2, because there are m input variables.
Equation (14) can be used to assess the output y using a
polynomial expression.

Y = a+bx;+cx;+dx; +ex; + fxx;. (14)

Equation (14) can then be used to evaluate the
polynomial for all n observations, resulting in matrix Z.
The Z matrix can be thought of as a set of new, improved
variables that are more predictable than the original
generation x;, x,,..., X, variables.

zj = a+bx;+cx;+dx; +ex; + fx.x;. (15)

Therefore, the algorithm computes the RMS value in
order to exclude the variables that are the least effective.
The test data set for each column of the Z matrix
(j=1tomx(@m—1)/2) can be used to assess this. The
regularity criterion is given by Eq. (16).

{2 i— Zij)z]

—_—. (16)
Yi

2 _
ry=

The columns of Z should be sorted in increasing order
of r;, with the original columns of the input matrix X
being replaced by the columns of Z satisfying r; <R (R
stands for a user-specified value). The process is repeated
until the method termination criterion is met, and
additional generations are obtained.

3.5 Ensemble unit

Combining multiple model outputs has shown that ensem-
bling techniques as post-process procedures can improve
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model prediction [45]. When numerous approaches are
utilized, the results do not appear to be extremely
sensitive to the particular choice of methods, which is an
advantage of combining predictions. Using a combination
of predictors is thus safer and less risky than depending
on a single technique. Experimental and theoretical
studies suggest that combining the outputs of several
models can be a great way to improve the overall efficien-
cy of time series prediction. The linear weighted avera-
ging method was evaluated in this paper for combining
the outputs of the employed models to improve prediction
performance. In this method, four techniques were
applied for combining the outputs of the GBM, SVR, RF,
and GMDH models. The weighted averaging model can
be written in Eq. (17).

F =) wf), (17)

where w; is the applied weight on the ith model which can
be determined based on the model performance as:

2
Ri
n ’
E 2
Ri
i=1

where R? is the coefficient of determination on the ith
single model.

w; =

(18)

3.6 Evaluation of models

The model accuracy is analyzed by using some statistical
parameter including determination coefficient (R%), Weigh-
ted Mean Absolute Percentage Error (WMAPE), Root
Mean Square Error (RMSE), Variance Account Factor
(VAF), Performance Index (PI) [46], Root mean square
error to observation’s standard deviation ratio (RSR) [47],
Willmott’s Index of agreement (WI) [48], Mean absolute
error (MAE) [49], Mean absolute percentage error
(MAPE), and Mean Bias Error (MBE).

N N
D A= Poe) = ) (A= P
i=1

i1

R=-

(19)

N >

D A=A

=1

(20)
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1 N
RMSE = 4 Z (A, - P,),
i=1

— 21
< @n
var(A; - P;)
VAF =[1- —21 —21% 100, 22
( var(A;) ) 22)
PI = adj.R> +(0.01 X VAF)— RMSE, (23)
RMSE
RSR = , (24)
1 n
— > (Ai—Apew)
N;( i Aean)
N
D @-py
Wi=1-|——= . (29
{le _Amean| + |Ar _Ameeml}2
i=1
1 N
MAE = — ) [(P.—A)), 26
N;K = A (26)
MAPE = ZN: A’_P"'xloo 27)
N | A ’
1 N
MBE = — ) (P,—A)), 28
N;< ) (28)

where A; is the observed ith value; P; is the predicted ith
value; A, 1S the average of actual value; N is the
number of samples.

4 Result and discussion

In this section, the models’ performances are compared.
The models were developed with the MATLAB 2015a
version of software. Tuning factors such as the number of
trees, learning rate, Sigma, and others were important
during the model training process. The tuning parameters
of all models are displayed in Table 1.

4.1 Stress—strain curve

Rock is primarily a brittle substance with high compre-
ssion strength but low tensile strength. Tensile deforma-
tion in the lateral (x) dimension occurred as a reaction to
the tensile force in the rock material. The maximum strain
indicates the start of a failure form in the rock. In this
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study, data from the rock was used to examine this
maximum strain. We investigated the strain values and
found that the highest values were achieved at sample
heights of 27 and 54 mm and angles of 270° and 90° in
the lateral and longitudinal dimensions, respectively.
Figures 2, 3, 4, and 5 show the strain in the longitudinal
and lateral direction of the rock, related to the height and
angle of the strain gauge. Different strain gauges mounted
in lateral and longitudinal dimensions were used to
evaluate the behavior of each rock sample. Figures 6 and
7 show the stress-strain curves obtained from models
such as GBM, SVR, RF, and GMDH. These stress—strain
curves were used for comparison of the model outputs
with actual curve. Some models (SVR, RF, and GMDH)
failed to perform effectively, despite the fact that the
actual curve began at the origin. However, in both

Table 1 Tuning parameters of the developed models

model tuning parameters

GBM i. No. of trees (train) = 100,200,...,1000
ii. Max. tree leaves = 3,5,7,9,11,13,15
iii. Max. tree depth =4,5,6
iv. learning rate = 0.001,0.005,0.01,0.05,0.1
v. Min. No. of data in a leaf = 5,10,15,20

SVR i. Penalty of the error = 1000 (max.)
ii. Sigma = 1 (max.)
RF i. No. of trees = 1000 (max.)

ii. No. of input (best split) = 3
iii. Min. No. of samples (internal node) = 20
iv. Min. No. of samples (leaf node) = 15
i. N-layer = 4
iil.a=0.6
iii. Max-Neurons = 20

GMDH

o et

<t <t<t<t<t<t<t ——
NN 000000

height (mm)

Fig.2 Strain—height variation in the x direction.
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Fig.3 Strain—angle variation in the x direction.
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Fig. 4 Strain—height variation in the y direction.
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Fig. 5 Strain—angle variation in the y direction.
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Fig. 6 Rock sample stress—strain behavior (x direction).
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Fig.7 Rock sample stress—strain behavior (y direction).
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longitudinal and lateral dimensions, it is clear that GBM
is perfectly fitted to the actual curve.

4.2 Young’s modulus (F)

The ratio of the applied stresses in longitudinal axis to the
corresponding strain in the same axis under tension or
compression of rock sample is known as Young’s
modulus (E). Values of E were used to compare actual
and model results in this section. Saturated cores rock has
an E value of up to 90 GPa [50]. The actual value is 83.39
GPa in this case. When compared to other models, the
GBM (F£ = 83.11 GPa) proved to be the most accurate
model. These results are visualized in form of bubble
chart (Fig. 8). EnU and RF, only, have values less than
75 GPa.

4.3 Poisson’s ratio ()

The ratio of lateral strain to longitudinal strain in rock
samples under compression or tension stress is known as
Poisson’s ratio (u). Here, actual and predicted u values
were determined by using lateral and longitudinal strain
values. With a mean value of 0.28, the values ranged
from 0.19 to 0.35 [51]. All values were within the range
and nearly equal to mean values. Therefore, from this
point of view, all models were considered to be equally
valid. The values are shown in the form of radar diagram

(Fig. 9).
4.4 Statistical parameters with rank

Tables 2 and 3 demonstrate the statistical assessment and
score of the developed model for lateral and longitudinal
strains, respectively. The values of performance para-
meters are displayed on the basis of normalized outputs.
To consider better model efficiency, WMAPE, MAE,
RMSE, MAPE, MBE, and RSR should have values equal
to 0, VAF should be close to 100, PI should be close to 2
and R* should be close to 1. WI is a scale that is in the
range 0 to 1 and represents the of error level in model
predictions. All models achieved good values compared
to the limits and range of parameters. In this study, the
performances of the predictive models and EnU was
compared using a most likely rank system [52]. The Rank
was calculated using the training and testing parameter
values from each of the four models and EnU. The range
of Rank from 1 to 5 was defined by the number of
models. A Rank system’s causality value is the ideal
value, whereas the comparative best model has a first
rank. The most likely rank for training and testing data is
used to calculate the model’s overall performance. As a
result of this, the GBM (1) achieved first rank in both
lateral and longitudinal dimension. SVR (3 and 2), EnU
(2 and 3), GMDH (4), and RF (5) appeared in next place,
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respectively, in both lateral and longitudinal dimensions.
Therefore, GBM is regarded as the most accurate
performer in lateral and longitudinal dimensions.

4.5 Actual vs. predicted

Figure 10 illustrates the strain predicted by various
proposed models compared to actual value for the
training and testing datasets in lateral and longitudinal
dimension. As the points approached the regression line,
the developed model’s performance improved. The GBM
model outperformed other models, as indicated by the R
values. In both the dimensions, the GBM equation was
very close to (x = y) in training and testing. The SVR and
EnU also outperformed the RF and GMDH. As a result,
GBM is thought to be the most effective model.

4.6 Error matrix

Figures 11 and 12 in this section illustrate the degree of
inaccuracy associated with the models depending on a
variety of statistical parameters. This is a heat map matrix
created from comparing ideal values of the statistical
parameter. More details of this matrix are discussed in

90
851
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2 807 79.54 ‘
.é‘ Oactual
g 75 o GBM
£ SVR 73.70
S ||eRF

701 e GMDH L

EnU -
65

Fig. 8 Comparison of predicted elastic modulus.
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030,77~
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027) 1 ¢ 1(0.29)
|
o |
! 1
! 1
! 1
! 1
! 1
1 : 1
GMDH ¢ ' SVR
027) °~ 27T 27 (026)

-
~_L-
~

RF (0.28)

Fig. 9 Predicted Poisson’s ratio.
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Table 2 Statistical parameter in lateral dimension
parameter model
GBM SVR RF GMDH EnU
train test train test train test train test train test
R value 0.9931 0.9816 0.8915 0.9052 0.9391 0.9347 0.8784 0.8951 0.9503 0.9484
rank 1 1 4 4 3 3 5 5 2 2
WMAPE value 0.0391 0.0483 0.1065 0.1004 0.1734 0.1672 0.1316 0.1226 0.0928 0.0889
rank 1 1 3 3 5 5 4 4 2 2
RMSE value 0.0125 0.0194 0.0501 0.0443 0.0544 0.0522 0.0521 0.0464 0.0371 0.0348
rank 1 1 3 3 5 5 4 4 2 2
VAF value 99.3044  98.1576 88.8898 90.4512 86.4918 86.6854 87.8359  89.4863 93.8477 94.0761
rank 1 1 3 3 5 5 4 4 2 2
PI value 1.9737 1.9437 1.7301 1.7651 1.7496 1.7492 1.7045 1.7433 1.8516 1.8542
rank 1 1 4 3 3 4 5 5 2 2
RSR value 0.0831 0.1334 0.3348 0.3046 0.3670 0.3585 0.3476 0.3187 0.2474 0.2391
rank 1 1 3 3 5 5 4 4 2 2
MAPE value 8.6163 9.4273 15.0512 17.0682 53.0258 50.0705 22.5055  21.8960 29.5867 31.2156
rank 1 1 2 2 5 5 3 3 4 4
wi value 0.9982 0.9955 0.9678 0.9743 0.9526 0.9558 0.9666 0.9730 0.9822 0.9838
rank 1 1 3 3 5 5 4 4 2 2
MAE value 0.0083 0.0101 0.0226 0.0210 0.0359 0.0349 0.0280 0.0256 0.0197 0.0186
rank 1 1 3 3 5 5 4 4 2 2
MBE value 2.8E-05 3.5E-04 —6.2E-03 -3.6E-03 —1.8E-03 1.1E-03  -5.1E-04 1.5E-03 -1.6E-03 —1.5E-04
rank 1 2 5 5 4 3 2 4 3 1
most likely rank 1 3 5 4 2
Table 3  Statistical parameter in longitudinal dimension
parameter model
GBM SVR RF GMDH EnU
train test train test train test train test train test
R value 0.9998 0.9884 0.9965 0.9860 0.9804 0.9693 0.9920 0.9819 0.9974 0.9869
rank 1 1 3 3 5 5 4 4 2 2
WMAPE value 0.0067 0.0114 0.0321 0.0345 0.1298 0.1332 0.0390 0.0406 0.0368 0.0397
rank 1 1 2 3 5 2 4 5 3 4
RMSE value 0.0038 0.0287 0.0167 0.0319 0.0755 0.0778 0.0241 0.0359 0.0218 0.0335
rank 1 1 2 2 5 5 4 4 3 3
VAF value 99.9802  98.8321 99.6486  98.5662 92.1973  91.3857 99.2047  98.1734 99.3504  98.4038
rank 1 1 2 2 5 5 4 4 3 3
PI value 1.9958 1.9480 1.9763 1.9397 1.8268 1.8052 1.9600 1.9277 1.9691 1.9373
rank 1 1 2 2 5 5 4 4 3 3
RSR value 0.0139 0.1081 0.0614 0.1201 0.2769 0.2933 0.0884 0.1352 0.0801 0.1263
rank 1 1 2 2 5 5 4 4 3 3
MAPE value 4.6528 6.8070 29.7569  46.4693 63.0917  71.4464 13.4474 19.0890 32.8977  35.2632
rank 1 1 3 4 5 5 2 2 4 3
wi value 1.0000 0.9971 0.9991 0.9964 0.9749 0.9717 0.9980 0.9954 0.9983 0.9958
rank 1 1 2 2 5 5 4 4 3 3
MAE value 0.0030 0.0051 0.0146 0.0155 0.0590 0.0599 0.0177 0.0183 0.0167 0.0178
rank 1 1 2 2 5 5 4 4 3 3
MBE value 2E-05 1E-03 —5E-03 —3E-03 —6E-04 2E-04 —7E-05 1E-03 —1E-03 —5E-06
rank 1 3 5 5 3 2 2 4 4 1
most likely rank 1 2
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Fig. 10 Actual vs. predicted. (a) Training in lateral dimension; (b) testing in lateral dimension; (c) training in longitudinal dimension;

(d) testing in longitudinal dimension.

[25]. This matrix clearly indicated that the GBM had a
lower error rate in both training and testing of both
dimensions. When compared to other models, the reddish
tint indicates a higher level of RF inaccuracy. As a
consequence, the GBM model beats the others, while the
RF model performed the worst in both training and
testing of both dimensions.

4.7 Akaike’s information criterion

One of the most sensitive challenges in the construction
of data models is evaluating the model’s generalization
potential, which is defined as the model’s greatest
performance in the study dataset that is being used. The
Akaike’s information criterion (AIC) criterion was
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developed by Akaike to assess the generalized capacity of
models. This parameter has been used to assess the power
of models in engineering-related challenges [53,54]. The
AIC criteria are as follows:
AIC =N xIn((RMS EY) + 2K, (29)
The number of datasets in testing or training is &, while
the number of fitting parameters is K. Table 4 and Fig. 13
show the AIC values for GBM, SVR, RF, GMDH, and
EnU for the testing and training datasets. This value of
the best model is the lowest. As a result, GBM has the
lowest generalization potential when compared to other
models based on these parameters.

Error matrix for longitudinal dimension.

5 Conclusions

In this paper, data comprising 3000 measurements were
used for predicting the rock strain in the lateral and
longitudinal dimensions. To forecast strain, four models
(GBM, SVR, RF, and GMDH) and EnU were used.
Seventy and thirty percent of the main dataset from the
whole dataset were used for model training and testing,
respectively. The predicted results were examined using
the stress-strain curve, Young’s modulus (£), Poisson’s
ratio (), rank analysis, the actual vs. predicted curve,
error matrix and the AIC values. In each analysis, the
GBM (R = 0.9931; 0.9816 and 0.9998; 0.9884) was
shown to be more accurate than the SVR, RF, and
GMDH models, as well as EnU, in both training and
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Table 4 AIC values of models

models train (x) test (x) train (y) test (y)
GBM -18415.1 —7089.486 —23364.93 —6386.733
SVR -12564.4 -5603.029 —17173.15 —6196.313
RF -12159.1 —5309.413 —-10848.1 -4589.758
GMDH —12406 —5521.362 —15642.85 —5984.094
EnU -13833.6 —6038.649 -16058.97 -6107.009
= test (v) EnU
= train (y) GMDH
m test (x) RF
= train (x) [ —
SVR
GBM
—25000 —20000 —15000 —10000 —5000 0

AIC value

Fig. 13 AIC values for all models in x and y dimensions.

testing of lateral and longitudinal dimension, according to
the experimental data. EnU (R* = 0.9503; 0.9484 and
0.9974; 0.9869) also performed well, but it is in next
level of GBM. The R® values are given here in the
sequence of training and testing phases for the lateral and
longitudinal dimension, respectively. Overall, based on
existing experimental datasets, the proposed GBM model
can be used as a promising model to predict rock strain.
The study’s future path could involve a full evaluation of
the proposed GBM and hybrid models of additional
optimization algorithm and neural networks, as well as
Deep Learning. EnU also performed well but it is
dependent on the results of other models. In the future,
further improvement must be made in forecasting the
strain in the rock sample using RF and GMDH models.
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