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ABSTRACT The study proposes a framework combining machine learning (ML) models into a logical hierarchical
system which evaluates the stability of the sheet wall before other predictions. The study uses the hardening soil (HS)
model to develop a 200-sample finite element analysis (FEA) database, to develop the ML models. Consequently, a
system containing three trained ML models is proposed to first predict the stability status (random forest classification,
RFC) followed by 1) the cantilever top horizontal displacement of sheet wall (artificial neural network regression models,
RANNI1) and 2) vertical settlement of soil (RANN2). The uncertainty of this data-driven system is partially investigated
by developing 1000 RFC models, based on the application of random sampling technique in the data splitting process.
Investigation on the distribution of the evaluation metrics reveals negative skewed data toward the 1.0000 value. This
implies a high performance of RFC on the database with medians of accuracy, precision, and recall, on test set are
1.0000, 1.0000, and 0.92857, respectively. The regression ANN models have coefficient of determinations on test set, as
high as 0.9521 for RANNI, and 0.9988 for RANN2, respectively. The parametric study for these regressions is also

provided to evaluate the relative insight influence of inputs to output.
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1 Introduction

In urban areas, construction activities are commonly
restricted due to the high density of adjacent buildings.
This leads to the requirement of retaining walls to reduce
the excavation area impact on movement. A cantilever
sheet wall is a regular retaining structure for the shallow
excavation, and the stability of this structure relies on the
balance of the active, and passive, soil pressures. The
cause of failure primarily comes from the failure of
maintaining this balance rather than exceeding the
allowable stress in the wall. This failure may lead to the
collapse of the adjacent building or buildings, and thus,
accurately predicting the failure or stability of the
cantilever is desired for not only the construction works
itself, but also the surrounding environment. The
horizontal displacement at the top of the cantilever sheet
wall (A), can affect the working space within the
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excavation and be the alarm of the wall collapse, is a very
complicated prediction because of its combinations of
rotation due to imperfect supports and deflection of the
wall. The ground movement, y(x), due to the excavation,
is a potential failure thread to the adjacent building or
their piles. Consequently, the soil settlement adjacent to a
sheet wall is also a variable [1-5] of interest.

The finite element analysis (FEA), is a common appro-
ach to solve geotechnical problems and is commonly
applied for the designing purpose as in Ref. [6]. However,
FEA sometimes faces difficulty with solving the partial
differential equations for complicated problems, and only
yields to the prediction for a particular case without
extracting the non-relationship of the input variables. It
provides an approximation model [8]. Practical appro-
aches to eliminate these drawbacks are commonly rele-
gated to a machine learning (ML) technique: 1) applying
ML techniques to solve the partial differential equations
as in Refs. [9,10], and 2) using FEA to generate the
database for the ML models [10-13].
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The combination of FEA for developing the database,
and predicting the output, with ML models as summa-
rized in Ref. [15], has been conducted not only for
structural analyses [15—18] but also for a variety of geote-
chnical problems. Examples are modeling soil behaviour
[19-22], predicting pile capacity [23-25], site characte-
rization [26-28], liquefaction [29-31], slope stability
[32-34], and landslide assessment [35-37]. Within these
studies, research on the retaining structures is a critical
part [1,13,38-41]. In Ref. [38], the conventional
reliability approach (i.e., First Order Reliability Method
and Monte Carlo Simulation) is integrated with artificial
neural network (ANN) for reliability and risk evaluation
of deep excavations. In Ref. [49], the displacement of a
braced retaining wall in clay soil is predicted with the
combination of ANN and FEA. In Ref. [1], the prediction
on the additional deformation of the soil due to the nearby
underground excavation and the parameter study, is
implemented. In Ref. [13], records from construction site
are used as the database to develop the ANN model for
approximation of diaphragm wall deflection. The same
concerns are on the retaining wall of deep excavation, in
Ref. [40], the adaptive Broyden-Fletcher-Goldfarb-
Shanno algorithm, and the neural network, are combined
to estimate the state-based wall deflection and maximum
location of each value. In Refs. [41-43], the surface
settlement due to a deep foundation construction process
has been predicted by random forest (RF) and ANN.

In contradiction, the ML approaches have several flaws
such as the uncertainty in finding the “best” hyper-
parameters for the model. This leads to frequent use of a
trial and error process and grid searching, or another
optimization process is required in Refs. [7,44]. Further-
more, researcher who applied data-driven models for the
geotechnical problems commonly focused on the single
predicting task rather than proposing a system predicting
various outputs regarding to the fact that the calculation
be terminated with error. There is an absence of an initial
classification model to observe soil-structure system
failure possibility, and a shortage within current studies.
Most studies have concentrated on the regression model
where the variables of interest are continuous. Zhang
et al. [45] summarized 92 studies with a soft computing
approach, and the classification problem is rarely seen in
this list, except for some on rock burst problems.
Analogously, the review paper of Moayedi
et al. [14], has shown this shortage.

In this study, a variable of interest, which is a binary
variable, attached at the initial step of the predicting
system, can be linguistically interpreted as “failure” or
“not failure”. It is obvious that this category and other
continuous variables, such as quantities of ground
settlement, have a hierarchical order in the prediction
process. The proposed system is a simplified network,
which contains a sequence of a classification model, the
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random forest classification (RFC), and is chosen to
predict the stability status of the cantilever sheet wall.
Two other regression ANN models (RANNI and
RANN2), predicting the vertical settlement of the
adjacent ground surface, and the horizontal displacement,
are conducted separately. The uncertainty of the ML
model is observed by a random sampling technique in the
train/test data splitting process for the -classification
problem. A set of 1000 RFC models is obtained and
selection, from this set, is implemented to choose the
“best” model for predicting status of the soil-structure
system. The configuration selection process for the ANN
model is conventionally carried out based on the trial and
error approach, and not provided in the context for the
sake of simplicity. The parametric study is implemented
for the regression models, and the practical application of
the proposed data-driven based hierarchical system is
illustrated.

2 Methodology

2.1 Simulating behaviour of cantilever sheet wall with
finite element analysis

Geometric variables of the sheet wall structure provided
in Fig. 1(a), includes the depth of excavation H, length of
the sheet wall L, and depth of the ground water table /.
The addition of construction loads, such as vehicle load,
or temporary weight load, are also modelled as a uniform
load ¢, with the corresponding width of B along the x-
axis. In some simulations, this load is not applied to
widen the possible cases of the database. Material
property (i.e., modulus of elasticity of steel, E) is
combined with cross-section property of sheet wall (the
moment of inertia, /) by using E/ as an input variable.
Cantilever sheet wall, and soil are modelled in Plaxis, as a
2D beam, and triangular two-dimensional deformation
element, respectively. The meshing system includes the
global mesh which is relatively coarse, and the mesh
surrounds the sheet wall which is finer (Fig. 1(b)).

For geotechnical engineering, it is critical to choose a
proper model to simulate the soil behaviour. Hardening
soil (HS), is the model chosen in this paper, has an
advantage in accounting for the effect of stress to the
stiffness of soil [46—48]. This characteristic is approp-
riate, especially for the excavating process with different
phases. The HS is a hyperbolically elastic-plastic model
which additionally uses the secant stiffness in standard
drain triaxial test Es,., tangent stiffness for primary

oedometer loading E__;, and unloading/reloading stiffness

E . to describe the stress-depend stiffness. It is
commonly assumed that Ey, = E 4, and E = 3 X
Es.¢ [46], and it is sufficient to account only £, to the

ML models because of these relationships.
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Along with E_;, the friction angle ¢, cohesion c,
saturated weight y ., and unsaturated weight y, ..., are
the 5 primary properties of soil required for the analysis
process. Detail of the ranges of soil properties is to be
provided in Section 3. These soil properties are collected
by the author’s team from various construction sites in
Vietnam covering both cohesive and non-cohesive soils.
Other additional properties of the soil such as natural
water content, natural voids ratio, grain size distribution,
degree of saturation, etc., are not always available in the
collected data. These properties are not used to develop
the prediction models, and can be found from their
relationship with the 5 primary properties or reasonably
assumed for the FEA. Soil with zero cohesion, will have
this value set as 1 to ensure numerical stability in the
computing process. Only homogeneous soil types,
without stratification, and their long-term behaviour, are
considered in this paper.

Each simulation starts with the first phase when the
wall is inserted. The digging process is consequently
taken place with 5 phases corresponding to soil layers,
which equal to 1:5 of H (Fig. 1(b)). Response of the
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structure, such as wall and soil displacement found in
each phase, is used as the input for the succeeding phase.

To avoid the collapse of Plaxis from other non-failure
causes, the sheet wall structure is considered to be in
failure if the “soil body collapses” announcement is
applied. This equates to that the current stiffness
parameter, CSP, is less than 0.015 (as default). CSP is a
parameter to measure the amount of plasticity occurring
in the calculation, where the near zero value of CSP
indicates failure of the model [49]. The “soil body
collapses™ error, thus implies the ultimate limit state of
the soil is exceeded and will be used as the collapse
criterion. Additionally, if the horizontal displacement at
the top of sheet wall is significantly large, it is a warning
of exceeding the deformation limit (i.e., serviceability
limit state). In general, a sheet wall applied for an
excavation will be considered as failure if it collapses or
exceeds a threshold for A. Since there is no strict rule for
this threshold, it is practically chosen at 200 mm based on
expert opinions.

The status of the structure and horizontal displacement
at the top of the sheet wall can be written as the function

(0,0)

EallE

ground water table
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sheet wall
— —_

40 m

120 m

e |

Fig. 1

Layout of the cantilever sheet wall with geometric input variables and the mesh grids and phase-based soil layers.
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of input variables previously discussed:

Status = f(L, EI, H, Hw, Bs q, Eoed9753t97unsat» ¢,C), (1)

A = f(L’ ElvaHw7Bs q7Eoed9’)/sals’)/unsal9¢7c)' (2)

Database for the vertical settlement of the ground is
based on simulations but distinct from database for the
status and A. In each Plaxis simulation, more than one
sample can be found for y(x) because it is a x-dependent
variable. Database for y(x) will be expanded to m X p
samples where m is number of simulations and p is the
number of chosen horizontal locations. Consequently,
y(x) can be found by a function with inputs as in Eq. (3),
and x as additional input variable:

y(x) = f(x’ La EI, H, Hw’Bs C], Eoed9YSa19Yunsata ¢7 C)- (3)

2.2 Machine learning models

In this section, fundamentals of the chosen ML models,
RF and ANN, are discussed. It is noted that attempts on
both RF and ANN have been implemented for classifi-
cation and regression problems. The RFC is chosen for
the classification problem of sheet wall safety/failure
prediction because of the high accuracy, and stable
results. Meanwhile, the ANN models provide a more
robust solution for the regression problems compared to
that of RF. The model selection process is conventionally
applied and not discussed in the study for simplicity.

The cross-validation technique is commonly conducted
to observe the randomness of the models, which relies
heavily on the accuracy of the data. The conventional
method of data splitting into train set, and test set, is a
common approach. Further techniques can be applied to
capture the dependence of model to data (e.g., K-cross
validation [50]). In this study, a set of 1000 RFC models
are developed and each of them is developed based on the
sampling process of taking 80% of the data from the
database [51]. Critical results of the classification

samples
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problem, which are: accuracy, precision, and recall, for
each model on the test set (e.g., the remaining 20% of the
database), are calculated. Consequently, the distributions
of these metrics are observed to evaluate the dependence
of model quality on the database. This process is
illustrated in Fig. 2.

2.2.1 The random forest classification

In this paper, the RFC model, predicts the failure status of
the sheet wall. The RF method relies on the classification
and regression tree algorithm, CART [52], to develop a
voting process. Starting with a root node contains the
database, CART splits the parent node into the left and
the right nodes (or the children nodes) by the best of a
pair of ¢, and k, where k is the kth feature and 7, is a
threshold corresponds to kth feature. The chosen pair of ¢,
and k& must have the minimum following cost function
J(k,t,):

Mg mright

Gright bl (4)
m

J(k,t) = Gien +

m
where Gieigne 1S the impurity of the left/right subset;
Myerrign: 15 the sample of the left/right subset. The Gini is
used in this paper as the impurity measure. With the 2
classes, (0) corresponding to the failure or (1) not failure ,
the Gini index of a node can be written as:

1 (.2 2
Gletright =1 (pleﬁ/rigm\ ot pleft/right\l)

t

2 2

left/right| -1 ) N (mlcft/rightl ) )’ 5)
mleft/right mleft/right

where p, i - 18 the ratio of instances, belongs to failure
class (0) over the total instances in the left/right node.
Denominator, m,, is the number of instances in the
left/right node and, m, ., and m, g, 18 the number
of instances, belongs to failure and not failure classes, in

the left/right node, respectively.
The splitting process is recursively implemented from

database

splitting 1
training samples

RFC model 1

\_ |distributions of
\J+ accuracy;
/'|+ precision;

splitting 1000

training samples

+ recall

>[RFC model 1000{’

Fig. 2

Illustration of random sampling the data splitting process.
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the root node to generate its descendants until the stop
condition(s) is reached. The nodes in the last generation
are the leaf nodes. In this paper, the main stopping
condition are the minimum samples required to split a
node, is 2. The minimum samples required to be at a leaf
node is 1.

The forest in the RF method, is composed by many
CARTSs where each of the trees is established based on a
part of the FEA database, and »n subsets of database are
randomly selected from database via boot-strapping (i.e.,
bagging), or pasting sampling processes, with or without
replacement, respectively. The result of the RF is
obtained by a voting process, which aggregates the results
of all the decision trees. Throughout, the feature impor-
tance levels of each input variable, are found based on its
influence on establishing the decision trees within a
“forest” of trees. To be specific, feature importance level
is found from, the average depth in which the feature
appeared within the decision trees [53].

2.2.2 The Artificial Neural Network for Regression

The idea of ANN was introduced by McCulloch and Pitts
[55] who tried to simulate the mechanics of neurals in the
brain. The ANN has a long history of development with
various key studies such as image recognition [56],
Restricted Boltzmann Machines [57], Deep Belief Net
[58], and auto-encoders [59].

A conventional feed-forward ANN is trained by
feeding data to the input layer, and each node in this layer
takes its corresponding feature of each sample. Every
neuron combined its input signals from nodes in the
previous layer by weight-summing them. With an activate
function (e.g., ReLu, sigmoid or Hyperbolic tangent), this
neuron generates a signal to the nodes in the next layer
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until the output layer is reached. After feeding by so-call
batch size b samples, the loss function in
Eq. (12) is calculated, and the Back-Propagation
algorithm is applied to update the weights of neuron-to-
neuron connections.

There are two ANN models, trained separately in this
study. The first regression ANN model, RANNI,
approximates the lateral displacement of the sheet wall A,
and the second regression ANN model RANN2, predicts
the soil vertical settlement y(x).

2.3 The Proposed Hierarchic System with a Mixture of
Classification and Regression models

Once the models successfully developed, a mixture of
models is applied as a hierarchic system for designing the
process with a logic gate, after the prediction with RFC is
conducted (Fig.3). To avoid the conflict of the final
outputs, the conventional binary values of 1 and 0 are
used to check the condition. If the sample is labeled as 0
after the RFC, the computing process will stop with the
—1 values be assigned for the outputs of RANNI1 and
RANN?2 as the collapse of the sheet wall without actual
predictions by these ANN models. Otherwise, if the
sample is labeled as 1, the logic gate will trigger the next
two regression models, RANN1 and RANN2, to predict
lateral displacement at the top of the sheet wall A, and the
quantity of soil vertical settlement, y(x), respectively. It is
noted that the inputs of RANN2 are different from RFC
and RANNI because of the additional x input variables
presented for the location along x-axis that are of interest.
The output system of the framework in this paper only
contains A and y(x) and can be developed by adding other
outputs of interest such as maximum moment in the sheet
wall.

Sheet wall

input .
P failure ?

output system—-l |
output =—1 | :
| |
| |
' predicted A | :
. | -
"l RANN 1 —{ \ { . :
| output 1 :
l |
| |
| |
| |
|
i Iy predicted y(x): output 2 |
RANN 2 x | A :
(x required) | / : I
—_ |
l |
| |
| |
| |
|

Fig. 3 The proposed system with the mixture of classification and regression and logical gate to find whether a failure occurred.
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3 Numerical results

3.1 Validation of hardening soil model and experimental
data

A simulation is first conducted with the input variable of
the experiment from [60] (listed in Table 1 where H =
5.83 m). The results from Plaxis are provided in a contour
plot (Fig. 4). It can be seen in Fig. 4(a) that the maximum
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disruption of the soil is 100 mm at the bottom of the
excavation, and the maximum settlement of the ground is
280 mm near the top of the sheet wall. The adjacent
ground surface near the sheet wall (i.e., on the left) settles
the most due to the excavation. The more the distance
from the top of the sheet wall is, the less the vertical
settlement is of the ground surface. In Fig. 4(b), it is
reasonable to observe a maximum of the horizontal
displacement at the top of the sheet wall is at 380 mm,

Table 1 Inputs of the validating cases (to compare with experimental case) and control case (for parametric study)

No. variable unit validating cases (from Ref. [60]) control case (for parametric study in Subsection 3.4)
1 L m 10 12

2 EI KN-m*m 6540.7 44982
3 H, m 0 2

4 H m 3.05; 4.05; 5.05; 5.53; 5.83 4

5 q KN/m’ 0 5

6 B m 0 5

7 Yansat kN/m® 16 18.0
8 Ysat kN/m?> 19.85 19.0
9 Eed KN/m’ 10000 9958
10 ¢ KkN/m? 0 1

11 phi ° 394 27

(b)

Fig. 4 (a) Vertical displacement and (b) horizontal displacement of soil in the validating case (H = 5.83 m).
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and most of points with the significant vertical displa-
cement are concentrated at the back of the wall. In
general, results from this observation agree with the
intuition on the behaviour of the soil-sheet wall structure.

The results from 5 experiments in Ref. [60] versus the
present models are provided in Fig. 5. Despite the
existence of differences between the experiment and
simulation results, the simulations in these studies
provide reasonable values and they closely follow the
experimental results. In general, the overall shapes of the
corresponding lines are well matched, along with the
minor differences between results of simulation and
experiment. For instance, differences between displace-
ments at the top of the sheet wall of experiment and
simulation are roughly estimated at +20, +10, 15, -25,
and —25 mm for the cases of H = 3.05, 4.05, 5.05, 5.53,
and 5.83 m, respectively. This comparison validates the
hardening soil model applied in this study which is used
for data generating process in the next section.

The case with H = 4.05 m in Fig. 6 is further used to
investigate the effect of element size to the output of
FEA. The available element types provided by Plaxis are
observed, including: the very coarse, coarse, the medium,
fine and very fine meshing systems. It can also be seen
from Fig. 6 that the results of FEA are converged with the
fine sized elements with minor difference between the
corresponding lines. The meshing system with finest
elements almost matches with the experiment data from
Ref. [60]. The horizontal displacement at the top of the
cantilever sheet wall A, of the very fine and the fine mesh
type, are 84.767 and 86.625 mm, respectively. The
differences between the finest (A = 84.767 mm) and the
largest element size (A = 98.533 mm) are significant, at
16.240% delta. This indicates that the quality of the FE
model depends heavily on the meshing system of the
element size. Obviously, a trade-off is unavoidable when
the computing time for the very coarse mesh is 357 s, and
that of very fine mesh is almost double, with 642 s. To
maintain quality of the FEA database, the study
consistently uses the very fine meshing system for data
generation.

3.2 The database and data allocation for training and
testing processes

Practically, there is no fixed threshold for the size of the
database for an engineering problem, and a sufficient size
for database depends on the specific scenarios. In many
cases, a few hundred samples in the FEA database are
adequate to train a ML model. Examples are, Verma et al.
[10] used a database with 100 samples to predict the
factor of safety for slopes; 272 data points are used in
Ref. [61] to predict settlement of foots; or Duong et al.
[16] used a data set of 150 samples to develop ANN
model predicting capacity of rectangular concrete-filled
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Hardening Soil simulation in this study versus experiments data
from Ref. [60].
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Fig. 6 Comparison of element sizes (experiment data is from
Ref. [60]).

steel tube short columns. In this study, the developed
database contains the results of 200 FEA samples. It is
noted that the database can be expanded if satisfied
evaluation metrics of models are not obtained.

A part of the database provided in Tables 2 and 3 and
the ranges of the input are in Table 4. These ranges are
extremely important for ML prediction because they
imply the boundaries of the models. Only if the input
variables satisfy such boundaries, the prediction is valid.
This is analogous to the extrapolation, if a set of input
variables  contained value(s) lies outside the
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Table 2 Database developed by FEA for stable and A
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No. L(m) EI(KN-m¥m) H, (M) H(m) g (kN/m>) B (M) ¥y KNM’) yg (kN/m®) E .  (kN/m”) ¢ (kN/m?) phi(°) stable A (mm) not failure?

1 8 44982 40 5 0 0 18 19 23000 41 15 1 3361 1
2 9 44982 40 5 0 0 18 19 23000 41 15 1 3012 1
3 10 44982 40 5 0 0 18 19 23000 41 15 1 28.69 1
4 12 44982 40 5 0 0 18 19 23000 41 15 1 2814 1
5 16 44982 40 5 0 0 18 19 23000 41 15 1 2797 1
6 8 44982 40 5 0 0 19 20 9958 1 27 0 - 0*
7 9 44982 40 5 0 0 19 20 9958 1 27 0 - 0
8 10 44982 40 5 0 0 19 20 9958 1 27 1 21168 0
9 12 44982 40 5 0 0 19 20 9958 1 27 1 16433 1
10 16 44982 40 5 0 0 19 20 9958 1 27 1 15518 1
198 10 44982 4 5 10 10 19 19.5 12000 32 22 1 4067 1
199 12 44982 4 5 10 10 19 19.5 12000 32 22 1 391 1
200 16 44982 4 5 10 10 19 19.5 12000 32 22 1 39.14 1
*Note: These zero values then switched into —1 in the framework to avoid confusing with the value of regression predictions.
Table 3 Database developed by FEA for y(x)
sample # 1 2 199 200
x (m) ¥x) (m) x (m) »(x) (m) x (m) »(x) (m) x (m) Yx) (m)
1 0.0000 0.0082 0.0000 0.0061 0.0000 0.0140 0.0000 0.0134
2 0.2951 0.0113 0.2951 0.0092 0.2951 0.0232 0.2951 0.0234
3 0.2951 0.0113 0.2951 0.0092 0.2951 0.0232 0.2951 0.0234
4 0.6264 0.0123 0.6264 0.0104 0.6264 0.0251 0.6264 0.0254
5 0.6264 0.0123 0.6264 0.0104 0.6264 0.0251 0.6264 0.0254
53 55.2219 0.0009 55.2219 0.0009 55.2219 0.0019 55.2219 0.0020
54 57.6109 0.0009 57.6109 0.0009 57.6109 0.0019 57.6109 0.0019
55 60.0000 0.0009 60.0000 0.0009 60.0000 0.0019 60.0000 0.0019
Table4 Ranges of variables in the database to predict the response of soil-sheet wall with the depth of
No. variable it count in ax the excavation is up to 5 m. Other input ranges can be
. 7 = 200 e % found in Table 4. Figure 7 provides the histogram of the
A and y(x) of the labeled database.

2 El (KN'm?/m) 200 44982 110250 As in the above discussion, a sample is classified as
3 H, (m) 200 1 40 failure if Plaxis warns an error due to the collapse of
4 H (m) 200 2.5 5 computing process or the horizontal displacement at the
5 q (kN/m?) 200 0 15 top of the sheet wall exceeds 200 mm. There are 50
6 B () 200 0 15 samples that are interrupted during the computation
. - () 200 - o process, and 15 sarpples exceed the jchreshold for.A,

; leading to the failure and not failure categories,
8 Yeat (kN/m?) 200 17.6 20 containing 65 and 135 samples, respectively. The ratio
9 Eqeq (kN/m?) 200 5479 78000 number of failure/total number of stable samples is
10 c (kN/m?) 200 1 41 (200-135)/200 = 0.325 indicating an unbalanced data-
1 @ o 200 15 34 base or more samples are in safe condition. The labeled

corresponding ranges, an inappropriate prediction will
occur. Consequently, the developed models are applicable

database is first split in to the train set, and test set, with
80% of the database as the train set. This train set (160
samples) is then used for the training process to develop
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the model, and the test set (40 samples) is used for
validating the model.

To predict A, only 135 samples which are labeled as
stable category are used to develop the RANNI. This data
set is randomly split again into train set (108 samples)
and test set (27 samples). Analogous to this of RANNI,
data for RANN2 is generated from 135 non-failure
samples. For each of these 135 simulations, y(x) at a set
of 31 horizontal locations, x is recorded. To validate the
effectiveness of developed model, 5 samples are random-
ly chosen for the final illustration, which are the 1st, 33rd,
96th, 101st, and 140th samples. These 5 samples provide
the validation of RANN2 on an unfamiliar data set. The
rest of the database (130 simulations) provides 130 x 31
= 4030 samples and then splits into the train and test sets
with the ratio of 8:2, respectively. The train set thus
contains 104 x 31 = 3224 samples and the test set
contains 26 x 31 = 806 samples. Details of the data
allocation are provided in Table 5.

Table 6 provides the insight relationships of the input
and output variables within the database developed from
FEA. It is worthy to note that each row of this table is
calculated from different databases corresponding to the
datal, data2, and data3 designated in Data ID column
Table 5. The Kendall correlation coefficients in Table 6
are slightly low, with many values close to zero and the
maximum absolute value is 0.4753 as compared to the
maximum at 1.0000 for this factor. However, various
papers focusing on ML, have developed quality models
with inputs, which have correlation coefficients that are
less than 0.5000 such as Ref. [62].

It can be seen from Table 6 that critical inputs for

60 1

count 135.000000

50 | mean  57.783556

std 45.065392

40 | min 8.200000

P 25% 28.270000

S 301 50%  35.220000

3 75%  85.135000

20 1 max  198.300000
10 {

0 25 50 75 100 125 150 175 200
A (mm)
(@)
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predicting the stable and A share similarity to some level.
To begin, L, ¢, and E__,, are the most significant inputs
with the values within 0.3 to 0.45. Width of the applied
load, B, and saturated weighted, y,, are at the medium
level to their counterparts with the absolute correlation
factors ranges within 0.1 to 0.15. Ground water table, /,
and depth of excavation, H, have the medium correlation
to stable and A, respectively. Meanwhile, stiffness of the
sheet wall, EI, and friction angle, ¢, have almost no
correlation to outputs.

On the other hand, the vertical displacement of a point
on the surface is strongly correlated to x. The quantity
and length of applied load on the surface, ¢ and B,
tangent stiffness for primary oedometer loading, E__,,
friction angle, ¢, saturated weight vy, and unsaturated
weight ¥, have the highest correlation to y(x). In
contrast to the cases of stable and A, the length of sheet
wall, L, and depth of excavation, H, have weak
correlations to the vertical displacement.

3.3 The developed data-driven models

3.3.1 The random forest classification model

As in the above discussion, the data splitting process is
repeated randomly to obtain 1000 RFC models with ratio
0.8/0.2 and the critical hyper-parameters of the models
are: no maximum of depth of a decision tree is set,
minimum samples per leaf is 1, minimum sample for a
split (in the decision tree) is 2, and the number of decision
trees is 100. Results of distribution of accuracy, precision,
and recall, for these RFC, are provided in Fig. 8. It can be
seen that the distribution of these metrics are strongly left

count  4030.000000
1000 mean  0.018264
std 0026371
800 min -0.009906
3 25% 0003210
g 600 50% 0009782
3 75%  0.020445
400 max 0.216890
200
0
0 50 100 150 200
y(x)
(b)

Fig. 7 Histogram of (a) the horizontal displacement of sheet wall and (b) vertical settlement of ground surface.

Table 5 Detail of data splitting for 3 developed models

min max samples for training samples for testing samples for graphical evaluation

No. model datalD predicted variable unit valid count

1 RFC  datal Status® - 200 -1 1

2  RANNI data2 AP mm 135 8.2

3 RANN2 data3 Y(x)? mm 35 x 31 =4185Y —13.1 854.7

200

160 40 -
108 27 -
104 x 31 =3224 26 x 31 =806 59 x 31 =155

Notes: a) Unstable if A > 200 mm or error in computation process. b) Only A < 200 mm is used for developing the RANNI. ¢) Only A < 200 mm is used
for developing the RANN2. d) The 31 selected horizontal locations are: 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0,
9.5,10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 25.0, 30.0, 40.0, 50.0, 60.0 (m). ¢) Samples: 1st, 33rd, 96th, 101st, and 140th.
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skewed to the natural boundary of 1.0000. Due to this
boundary, the median is a better option for expectation
observation of these random variables as compared to the
mean. It can be seen in Fig. 8 that the recall is signifi-
cantly lower than its counterparts. This implies the Type I
error or false negative is more significant than the Type II
error of fault positive for models developed with this
database. These lead to the un-conservative side of such
models when more actual failure is predicted safety, than

Table 6 Input-output correlation matrix
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actual safety predicted failure. This can be explained by
the unbalanced database with more safety samples than
failure samples, discussed earlier. For this reason, the
recall is the priority evaluation metric in the classification
problem, from both practice and database points of view.
In the next steps, a model with accuracy, precision, and
recall, all equal at 1.0000, is chosen out of the 1000
developed RFC models. The confusion matrix of this
chosen model is provided in Fig. 9.

variable L EI H, H q B Yunsat Vsat Eped c ¥ x
stable 0.3674  —0.0642 0.1327 -0.0832 0.1362 0.1184 -0.0698  —0.1439 0.4293 0.4100 —-0.0055 -
A 0.3235  -0.0447 0.0012 0.1555 -0.1327  -0.1248 0.0838 0.1510 -0.4126  —0.4753 0.0798 —
y(x) 0.0614 -0.0077 -0.0771 -0.0374 0.2938 0.2575 -0.2399 -0.2714 -0.3055 -0.3830 0.3683 -0.3926
median = 1.0000 median = 1.0000
3001 tnean = 0.9564 3001 hean =0.9575
400 Std = 0.05674 400 Std = 0.05680
£ 300 £ 300
S S
200 200
100 100
0 0
0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
accuracy precision
(@) (b)
500 median = 0.9286
mean = 0.93383
400 Std =0.0729
£ 300
=
S
200
100
O 4

0.5 0.6 0.7

0.8 0.9 1.0

recall

(©

Fig. 8 Evaluation metrics on 1000 RFC based on random splitting database. (a) Accuracy; (b) precision; (c) recall of 1000 RFC models

developed from randomly selected sub-databases.

actual value (from FEA)
stable (1) unstable (—1)

stable (1) 107 0

unstable (—1) 0 53

predicted value (from ANN)

(@)

actual value (from FEA)
stable (1) unstable (—1)

stable (1) 28 0

unstable (—1) 0

predicted value (from ANN)

(b)

Fig. 9 Confusion matrix of the chosen RFC model on (a) the train data and (b) the test data.
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3.3.2 Regression models with artificial neural networks

Since there are no rules to obtain the best network [63],
various ANN configurations have been tried with, 10
epochs, “adam” optimization algorithm, and Mean
Absolute error is the loss function [53]. The batch sizes
are 50 and 500 for RANN1 and RANN?2, respectively.
Details of the chosen configurations for RANNI1 and
RANN?2 are provided in Tables 7 and 8. As can be seen in
Table 7, the RANNI contains 625 nodes, with 3 hidden
layers, and 50561 trainable weights. Meanwhile, the
RANN?2 needs 317 nodes, distributed in 6 hidden layers,
with 15729 trainable weights (Table 8).

The evaluation metrics for both RANN1 and RANN2
are provided in Table 9. It can be seen that errors on both
test set and train set of RANNI and RANN2 are all minor
compared to the mean values of y(x), and A (57.7836 and

Table 7 Configuration of the RANN1

layer number of nodes trainable weights

12 + 1 (bias) -
64 + 1 (bias) (12+1) x 64 =832
512 + 1 (bias) (64+1) x 512 =33280

input layer
hidden layer 1
hidden layer 2

hidden layer 3 32 + 1 (bias) (512+1) x 32 =16416
output layer 1 (32+1)x 1=33
total 625 50561

Table 8 Configuration of the RANN2

number of nodes
12 + 1(x) + 1 (bias) -
64 + 1 (bias) (13+1) x 64 =896

layer trainable weights

input layer

hidden layer 1

hidden layer 2 64 + 1 (bias) (64+1) x 64 =4160
hidden layer 3 64 + 1 (bias) (64+1) x 64 =4160
hidden layer 4 64 + 1 (bias) (64+1) x 64 =4160
hidden layer 5 32 +1 (bias) (64+1) x 32 =2080
hidden layer 6 8 + 1 (bias) (32+1) x 8 =264
output layer 1 @+1)x1=9
total 317 15729

Table 9 Evaluation metrics for Regression models
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18.264, respectively). With a much larger database, it is
reasonable to observe that R* on test set of RANN2
(0.9988) is much higher than this of RANNI1 (0.95212).
Figure 10 illustrates the converging process of the ANN
models, versus the number of epochs in logarithmic scale.
It can be seen from Fig. 10 that the error of RANNI
model (e.g., MAE) on the normalized test set approaches
its stable level (MAE is around 0.2000) at 10° epochs.
Meanwhile, this error value is roughly stable after 2 x 10
epochs in the case of RANN2. Further training for this
database may lead to the severe overfitting, when the
MAE on the train sets of both models continuously
decrease without any improvement of error on the test
sets.

It can be seen from Fig. 11, which is a scatter plot of
predicted and simulated values of the two models, that the
test data points of the two models highly concentrate
around 1:1 lines, except a few data points. This is the
graphical illustration of the high evaluation metrics of the
models in Table 9. Another illustration of the RANN?2 is
provided in Fig. 12, where the predicted and simulated
ground settlement values for sample 1st, 33rd, 96th,
101st, 140th. According to this figure, the RANN2 model
successfully predicts ground settlement in both trend, and
quantities, despite of some minor errors. The different
shapes of the settlement lines are also successfully
predicted.

3.4 Feature importance and parametric studies

To evaluate the impact of inputs to the prediction of RFC
model, the feature importance analysis is conducted with
normalized results provided in Fig. 13. It can be seen
from Fig. 13 that the length of the sheet wall, L, has the
critical role with the normalized feature importance score
of 0.3186, followed at a distance by E ., (0.1335), and
H,, (0.1021). It is reasonable to observe the second
ranked position of a variable is related to the soil
stiffness, £ .4, due to the importance of soil property for
maintaining the stability of the retaining wall. Other soil
properties (i.€., ¢, ¢, Vyupr Ysa) have low to medium
impact to the output with importance factor, ranging from

metric equation RANNI RANN2
on train set on test set on train set on test set

mean absolute error 1 <& 0.201697 4.531986 0.000288 0.00103

MAE = = x 3"y~ i

oA

mean squared error 1< ) 0.11290 49.2773 7.2152¢-07 9.6209¢—06

MSE="— % (i)

i=1

coefficient of determination 0.9999 0.95212 0.9999 0.9988

Z(yrﬁ)z
i=1

i o=y’
i=1

R =1
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Fig. 10 Model error (MAE) of a) RANN1 and b) RANN2 versus number of epoch (in logarithm scale).
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Fig. 11 Predicted values versus simulated values of (a) A and (b) y(x).
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Fig. 12 Graphical illustration predicted versus simulated
ground settlement of a set of 5 samples (sample 1st, 33rd, 96th,
101st, 140th).

0.0834 (c) to 0.0540 (y,). Meanwhile, the changes of
applied load with corresponding inputs, B and ¢, and the
stiffness of the sheet wall, £/, have minor effect to the
prediction, with normalized feature importance levels that
are less than 0.0500.

For further observation of inputs to outputs in the
developed ML models, the parametric study on RANNI
and RANN?2 is implemented. Inputs for the control case
for these analyses are given in Table 1. Figures 14 and 15

illustrate the parametric studies for RANN1 and RANN?2,
respectively.

0.30
0.25
0.20

importance

0.15

0.10

feature

0.05

0.00
o = =
hgm;t &éﬁwma

input variables

Fig. 13 Feature importance of the RFC model.

For RANNI in Fig.14, the length of sheet wall, L,
reinforced its strong effect to the output (i.e., A in this
scenario) with a clear separation of 8, 10 and 12 m in all
sub-figures. For longer walls with L = 14 and 16 m, the
differences are minor. In some cases, the corresponding
lines of L = 12, 14, and 16 m tend to be overlapped,
which implies that the use of these walls has the
analogous effects to the system. Figure 16 is intentionally
provided with the same scale on y axis with A ranging
from 0 (mm) to its maximum value of 200 mm. Except
for the length of sheet wall, L, the depth of excavation,
H, is reasonably having the strongest and positive
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correlation, to the displacement of the wall with the
exponential lines appeared in the H versus A sub-figure.
Soil properties have the reversed trends where the
increases of E .4, ¢, Ve aNd @, lead to the decrease of
A. This is predictable because the improvement of soil
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properties naturally reduce the displacement of the sheet
wall. In contrast to the RFC, the changes of ground water
table (4,,), width and quantity of applied load (B and q)
result in the slight fluctuations of A. This implies the less
importance of such input variables compared to the
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Fig. 14 Parametric study with RANNI.

above-mentioned inputs of RANNI. Sheet wall stiffness,
El, and saturated weight, y,,,, are in the group of features
that have the lowest impact to the output.

In Fig.15, results of the parametric study for the
RANN2 are provided. The horizontal location of the
prediction, x, is the natural key feature of the model with
a clear separation of y(x) lines corresponding to the
locations adjacent to the sheet wall (e.g., x = 2.5 and
5 m). With further surface points, the differences are
minor. This indicates the fading effect of sheet wall
existence along with the increase of distance from this
structure. The depth of excavation, H, and length of sheet
wall, L, and the internal friction angle, ¢, are the most
critical inputs with dramatic changes of y(x) with the
increases of these inputs. While A has the positive
correlation with y(x), ¢, and L, have the negative effect to
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the outputs, with the increase of these variables resulting
in the decrease of y(x). H,, ¢, q, Ve and EI are in the
intermediate group which establishes a clear relationship
to output. Even though the relationship of £ ., and y(x) is
apparent, curved-shaped lines are observed with
fluctuations. The trends in the B versus y(x) are not clear,
with the trends reversed there exists a crossover of x =
2.5 m and x = 5 m lines. The vy, with the corresponding
lines that are almost parallel to the horizontal axis, seems
to be the least important variable.

3.5 Results of the proposed hierarchical system
An example is provided of the output system for those

proposed in Fig. 3, and the implementation of the 3
developed models, RFC, RANN1 and RANN?2, are in
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Fig. 15 Parametric study with RANN2.

Table 10 with the comparison from FEA. This output number Ist, 2nd, 3rd, 4th, 5th, 9th, 10th, outputs are
system is not only classifying the failure status of the soil- positive real values, and imply a not-fail status of these
cantilever sheet wall structure, but also predicting the samples. Meanwhile, simulations number 6th, 7th, and
variables such as A and y(x) continuously. For simulation  8th are considered as failure. Among those failure cases,
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Table 10 Example of output system with proposed framework (Fig. 3)

Front. Struct. Civ. Eng. 2022, 16(6): 667684

No. stable A (FEA) (mm) x (m) y(x) (FEA) (mm) not failure? output 1 (A) (mm) output 2 (¥(x)) (mm)
1 1 33.610 25 12.700 1 30.939 13.200
2 1 30.120 3.5 10.100 1 29.084 98.800
3 1 28.690 4 9.100 1 27.399 9.900
4 1 28.140 0.5 8.700 1 26.209 8.300
5 1 27.970 10 4.400 1 27.932 4.700
6 0 - - - 0 -1 -1

7 0 - - - 0 -1 -1

8 1 211.680 2.5 22.840 0 -1 -1

9 1 164.330 6.5 29.500 1 149.577 28.900
10 1 155.180 1.5 107.100 1 130.018 112.900

*Note: x location is chosen based on interest. A list of discontinuous x within a range can provide the profile of the settlement on the ground surface.

the 6th and 7th simulations are failed status due to the
collapse of soil, and the 8th simulation fails by the
exceedance of the condition of A < 200 mm. Even
though the y(x) of the 8th simulation is available, it is not
provided in the input as a warning of large displacement.

4 Conclusions

In this study, a hierarchical system composed from data-
driven models is proposed to predict the behaviour of the
soil—cantilever sheet wall structure. In this framework, a
classification is conducted to predict the status of
soil-sheet wall structure with a trained RF model, RFC.
Once the non-failure condition is satisfied, predictions on
the variables of interest behaviour of sheet wall and soil,
are conducted for the horizontal displacement at the top
of the sheet wall A with RANNI1 model, and the vertical
displacement of the surface of the adjacent ground y(x)
with RANN2 model.

The use of HS model in Plaxis has been compared with
other experiment data before being used as the data
generating tool to obtain 200 FEA simulations, and to
develop the data-driven models. The classification model
has been developed with RF method. The random
sampling for the train/test splitting the database has been
conducted with 1000 sub-training and 1000 sub-testing
sets to develop 1000 RFC models. The distributions of
the evaluation metrics of RFC models are observed. To
be specific, the medians for accuracy/precision/recall are
1.000/1.000/0.9286; those of means are 0.9564/0.9775/
0.9338; and those of standard deviation are 0.05674/
0.05680/0.0729, respectively. The negative skewed data
toward the absolute value of 1.0000 provides insightful
observation of the effect of randomness of the database to
the performance of developed models. A RFC model was
chosen from the best models of this set of 1000 RFC
models, having an accuracy of 1.0 on both train set and
test set. With the developed database, RANNI1 and

RANN2, are the ANN models developed for predicting
continuous variables, the A, and y(x), respectively.
Evaluation metrics of these models on test set are
appropriated with low errors and high R’ (0.9521 for
RANNI1 and 0.9988 for RANN2).

The analyses on importance level of the inputs for RFC
model and parametric studies for ANN models are
conducted. The critical inputs for each model are not
analogous. Length of the sheet wall, L, E .4 and H, are
the most critical inputs for RFC model. Meanwhile, the
set of [L and H] and the set of [x, L, H, and ¢] are the
most important inputs for RANNI1 and RANN?2,
respectively.

To the point, a hierarchical system is proposed and the
illustration on how such a system is applied in the
engineering problem is provided. It is worth noting that
various additions or adjustments may be applied for this
system. For example, the check of the Ultimate limit state
(model collapse), and the Serviceability limit state (A <
200 mm), can be separated by 2 single models. Other
possibilities can be the addition of other interested
variables, e.g., maximum moment in the sheet wall.
These variations all require an expansion on the database
and thus can be improved in future work.
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