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Abstract Promoting the growth of the lithium battery
sector has been a critical aspect of China’s energy policy
in terms of achieving carbon neutrality. However, despite
significant support on research and development (R&D)
investments that have resulted in increasing size, the sector
seems to be falling behind in technological areas. To guide
future policies and understand proper ways of promoting
R&D efficiency, we looked into the lithium battery industry
of China. Specifically, data envelopment analysis (DEA)
was used as the primary approach based on evidence from
22 listed lithium battery enterprises. The performance of
the five leading players was compared with that of the
industry as a whole. Results revealed little indication of a
meaningful improvement in R&D efficiency throughout
our sample from 2010 to 2019. However, during this
period, a significant increase in R&D expenditure was
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witnessed. This finding was supported, as the results
showed that the average technical efficiency of the 22
enterprises was 0.442, whereas the average pure technical
efficiency was at 0.503, thus suggesting that they were
suffering from decreasing returns to scale (DRS). In
contrast, the performance of the five leading players
seemed superior because their average efficiency scores
were higher than the industry’s average. Moreover, they
were experiencing increasing scale efficiency (IRS). We
draw on these findings to suggest to policymakers that
supporting technologically intensive sectors should be
more than simply increasing investment scale; rather, it
should also encompass assisting businesses in developing
efficient managerial processes for R&D.

Keywords Data Envelopment Analysis, R&D invest-
ment efficiency, China’s listed lithium battery enterprises,
technical efficiency, pure technical efficiency, scale
efficiency

1 Introduction

The development of electric vehicles has been recognised
as a promising field in response to the accumulated pressure
regarding environmental concerns, which also highlighted
the importance of the lithium battery industry (Jing et al.,
2021; Sun, 2021). Data show that the scale of China’s
lithium battery industry has exceeded 180 billion yuan in
2020, with promising growth potential (Qianzhan Indus-
trial Research Institute, 2021). As a result, supporting the
growth of this industry has attracted the attention of
policymakers in China on a national scale.

The policy emphasis on the lithium battery industry in
China has been reflected in the form of cultivating
arrangements as well as investments, originating from the
state, central and local governments. For example, in
2019, the Lithium-ion Battery Industry Standard Condi-
tions (2018 Version) were issued, encouraging companies
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to strengthen top-level design and promote the upgrading
of automation equipment. In 2020, the State Council
issued the New Energy Vehicle Industry Development
Plan (2021-2035), pointing out that China will introduce
battery technology breakthroughs to promote the devel-
opment of the entire value chain, to build a high-efficiency
power battery recycling system and to accelerate the
promotion of power battery recycling legislation. Thanks
to these measures, the growth of the lithium battery
industry in China has been immensely promising, at least
in terms of scale. According to the data (Qianzhan Indus-
trial Research Institute, 2021), a total of 102 GWh
lithium batteries were shipped in China in 2018, a yearly
increase of 27%. In 2019, with an additional 29%
increase, China’s lithium-ion battery shipments was at
131.6 GWh. In 2020, this value reached 158.5 GWh.
Thus, in terms of size, the lithium battery industry in
China currently ranks first in the world.

However, in terms of performance in research and
development (R&D) and technological advancements, the
Chinese lithium battery industry still lags behind the best
industries in the world, such as those in America and
South Korea. The dependence on imports and lack of
mastery of the core technology have become major obsta-
cles to its development. This gap could be closed through
stimulating R&D investments but is not a guaranteed
solution. Existing studies have revealed that the effective-
ness and efficiency of R&D investment, not just quantity,
is the key to sustainable growth, especially for renewable
energy industries (Ma et al., 2021; Mohsin et al., 2021;
Zhou et al., 2022). In addition, the positive impact of
efficient R&D investment on the sustainable growth of
industries, especially in the introduction stage of their life
cycle has been proven (Yoo et al., 2019). Another key
characteristic of the lithium battery industry in China is
that it is “top-heavy”, thus making the performance of the
leading enterprises crucial to the overall success of the
industry. The industry has high barriers to enter due to
various capabilities, such as technology, reputation and
capital, thus giving evident advantages to the leading
enterprises. With policymakers placing higher demands
on products in terms of technological advancements,
the market share will be further concentrated to the
leading enterprises.

Therefore, to provide a clearer guidance on policymaking
for the future of the industry, the current performance and
potential problems in terms of R&D efficiency of the
industry must be comprehensively understood. Consider-
ing the two key features of the industry, this study aims
to address the following two research questions. Firstly,
how efficient was the Chinese lithium battery industry in
terms of R&D from 2010 to 2019? This question will be
explored on the basis of the entire industry and individual
enterprise. Secondly, how did the leading enterprises in
the industry perform during the time, and how did their
performance differ from the industry average?
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To address these research questions, we consider data
envelopment analysis (DEA) to be the most appropriate
approach. The most common econometric methodologies
used for efficiency and productivity related analysis are
DEA and stochastic frontier analysis (SFA); both methods
have proven to be helpful in efficiency-related studies
(for example Liu et al. (2018) and Wang et al. (2020) for
SFA, Niewerth et al. (2022) for DEA). However, we indi-
cated that SFA can only be used when the production
function model is known. Furthermore, it cannot accom-
modate multiple inputs and outputs, thus making it
unsuitable for this research (Reinhard et al., 2000; Avkiran
and Rowlands, 2008; Iglesias et al., 2010). In addition,
adopting DEA provides three benefits for this study
(Berg, 2010). Firstly, DEA is a nonparametric method,
and a specific production function does not need to be
set (Zhou et al., 2008; Wu et al., 2021). Given that the
lithium battery industry is an emerging industry, its
production function has not been thoroughly studied.
Thus, nonparametric methods would be more suitable.
Secondly, it is capable of handling multiple inputs and
outputs, and the sources of inefficiency can be analysed
and quantified for each evaluated unit (Wang and Huang,
2007; Han et al., 2017). This capability is particularly
helpful, as we are also interested in the performance of
individual firms, especially leading firms. Thirdly, DEA
is proven to be useful in uncovering relationships that
remain hidden (Tong and Ding, 2008; Fang et al., 2009).
The reason for decision-making unit (DMU) inefficiency
can be found by a projection analysis of each DMU;
improvements can be planned for the future. As a result,
DEA was selected for this study.

Consequently, we aim to make a three-fold contribution
to knowledge in this study. The first contribution is that
we provide overviews on the efficiency of R&D activities
in China’s lithium battery industry by demonstrating effi-
ciency scores and returns to scale (RTS) from 2010 to
2019. This overview reveals changes and trends that may
lead to problems in the industry’s development. Our
second contribution is that the individual performance of
22 listed lithium battery enterprises were analysed to
determine the internal factors leading to the low-average
technical efficiency. For the third contribution, five leading
enterprises were selected to be compared with industry
average, thus providing insights on whether they could
still benefit from expanding their scale. Therefore, as this
research focuses on finding the achievements and diffi-
culties of Chinese listed lithium battery enterprises in
R&D, we make suggestions on policymaking for the
future R&D efficiency improvement of lithium battery
enterprises.

The rest of the paper is organised as follows. We first
review the relevant literature in Section 2, covering
aspects of importance and measurement standards of
R&D activities, application of DEA in R&D efficiency
evaluation and existing studies on lithium battery. This
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portion is followed by a detailed description of the
method applied and our sampling strategy in Section 3.
The analysis, findings and discussions are then presented
in Section 4. We conclude the paper by discussing the
implications of the findings on policymaking.

2 Literature review

2.1 Importance and measurement standards of R&D
activities

R&D activities have proven crucial not only in enhancing
the competitiveness of organisations but also in sustaining
a healthy growth of industries. For emerging industries
such as new energy, increasing R&D investment in terms
of financial capital and personnel should be the policy
action to consider (Lin and Xu, 2018). On this basis,
when examining the Chinese lithium battery industry, the
input of R&D (e.g., investments) and its outcomes
(usually in the form of patents) are expected to be at a
relatively high level. To obtain a better understanding of
the R&D performance in this kind of industry, focusing
solely on input or output level may be problematic.
Hence, R&D efficiency could be a more suitable measure
in the context, as it considers both inputs and outputs of
R&D operations (Chiu et al., 2012).

The common methods used to study R&D efficiency
include DEA, SFA and Malmquist index, to name a few.
Among these approaches, DEA is considered a well-
developed and beneficial method, especially in technol-
ogy-intensive industries. By definition, DEA is a mathe-
matical programming method that is applied to assess
efficiency through multiple inputs and outputs (Yeh,
1996; Kozmetsky and Yue, 1998; Lin et al., 2018). The
ground-breaking work done by Rousseau and Rousseau
(1997) proved the potential of DEA-analysis in examining
R&D activities.

2.2 Application of DEA in R&D efficiency evaluation

Recent studies have also benefited from applying DEA
and its variations with fruitful results. For instance,
the SBM (slacks-based model)-DEA model has been
adapted to evaluate the R&D investment efficiency of 16
South Korean local governments from 2010 to 2016 (Lee
et al., 2020). Similarly, the DEA-Tobit model has been
used to construct a benchmark for enterprise in the new
energy vehicle industry in terms of their technological
innovation efficiency from 2013 to 2018. The analysis
was completed using a sample of 23 related Chinese
companies (Fang et al., 2020).

Another stream of application of DEA is through multi-
stage and network analysis. For example, a network DEA
model incorporating both shared inputs and additional
intermediate inputs has been constructed to evaluate the

R&D efficiency and commercialisation efficiency of high-
tech industries simultaneously in 29 provincial-level
regions in China (Chen et al., 2020). Based on the two-
stage efficiency values of different industries in the
high-tech industry from 2014 to 2016, the two-stage
DEA-Tobit model has been used to analyse empirically
the five factors that affect the two-stage efficiency of
the collaborative innovation of international industrial
achievements (Zhang, 2020).

2.3 Research on lithium battery industry

Existing studies have contributed to our understanding
regarding related industries of lithium battery in different
contexts. Research fields have mainly focused on key
parts of manufacturing lithium battery, such as electrolyte
(Shi et al., 2022; Bandyopadhyay et al., 2022) and anode
materials (Lashari et al., 2022; Lv et al., 2022). Spent
lithium batteries can cause pollution to the soil and seri-
ously threaten the safety and property of people. More-
over, they contain valuable metals, such as cobalt and
lithium. Thus, their recycling and treatment have important
economic, strategic and environmental benefits (Shang
et al., 2021). Methods for safely and effectively recycling
lithium batteries to ensure they provide a boost to
economic development have been widely investigated
(Zhang et al., 2020; Zhu and Chen, 2020; Jing et al.,
2021; Duan et al., 2022).

In conclusion, although the study on lithium battery has
made promising achievements, the existing studies are
mainly focusing on technical aspects with a lack of focus
on the level of an industry. We must understand how effi-
cient different enterprises are in managing their R&D to
promote desirable outcomes in terms of technological
advancements and generating commercial benefits.
Approaching this aspect from a management perspective
would also be helpful for policymaking in promoting the
development of the industry. Additionally, the results
from existing studies indicate the usefulness of DEA in
studying the innovation efficiency of the overall industry
as well as a performance benchmark for individual organ-
isations. Therefore, we adopted DEA to evaluate the
R&D efficiency of listed lithium battery enterprises in
China. Then, five leading enterprises were selected and
compared with the overall level to explore the differences
in performance.

3 Research methodology
3.1 Data envelopment analysis

To evaluate the R&D efficiency of Chinese lithium
battery industry, this study adopts a standard DEA among
listed enterprises. Specifically, we referred to two DEA
models: The CCR (Charnes—Cooper—Rhodes) model



476 Front. Eng. Manag. 2022, 9(3): 473-485

(Charnes et al., 1978) and the BCC (Banker—Charness—
Cooper) model (Banker et al., 1984).

3.1.1 CCR model
The CCR model is proposed under the assumption that
production exhibits constant returns to scale (CRS) and
obtains comprehensive technical efficiency (CRSTE). To
judge a DMU’s efficiency is to calculate whether it can
fall on the production frontier of the production-possible
set. We assume n lithium battery enterprises, and they
are regarded as DMUs to analyse the R&D efficiency.
A DMU is expressed by DMU; (j=1, 2, ..., n), and
each DMU; contains m inputs (R&D manpower and
R&D expenses) x; (i=1, 2, ..., m, x;; > 0) and s outputs
(technical improvements and economic benefits)
v (r=1,2, .., s y,;>0). u, r=1,2, .., 5) and
v (i=1, 2, ..., m) are output and input weights, respec-
tively. The input matrix, X;=(x;, X5, ..., x,,,j)T, and
output matrix, Y; =y, Y2js - yS,-)T, represent the data
of DMU,.

The efficiency rate ; of a unit DM U, can be generally
expressed as:

_ Weighted sum o f outputs
=

Weighted sum of inputs

s

Z U,y

== <1. (1)

m

g Vl‘x,'j

i=1

DEA analysis has two orientations, namely, input
orientation or output orientation, depending on the nature
of the problem. Considering the issues examined in this
research, we have selected input orientation, which aims
to minimise the combination of inputs to yield a combi-
nation of outputs. To solve the calculation difficulties
and facilitate discussion, the relaxation variables s~
(input redundancy) and s* (output insufficiency) and
Archimedes infinitesimal & are introduced using linear
programming and duality theory.

An input minimisation problem in the CCR model can
be presented as:

min[f—g(€"s™ +e's")]

j=1

s.t. Z YA -s"=Y, - (2)
j=1

,20,j=1,2,..,n
520,520

where 6 is the efficiency evaluation value and A is a

vector parameter. A°, s°, s*°, and 6° are for the optimal
solution of the above programming. The following
conclusions can be obtained.

If 8° < 1, then DMU , is not effective, which indicates
that the technical efficiency and scale efficiency of R&D
activities are not optimal.

If 8° = 1, but at least one of s7, s* # 0, then DMU, is
weakly effective, and the optimal technical and scale
efficiency is not achieved simultaneously. To achieve
comprehensive efficiency, input can be reduced under the
condition of constant output.

If =1, and 57, s* =0, then DMU, is effective, and
the optimal technical efficiency and optimal scale effi-
ciency are achieved simultaneously. The input resources
are fully utilised, and the output is maximised.

3.1.2 BCC model

The BCC model assumes the presence of variable returns
to scale (VRS) (Wang and Huang, 2007) and obtains pure
technical efficiency (VRSTE) and scale efficiency (scale),
respectively. Compared with the CCR model, the BCC

model adds Z 1|/lj|=1 to the constraint condition
i=

(represents VRS). The conclusion of the BCC model is
similar to that of the CCR model mentioned above.
The relationship between CCR and BCC models is
CRSTE = VRSTE X scale.

3.2 Inputs and outputs

We regard R&D investment as the input of our model;
this input includes R&D expenses and R&D manpower.
Furthermore, R&D expenses include R&D expenditure
and the proportion of R&D expenditure (R&D expendi-
ture/operating income). The R&D expenditure refers to
the total R&D expense, covering all projects involving
both internal and external ones supported by the firm.
The R&D expenditure input index has been widely used
and found to be suitable in previous studies (Zhong et al.,
2011; Chun et al., 2015; Han et al.,, 2017). R&D
manpower includes the number of technical personnel
and the proportion of technical personnel (number of
technical personnel/total number of employees). The
R&D personnel input figure includes all staff engaged
in either fundamental research, application research or
experimental development (Zhong et al., 2011). The
number of research staff on activities can be taken as the
R&D manpower input index. In the absence of this data,
the number of technical personnel is adopted to present
the number of R&D personnel; this approach has also
been adopted in previous studies (Hollanders and Celikel
Esser, 2007).

We considered two aspects in the output of the model.
The initial, direct outcomes of R&D investment are tech-
nical improvements. Here, patent data may be the most
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appropriate in capturing it (Wang and Huang, 2007; Guan
and Chen, 2010). Although not all inventions are
patentable or patented and the inventions patented have
different qualities (Griliches, 1990), previous studies
indicate that patents provide a fairly reliable measure of
R&D activities (Pakes and Griliches, 1980; Acs et al.,
2002). Therefore, this study employed the quantity of
patent applications to measure technical improvements.
In addition, the economic benefit is the key purpose of
a company’s R&D investment behaviour. Operating
revenue and net profit can show the business value
brought by the results of R&D activities after they are put
into the market in the most intuitive form (Cao, 2020).
Moreover, they can measure the profitability, growth and
sustainability of China’s listed lithium battery enterprises.
More net profit indicates that the R&D and operation
management benefits of the enterprise are good, which
can reflect the actual profitability of the R&D and opera-
tion activities of the enterprise. Therefore, this study
employed operating income and net profit as economic
benefit indicators.

Given the time needed to complete an R&D project,
introduce products to market (e.g., packaging, pricing and
marketing) and gain a market share, a sector-dependent
time lag occurs for the economic outcomes in evaluating
R&D following the initial investment (Kafouros and
Wang, 2008). According to the results of previous
research on R&D efficiency, this period ranges from one
to two years (Hollanders and Celikel Esser, 2007).
Combined with the data collection situation, we decided
to adopt a one-year R&D investment lag period, that is,
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the data on R&D investment were from 2010-2019, and
the data of R&D output were from 2011-2020 to reflect
this “lag period”.

3.3 Sampling and data collection

Existing research reports on related industries to lithium
battery were consulted in the sampling process for this
study. The factors considered in selecting samples
include 1) market share, 2) listing years and 3) data
integrity. A total of 22 listed lithium battery enterprises
were eventually identified as the research objects. Data
were collected according to Table 1, covering 2010 to
2019. The main data sources included government statis-
tical databases, established commercial databases and
corporate annual reports. The specific sources of data are
shown in Table 1.

In addition to the initial sampling, we identified five
enterprises as leading enterprises within the sample. At
present, China’s power lithium battery industry has a
large number of listed enterprises, which are distributed
in various industrial chains. We finally selected one listed
enterprise of electric cells and battery packs (BYD),
two listed enterprises of lithium raw materials (Tianqi
Lithium and Ganfeng Lithium), one listed enterprise of
anode materials (Hunan Zhongke Electric) and one listed
enterprise of cathode materials (Beijing Easpring Material
Technology) as the research samples of leading enter-
prises. The details of the five leading enterprises are
shown in Table 2.

Table 1 R&D efficiency evaluation index system for listed lithium battery enterprises

Index category Standard level Index name Data source
Input index R&D manpower The number of technical personnel Corporate annual report
The proportion of technical personnel Corporate annual report
R&D expenses R&D expenditure Corporate annual report

The proportion of R&D expenditure

Output index Technical improvement

Economic benefit

The number of patent applications

Operating income

Corporate annual report
State Intellectual Property Office
Corporate annual report

Net profit Corporate annual report

Table 2 Introduction of five leading enterprises
Industrial chain link Name Main points
Cell and battery pack BYD Establish the world’s leading technical and cost advantages in the field of power batteries

Lithium raw materials Tianqi Lithium

It is one of the few enterprises in the world that simultaneously distribute two kinds of raw

material resources: High-quality lithium mine and salt lake brine mine

Ganfeng Lithium

It is the world’s leading lithium ecological enterprise, with the production capacity of

more than 40 kinds of lithium compounds and metal lithium products in five categories

Anode materials Hunan Zhongke Electric

Cathode materials Beijing Easpring Material Technology

Graphite powder processing technology is internationally advanced; heat treatment
process and graphite composite technology are leading in China

Leading enterprise in lithium battery cathode material industry
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4 Data analysis and discussion
4.1 Opverall efficiency of China’s lithium battery industry

To understand the changes of R&D efficiency of the
whole lithium battery industry, we first normalised the
data of 22 listed lithium battery enterprises. Then, we
aggregated the input and output indexes of the processed
22 enterprises to represent the input and output indexes of
the whole lithium battery industry. Finally, we obtained
industry data spanning 10 years for calculation. The R&D
efficiency across the lithium battery industry was examined
through data from 2010 to 2019, as presented in Table 3.
An overall examination indicates that the R&D investment
efficiency was mostly unchanged despite the rising R&D
expenditure over the period.

The results obtained by applying DEA models were the
relative efficiency values rather than the absolute efficiency
values; the size of the values depended on the samples
analysed together. The efficiency scores in Table 3 are
the results obtained by analysing the input and output
indexes of the lithium battery industry in the past 10
years. Therefore, they could not represent a direct indica-
tion in terms of the performance of the entire industry.
Nevertheless, we could draw insights by comparing the
efficiency score across the past 10 years to understand the
changes. The only noticeable change was the decline in
R&D efficiency in 2011, 2014, 2016 and 2018, which
appeared to have resulted from reductions in scale effi-
ciency (SE). However, three of the R&D efficiency
reductions were related to increasing returns to scale
(IRS), and one was related to diminishing returns to scale
(DRS). Except for these four years, all the other R&D
investment efficiencies from 2010 to 2019 were
unchanged. The potential conclusion is that even with

Table 3 Efficiency scores and RTS of the whole lithium battery
industry in 2010-2019

Year Technical Pure technical Scale RTS
efficiency efficiency efficiency

2010 1.000 1.000 1.000 -

2011 0.981 0.986 0.995 irs
2012 1.000 1.000 1.000 -

2013 1.000 1.000 1.000 -

2014 0.986 1.000 0.986 irs
2015 1.000 1.000 1.000 —

2016 0.997 1.000 0.997 drs
2017 1.000 1.000 1.000 -

2018 0.960 0.981 0.978 irs
2019 1.000 1.000 1.000 -

Average 0.992 0.997 0.996

Notes: —: constant return to scale; irs: increasing return to scale; drs: decreasing
return to scale.
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more than 10 years of development, the R&D investment
efficiency in China’s lithium battery industry has not
exhibited any dramatic improvement.

4.2 Patents performance

Figure 1 presents an overview of the changes in data
regarding R&D indicators collected in this study. The
growth ratio was calculated to support the DEA results of
R&D efficiency. Accordingly, the result suggested a
disappointing prospect for the development of China’s
lithium battery industry investment. Although increasing
R&D expenditure appeared to be correlated with a
dramatic increase of operating income, knowledge output
remains limited in terms of the increase in the number of
patent applications. Moreover, the net profit has not
increased significantly. In turn, this finding may suggest
that although increasing R&D investment (inputs)
appears to be related to the increase of operating income,
it does not stem from the increase in the number of patent
applications, which indicates that the level of innovation
in the lithium battery industry has not improved.

4.3 Efficiency scores of 22 enterprises

4.3.1 Technical efficiency (TE) and pure technical
efficiency (PTE)

The results in Fig. 2 and Table 3 are obtained by using
different samples and represent different meanings.
Table 3 shows the results obtained by comparing the
input and output indexes of the entire lithium battery
industry in the past 10 years. Figure 2 was generated by
comparing the input and output indexes of all 22 listed
lithium battery enterprises individually in the past 10
years (220 DMU s in total) with calculations made on the

350
300
250
200
150
100

50

Growth ratio

/ﬂa_

0 i, ————
50 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Year
Operating income Net profit
Patent number — R&D expenditure
— Proportion of R&D expenditure — Technical personnel number
— Proportion of technical personnel

Fig.1 The growth ratio of R&D investment inputs and
outputs (Note: The calculation of growth ratio is based on the
data of 2010, all the indicators from the other years compared
with the data from 2010. For example, the net profit growth
ratio 2019 = (net profit 2019 — net profit 2010)/net profit 2010).
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Fig. 2 The changing trend of average efficiency scores of 22
listed lithium battery enterprises from 2010 to 2019.

basis of the average efficiency score of 22 enterprises in
each year. Thus, Fig. 2 demonstrates how the average
efficiency score of the 22 enterprises changed over time.
The average TE score of 22 listed lithium battery enter-
prises was only 0.442, thus indicating that the overall
technical efficiency level is very low.

Specifically, the PTE scores reflect the pure R&D
investment efficiency excluding scale effects. During the
experimental period, the average PTE score of 22 listed
lithium battery enterprises was 0.503, slightly higher than
the average TE score. Furthermore, the fluctuations of the
average PTE score were similar to the average TE score,
and both were relatively low. This outcome implies that
low technical efficiency may be affected by pure technical
efficiency.

4.3.2 Scale efficiency (SE)

Scale efficiency (SE) scores reflect various classes of
returns to the scale of R&D investment. Accordingly, the
average SE score of 22 listed lithium battery companies
was 0.864, which was significantly higher than the average
TE and the average PTE scores. In addition, the average
SE score of 22 listed companies has changed relatively
smoothly throughout the 10 years and has been at a
relatively high level. This outcome indicates that scale
efficiency is not the main reason for the low technical
efficiency.

Figure 3 presents our result on scale efficiency indica-
tors. Further analysis of the SE data indicates that RTS
metrics could provide useful indices for the management
of R&D investment efficiency. RTS have three possible
classes: Decreasing (DRS), increasing (IRS) and constant
(CRS). CRS is indicated by an SE score of 1; DRS is
signified by a decrease in the relative output for a given
incremental input and an associated decline in the conse-
quent revenue/profit; and IRS is signified by an increase
in the relative output for a given incremental input.
Figure 3 shows that in 2019, compared with 2010, the
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Fig.3 The changing trend of the RTS of 22 listed lithium
battery enterprises from 2010 to 2019.

number of companies suffering from DRS has greatly
increased, accounting for half of the total number of
companies; in addition, the number of companies with
IRS has decreased, and the number of companies with
CRS has been stable at a low level. These observations
show that fewer and fewer companies rely solely on
expanding scale to obtain additional economic benefits.
In the future, lithium battery companies need to rely on
continuous improvement of technological innovation
capabilities to obtain additional economic benefits instead
of blindly expanding production scale.

4.3.3 The relationship between TE and PTE

A closer examination of the relationship between PTE
and TE shows that the fluctuations and trend of the average
PTE are similar to that of the average TE. The data in
Fig. 2 present the average efficiency scores of 22 listed
lithium battery enterprises every year. However, the
figure does not show the specific efficiency scores of the
22 enterprises. To verify the relationship between the two
further, we selected the 2010 and 2019 R&D efficiency
scores of the 22 enterprises for analysis (Table 4).

In addition, Figs. 4(a) and 4(b) present the distribution
of PTE and TE scores in plots, indicating their relationship
to the average PTE and TE scores (solid lines).

According to Figs. 4(a) and 4(b), the enterprises in
Zone A exhibit both high PTE and TE scores. Enterprises
in Zone B show high PTE scores but low TE scores.
Zone C enterprises exhibit low scores on both PTE and
TE. Zone D has few enterprises, thus making the high TE
score with a low PTE level an uncommon occurrence.
The positive relationship between TE and PTE scores
could be observed. The relationship is much stronger in
Fig. 4(a), which suggests that the PTE level is more
important in improving the TE score. It also highlights
the importance of PTE improvement as a key management
index for the increasing of the overall R&D investment
efficiency level within China’s listed lithium battery
enterprises.



480

Front. Eng. Manag. 2022, 9(3): 473-485

Table 4 Efficiency scores of R&D investments in 22 China’s listed lithium battery enterprises in 2010 and 2019, respectively

Number Name TE PTE SE RTS
2010 2019 2010 2019 2010 2019 2010 2019

1 Guangdong Fenghua Advanced Technology 0.457 0.170 0.491 0.212 0.931 0.801 irs drs
2 Hengdian Group DMEGC Magnetics 0.286 0.330 0.286 0.523 0.999 0.631 - drs
3 Guoxuan High-tech 0.397 0.115 0.532 0.118 0.747 0.974 irs irs
4 Suzhou Good-Ark Electronics 0.326 0.331 0.436 0.396 0.749 0.837 irs irs
5 Sinoma Science & Technology 0.228 0.443 0.248 0.950 0918 0.466 irs drs
6 Do-Fluoride Chemicals 0.483 0.266 0.573 0.274 0.843 0.971 irs irs
7 Ganfeng Lithium 0.632 0.829 0.782 0.895 0.809 0.926 irs drs
8 Tiangi Lithium 0.589 0.277 0.830 0.503 0.710 0.551 irs irs
9 BYD 0.644 1.000 0.685 1.000 0.941 1.000 irs -
10 Eve Energy 0.520 0.250 0.665 0.509 0.782 0.492 irs drs
11 Hunan Zhongke Electric 0.781 0.315 0.793 0.375 0.985 0.840 irs irs
12 Beijing Easpring Material Technology 0.675 0.433 0.782 0.487 0.863 0.888 irs irs
13 Sunwoda Electronic 0.237 0.326 0.277 0.379 0.856 0.860 irs drs
14 Wanxiang Qianchao 0.210 0.336 0.268 0.337 0.783 0.994 drs irs
15 Shenzhen CLOU Electronics 0.435 0.123 0.441 0.126 0.988 0.975 irs irs
16 Shenzhen Topband 0.511 0.146 0.515 0.190 0.991 0.771 irs drs
17 Zhejiang Unifull Industrial Fibre 1.000 0.304 1.000 0.420 1.000 0.723 - irs
18 Zhejiang Narada Power Source 0.596 0.398 0.624 0.400 0.955 0.996 irs drs
19 China CSSC Holdings 1.000 0.461 1.000 0.585 1.000 0.788 - drs
20 Jiangsu Zhongtian Technology 0.408 1.000 0.412 1.000 0.990 1.000 drs -
21 Neusoft Corporation 0.042 0.047 0.063 0.059 0.665 0.786 drs drs
22 Shenzhen Capchem Technology 1.000 0.304 1.000 0.316 1.000 0.960 - drs
Mean 0.521 0.373 0.577 0.457 0.887 0.829
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Fig. 4 The comparison of PTE and TE scores of 22 enterprises in 2010 and 2019, respectively.



Shizhen BAI et al. Evaluating R&D efficiency of China’s listed lithium battery enterprises 481

4.4 Efficiency scores of leading enterprises

4.4.1 Technical efficiency (TE) and pure technical
efficiency (PTE)

Table 5 showcases the performance of the five leading
enterprises identified. During the observed period, the
average TE score of the five companies was 0.659, which
was higher than that of the 22 enterprises of 0.442. These
scores indicated that the R&D investment efficiency of
the leading enterprises was higher than the industrial
average. Table 6 shows that during the experimental
period, the average PTE score of the five companies was
0.724, higher than that of the 22 enterprises of 0.503,
which indicated that the technological innovation level of
leading enterprises was relatively high. According to the
average TE and PTE scores from 2010 to 2019, only
BYD and Tianqi Lithium exchanged rankings, while
the rankings of the other three companies remained

unchanged. The specific rankings and scores can be seen
in Tables 5 and 6.

4.4.2 Scale efficiency (SE)

Table 7 shows that during the experimental period, the
average SE score of the five leading enterprises was
0.903, slightly higher than the average PTE score. Thus,
the scores indicated that the scale efficiency of the leading
enterprises was higher than the industry average.

Table 7 also demonstrates that the leading enterprises
were in the situation of IRS most of the time. For exam-
ple, in 2019, among the five leading companies, only
BYD reached CRS, which means that it reached the best
scale efficiency. Ganfeng Lithium were in the state with
DRS, and the other three enterprises were in the state
with IRS, which means that for leading companies, the
efficiency of R&D investment could still be increased by
expanding the scale of the company.

Table 5 Technical efficiency scores of five leading enterprises from 2010 to 2019

Year BYD Tiangi Lithium Hunan Zhongke Electric Ganfeng Lithium Beijing Easpring Material Technology
2010 0.644 0.589 0.781 0.632 0.675
2011 0.578 0.567 0.671 0.472 0.534
2012 0.624 0.505 0.692 0.418 0.624
2013 0.618 0.736 0.674 0.696 0.618
2014 0.736 0.783 0.734 0.706 0.679
2015 1.000 0.900 0.996 0.392 0.598
2016 1.000 1.000 1.000 0.470 0.470
2017 0.993 0.865 0.491 1.000 0.452
2018 0.922 0.507 0.363 0.275 0.391
2019 1.000 0.277 0.315 0.829 0.433
Average 0.812 0.673 0.672 0.589 0.547
Rank 1 2 3 4 5

Table 6 Pure technical efficiency scores of five leading enterprises from 2010 to 2019

Year BYD Tiangi Lithium Hunan Zhongke Electric Ganfeng Lithium Beijing Easpring Material Technology
2010 0.685 0.830 0.793 0.782 0.782
2011 0.642 0.793 0.690 0.602 0.611
2012 0.629 0.719 0.721 0.529 0.663
2013 0.628 0.946 0.715 0.702 0.675
2014 0.736 1.000 0.748 0.706 0.717
2015 1.000 0.979 1.000 0.399 0.652
2016 1.000 1.000 1.000 0.626 0.505
2017 1.000 1.000 0.521 1.000 0.493
2018 0.924 0.612 0.409 0.285 0.506
2019 1.000 0.503 0.375 0.895 0.487
Average 0.824 0.838 0.697 0.653 0.609
Rank 2 1 3 4 5
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Table 7 Scale efficiency scores of five leading enterprises from 2010 to 2019

Year BYD Tiangi Lithium Hunan Zhongke Electric ~ Ganfeng Lithium Beijing Easpring Material Technology
2010 0.941 irs 0.710 irs 0.985 irs 0.809 irs 0.863 irs
2011 0.899 irs 0.714 irs 0.972 irs 0.784 irs 0.874 irs
2012 0.992 irs 0.703 irs 0.960 irs 0.790 irs 0.941 irs
2013 0.984 drs 0.777 irs 0.942 irs 0.991 irs 0.916 irs
2014 1.000 - 0.783 irs 0.981 irs 1.000 - 0.948 irs
2015 1.000 - 0.919 irs 0.996 irs 0.984 drs 0.917 irs
2016 1.000 - 1.000 - 1.000 - 0.751 drs 0.931 irs
2017 0.993 drs 0.865 drs 0.943 irs 1.000 - 0.918 irs
2018 0.998 irs 0.828 irs 0.889 irs 0.963 drs 0.773 irs
2019 1.000 - 0.551 irs 0.840 irs 0.926 drs 0.888 irs
Average 0.981 0.785 0.951 0.900 0.897

Rank 1 5 2 3 4

4.5 Discussion

Our findings provided insights on R&D efficiency
performance for the lithium battery industry in China as
well as for individual firms. Although some results do not
show any potential contributions for the industry, three
key points that are relevant to further policymaking are
worth noting.

4.5.1 R&D investment did not bring significant
improvement in technical productivity

The first and most striking result of the analysis is the
overall efficiency performance of the industry. Our
results indicated that the R&D investment efficiency in
China’s lithium battery industry was nearly unchanged
from 2010 to 2019 (see Table 3). Unsurprisingly, the
overall R&D investment performance of the lithium
battery industry did not show any increase even though
the R&D expenditure steadily increased during the
examination period. Further analysis revealed that
the increased R&D expenditure was associated with a
dramatic increase (see Fig. 1) in operating income; yet,
the number of patent applications and the net profit had a
small increase. This finding suggests that the increase of
R&D inputs has brought an evident improvement to the
operating incomes, but it has not yet led to improvements
in the areas of technological advancement and production
efficiency. This result is consistent with the current state
of the industry, where it ranks first in terms of scale but
lags on innovativeness.

4.5.2 Low pure technical efficiency is the main factor
restricting the overall R&D efficiency

We measured the technical efficiency, pure technical effi-
ciency and scale efficiency of 22 listed lithium battery

enterprises. The average TE score of 22 enterprises
during the period was only 0.442, thus indicating that the
overall technical efficiency level was low. The average
PTE score was 0.503, and the average SE score was
0.864. Among the 22 enterprises, the number of enterprises
suffering DRS has increased over the past 10 years. The
relationship between PTE and TE was also analysed,
and the results showed an evident positive correlation
between PTE and TE. Therefore, we conclude that low
pure technical efficiency is the main factor restricting the
improvement on the overall R&D efficiency. This obser-
vation indicates that further support may be needed to
help enterprises not only increase the level of R&D
investment but also focus on improving the R&D opera-
tions and process to achieve a higher level of efficiency.
Blindly expanding in scale could be a dangerous action in
promoting the growth of the industry.

4.5.3 Leading enterprises can still improve R&D efficiency
by expanding their scale

The lithium battery industry is a technology-intensive
industry, and the leading enterprises have demonstrated
an obvious scale and technical advantages. The analysis
on the R&D efficiency of the leading enterprises shows
that the average TE score of leading enterprises during
the experimental period was 0.659, the average PTE
score was 0.724, and the average SE score was 0.903.
These values are all higher than the average scores of the
22 listed lithium battery enterprises, thus indicating a
better R&D efficiency performance of the leading enter-
prises. This outcome is also consistent with the under-
standing that the structure of this industry is “top heavy”.
Thus, the practice of the leading enterprises is worth
exploring, and their experiences should be used as best
practices in helping other firms in the industry increase
their R&D efficiency.
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In addition, an analysis of the RTS of leading enterprises
shows that the five leading enterprises are experiencing
IRS most of the time. Therefore, different from other
enterprises in the industry, leading enterprises can still
obtain benefits by expanding their scale, which may
also contribute to early capital accumulation and policy
support.

5 Conclusions and policy implications
5.1 Conclusions

This study aims to understand the efficiency of Chinese
enterprises working on lithium battery in terms of R&D
during 2010 to 2019. We are also interested in how leading
enterprises have performed compared with the industrial
average during this period. Building our model on the
basis of the classic CCR and BCC model of DEA, our
results indicate a need for improvement for enterprises in
the lithium battery industry of China. We conclude that
most of the enterprises in our sample are suffering from
DRS. In contrast, the performance of leading enterprises
is superior, and they can still obtain benefits by expanding
their scale. Our findings have contributed to making
suggestions for policy as well as future research.

5.2 Policy implications

Our suggestion for policymakers is that supporting tech-
nologically intensive sectors should entail more than
simply increasing investment scale. Rather, it should also
encompass assisting businesses in developing efficient
managerial processes for R&D. Moreover, leading enter-
prises should be regarded as best practices that can help
other enterprises to improve their R&D efficiency.

Getting to know industry efficiency is crucial for
designing tailored energy efficiency and adaptation poli-
cies for policymakers and managers working on the
healthy and sustainable development of China’s lithium
battery industry. As we only viewed R&D in general, our
suggestions could also be linked with suggestions from
other studies that focus on specific aspects of sustainable
development, such as green supply chain (Liu et al., 2022)
and manufacturing process (Yang et al., 2022), to form a
comprehensive policy plan.

Our findings are already consistent with the current
policy actions in China. In Column 1 of the New Energy
Vehicle Industry Development Plan (2021-2035) released
by the State Council, the battery technology breakthrough
action was mentioned. The Plan also proposed to support
the development of ecological leading enterprises, that is,
giving play to the leading enterprises, cultivating several
upstream and downstream collaborative innovations and
financing all sizes of enterprises. These policies are in

line with our suggestion. However, actions specific to
different types of enterprises could be better evidenced.
In addition to the central policies, the provinces have also
promulgated policies on the development of lithium
batteries in recent years. Shanghai, Zhejiang, Tianjin and
other provinces and cities have put forward relevant goals
for breakthroughs in power battery materials and tech-
nologies. These goals have become an important factor in
promoting the growth of the industry that should be
recognised. For example, similar to the suggestion of this
study, Fujian Province has proposed to support leading
power battery enterprises to expand the production and
marketing scale and continue to maintain product tech-
nology leadership.

5.3 Limitations and future research

Despite the valuable insights obtained by the study, our
research has several limitations. In this study, we adapted
the traditional self-evaluation DEA method to evaluate
the R&D efficiency of lithium battery enterprises.
However, this method may exaggerate the effects of
several inputs or outputs of the evaluated DMU, thus
resulting in unrealistic results (Wu et al., 2021). For
future studies, better efficiency evaluation methods, such
as cross-efficiency evaluation (CREE), could be explored.
Additional fruitful insights may be generated by taking
advantage of the recent development of using big data
and building new evaluation methods (for example, Yang
and Wang, 2020).

Moreover, this research only examined the R&D effi-
ciency performance of Chinese lithium battery enterprises,
without comparative analysis with technology-leading
countries. Future studies could consider comparing the
lithium battery industries in different regions, together
with its supporting policies, to obtain more insights on
the performance and impact of different policies.
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