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ABSTRACT

The development of colorimetric analysis technologies for the commercial cellphone platform has
attracted great attention in environmental monitoring due to the low cost, high versatility, easy
miniaturization, and widespread ownership of cellphones. This work demonstrates a cellphone-based
colorimetric multi-channel sensor for quantifying multiple environmental contaminants
simultaneously with high sensitivity and stability. To improve the sensitivity of the sensor, a delicate
optical path system was created by using a diffraction grating to split six white beams transmitting
through the multiple colored samples, which allows the cellphone CMOS camera to capture the
diffracted light for image analysis. The proposed sensor is a universal colorimetric detection platform
for a variety of environmental contaminants with the colorimetry assay in the range of 400-700 nm.
By introducing the diffraction grating for splitting light, the sensitivity was improved by over six folds
compared with a system that directly photographed transmitted light. As a successful proof-of-
concept, the sensor was used to detect turbidity, orthophosphate, ammonia nitrogen and three heavy
metals simultaneously with high sensitivity (turbidity: detection limit of 1.3 NTU, linear range of
5-400 NTU; ammonia nitrogen: 0.014 mg/L, 0.05-5 mg/L; orthophosphate: 0.028 mg/L, 0.1-10
mg/L; Cr (VI): 0.0069 mg/L, 0.01-0.5 mg/L; Fe: 0.025 mg/L, 0.1-2 mg/L; Zn: 0.032 mg/L, 0.05-2
mg/L) and reliability (relative standard deviations of six parallel measurements of 0.37%—1.60% and
recoveries of 95.5%—106.0% in surface water). The miniature sensor demonstrated in-field sensing
ability in environmental monitoring, which can be extended to point-of-care diagnosis and food safety
control.
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1 Introduction

Reliable colorimetric analysis technologies have been
widely praised for their highly sensitive and selective
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responses towards various contaminants in environmental
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monitoring (Zhai et al., 2013; Piriya et al., 2017; Priyadar-
shini and Pradhan, 2017). In principle, the chromogenic
agent selectively reacts with the target in water samples,
and the colored product reflects the specific absorbance
spectrum. Obeying the Lambert-Beer law, the absorbance
is proportional to the concentration of the absorbing
species, providing the basis for the qualitative and
quantitative detection of contaminants in water samples.
The result of colorimetric assay can be observed by eye.
However, this low-cost approach lacks accuracy. To
replace the qualitative and semi-quantitative detection
with a quantitative one, a photoelectron detector, such as
a spectrophotometer (Lepot et al., 2016; Li and Hur, 2017)
and a microplate reader (He et al., 2011; Fu et al., 2016)
is required. However, this becomes expensive and thus
difficult to be applied in resource-limited or remote
environments (Mabey et al., 2004).

Giving consideration to both accuracy and cost, develop-
ing colorimetric analysis technologies on the commercial
cellphone platform is gathering significant attention in
environmental monitoring because of the low cost, high
flexibility, easy to miniaturization, and widespread owner-
ship of cellphone (Chen et al., 2014; Vashist et al., 2014;
Capitan-Vallvey et al., 2015; Zhang and Liu, 2016; Kozit-
sina et al., 2018). Notably, the outstanding advantages of
cellphone-based colorimetric technology is expected to
greatly accelerate the environmental and health-related
analysis capabilities in the remote or less-developed
countries and regions (McCracken and Yoon, 2016; And-
rachuk et al., 2019). As early as 2008, the first proof-of-
concept cellphone-based colorimetric sensor was reported,
which used a camera module of a cellphone to take a
photograph and digitize the intensity of color associated
with each colorimetric assay on the paper-based microflui-
dic chip (Martinez et al., 2008). To avoid the interference of
light from the ambient environment, different integrated
opto-mechanical attachments compatible with the built-in
camera module of a cellphone were designed to digitally
quantify the target concentration using colorimetric
transmission assays that were implemented in disposable
test tubes (Weietal., 2014; Gao and Wu, 2016; Sajed
et al., 2020; Xing et al., 2020). Due to its field-portability,
inexpensive design, and wireless data connectivity, the
detection platform was able to run on cellphones with
high sensitivity and specificity, in addition to time and
cost savings that could be helpful for distributed water
contamination mapping as a function of both space and
time (Liu et al., 2020). However, the majority of reported
studies focused on single-channel colorimetric detection,
which led to a limited detection efficiency, especially
facing with complicated contaminants in water samples
(Hong and Chang, 2014; Xing et al., 2020).

Research on cellphone-based multi-channel sensing
systems has gained growing interest because the systems
have the potential to simultaneously detect multiple targets
in a single measurement, and the involved techniques for

the rapid assessment of water samples are fast, robust and
inexpensive (Wang et al., 2017a; Ma et al., 2021). To realize
the multi-channel sensing capability, a mainstream techno-
logy pathway is to directly capture the colorimetric images
from 96-well plates using a cellphone camera. Notably, a
LED array with monochromatic light was generally used
as the illumination source, and the transmitted light
through each well was collected and transferred via 96
individual optical fibers (Bergetal., 2015). To avoid
complex mechanical designs, a compact, smartphone-
based, single-stripe colorimetric reader was designed,
having a smaller size, lighter weight, and lower cost,
hence more convenient for in-field applications (Wang
etal.,2017b). More recently, external smartphone
attachments were completely replaced with algorithms to
interpret the videos from 96-well plates with colorimetric
assays (Coleman et al., 2019). In all cases, the majority of
strategies to improve the sensing capability of the
cellphone-based system were based on a monochromatic
light source, lacking universality and flexibility towards
different contaminants which showed different absorption
peaks.

Herein, we propose a cellphone-based colorimetric multi-
channel sensor for water environmental monitoring. A
white LED array was used as the incident light to illuminate
a 96-well plate. The transmitted light from six wells was
collected by six optical fibers and imaged by a cellphone
camera after passing through a diffraction grating. The
image was captured by a custom-designed cellphone app
for analysis using a specific algorithm, yielding detection
results which were displayed using the same app. The
compact sensor was successfully tested for simultaneous
detection of various environmental contaminants with an
absorption wavelength range of 400—700 nm, achieving
high sensitivity, specificity and reliability. The entire system
exhibits high expansibility, which can be expanded to 96
channels by increasing the number of collecting optical
fibers and the size of the grating.

2 Materials and methods

2.1 Design and fabrication of the cellphone-based multi-
channel sensos

In order to establish a multi-channel sensing system with
general detection capability in the whole visible light range
and high sensitivity, the experimental setup demonstrating
the light path design of the cellphone-based multi-channel
sensor was shown in Fig. 1(A).

Notably, the overexposure caused by the strong power
of LED light incident would always cause the return of
the maximum signal value for the shooting of colored
samples even at different concentrations. Conversely, the
weak power of LED light would be associated with the
weakened transmitted light, resulting in lower sensitivity



Yunpeng Xing et al. A cellphone-based colorimetric multi-channel sensor

Cellphone
MIX 2, Xiaomi
with Android
operating system

Optical fibers
(quantity expandable)

Adjustable
LED panel

Detachable 96-well plate

U U U tj tj t;.LEDarray

Uniform plate

Cellphone

~96-well plate

Optical fiber
fixator (back)

Optical fibers

~~ Optical fiber
fixator (front)

Fig.1 Schematic diagram of the cellphone-based multi-channel sensor. (A) The light path design and the corresponding

components of experimental setup, and (B) the structural design.

and limited response range. Therefore, an adjustable LED
panel, accompanied with a specially designed direct
current constant voltage to decrease the slight fluctuation
of the power supply as similar as reported before (Xing
etal., 2020), was utilized to optimize the power of
luminance as high as possible, however without overex-
posure. After optimization (Fig. S1), the LED array with
power of 0.5 W was selected for use. The light was
homogenized through a double-side frosted uniform
plate, and then entered into a transparent flat-bottom 96-
well plate.

A commercialized transparent flat-bottom 96-well
plate, which was supported by a 3D-printed plate holder,
was used as the high-throughput colorimetric cuvette.
Notably, if an 8 (hole/strip) x 12 (strip) detachable 96-
well plate was adopted, it was suggested to use one strip
instead of a whole plate to avoid waste under the
condition of 6-channel application proposed in this work.
The detachable plate also provided the flexible scalability
to expand the channel numbers. The 3D-printed plate, as
shown in Fig. S2, was designed with walls to avoid the
interference of light path among channels. Moreover, a

black shading material, acrylonitrile butadiene styrene
(ABS) plastic, was used for printing to isolate light
scattering.

Plastic multi-mode optical fibers with core diameter of
2 mm, outer diameter of 3.5 mm and numerical aperture
(NA) of 0.5 were selected to guide and converge the
transmission light from different channels for imaging.
Two optical fiber fixators were constructed and arranged
at both ends of the fibers to ensure vertical incidence and
exit of light (Fig. S3). Both ends of the fibers were
polished to achieve fairly low surface roughness (Contour
Arithmetic Mean Deviation of R, 0.2 um, ANSI/ASME
B46.1-1988). The black plastic shells attached to the fiber
cores were maintained to prevent stray light in the
environment. The front ends of the fibers were placed
under the bottom of the plate for 2.0 mm on the one hand
to collect the light as much as possible and on the other
hand to avoid the light interference from other channels.
Compared with the image size of the transmitted light
from the 96-well plate, this optical fiber imaging
geometry shrunk approximately four times in a fairly
compact space, significantly reducing the height of the
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integrated sensor. Most importantly, the converged output
fibers ensured the multi-channel light dispersion using
only one grating. Meanwhile, because the optical fibers
were used to receive light directly at the bottom of the 96-
well plate, there was no need to add lens, apertures, and
other complex optical components, which lessened the
size of the integrated sensor and reduced the cost.

A ruling transmission grating with the size of 25 mm x
25 mm x 3 mm, the number of lines of 1200 lines/mm,
the blazing angle of 36.9°, and the effective aperture of
0.9, fabricated by visible band B270 optical glass
(Edmund Optics Co., Ltd, Shenzhen, China) with high
surface finish (60/40, Scratch/Dig), was chosen to diffract
the light (Note S1). In order to make the spectra of
different channels uniform and clear, the distance and the
angle between the output end of optical fibers and the
transmission grating was set to 50 mm and 45°, the
distance and the angle between the transmission grating
and the CMOS camera of the cellphone was set to 30 mm
and 0°. Under the above conditions, the first-order
diffraction of transmission light was photographed with
the CMOS camera of the cellphone.

A cellphone (MIX 2, Xiaomi, China) served as the
image recognition and data processing unit. In the process
of cellphone shooting, its CMOS camera photosensitivity
(i.e. ISO), focus mode, focal length, color effect, exposure
mode, and white balance were tested and determined. On
the other hand, cellphone position, angle and other factors
were optimized and fixed, in order to avoid the interfer-
ence of these factors on the measurement.

After the optimization of the experimental setup, the
cellphone-based multi-channel sensor structure was designed
as shown in Fig. 1(B). More specifically, a planar white
LED light array, i.e. a 96 bulb set with the power of 0.5 W
(8 x 12, corresponding to 96-well plate), was used to improve
the sensing sensitivity while failing caused by overexpo-
sure. The wavelength range of the white LED illumina-
tion was 400-700 nm, enabling the sensor capable of
sensing contaminants in the whole visible light range. As
a result, the apparent dimension of the integrated
mechanical attachment to the cellphone was 16 cm in
height and 26 cm X 18 cm in size (Fig. S4).

2.2 Image capture and analysis

The first-order diffraction spectrum of transmitted light was
obtained through the dispersion of grating, and then the
obtained images were analyzed to determine the image
analysis model of this sensor based on Matlab2019b and
Origin2021. Note S2 describes the Matlab codes in the
process of image quantization.

As shown in Fig. 2(A), the parallel direction of spectral
diffraction was defined as Y axis, and the wvertical
direction of spectral diffraction was defined as X axis. By
introducing the monochromatic light lasers (Daheng
Optics Co., Ltd., Beijing, China), the pixel corresponding

to a specific wavelength was determined, and as a result
the relationship between the Y direction position and the
wavelength information was established (Vidal etal.,
2021). Based on the above relationship, we firstly fixed
the pixel position in the Y direction based on the specific
absorption wavelength for different contaminant target,
and then averaged the signal value along the X direction

(Eq. 1).

SV =

1 %
D SV, (1)
Xy — X =X

where SV is the average signal value at a specific
wavelength, x, and x, are the edge pixel coordinates, i is
the coordinate value between x, and x,, and SV (i) is the
signal value at i pixel.

Common R (red), G (green), B (blue), H (hue), S
(saturation), V (value), and gray value image analysis
models were compared for optimization. Among them, R,
G, and B models were obtained through RGB color model,
and their values ranged from 0 to 255 (Long et al., 2014;
Linetal., 2016). H, S, and V models were separated
through HSV color model, and their values ranged from 0
to 1 (after normalized process) (Cantrell et al., 2010). Gray
model was a single variable value model transformed
from RGB model and obtained by Eq. (2) (Vidal et al.,
2021).

Gray = 0.299+R + 0.587+G +0.114xB, 2)

where Gray is the gray value, R is the value of red
channel, G is the value of green channel, and B is the
value of blue channel.

Since turbidity has a scattering and absorbing effect on
the full range of visible light, resulting in the overall
reduction of transmission spectrum intensity, it is com-
monly used as a target to investigate the sensitivity and
stability of the colorimetric sensor (Ceylan Koydemir
et al., 2019). A series of turbidity standard solutions were
prepared with formazin, and the signal values of different
image analysis models were extracted at 680 nm (red
region) to establish the calibration curve and hence
compare their sensitivity, correlation, and detection range.
For further verification, the targets, including ammonia
nitrogen and orthophosphate, were tested. The optimal
image analysis model was ultimately selected based on
the above comparison.

Notably, the relationship of the signal values derived from
the image analysis model and the target concentrations
were obtained based on the Lambert-Beer law (Eq. (3)).

1 SV
A= loglof = loglos_; = ac+b, 3)

where A is the absorbance, T is the transmittance, S V; and
SV, are the average signal value at a specific wavelength
with and without adding the chromogenic water sample
(calculated by Eq. (1)), ¢ is the concentration of the
target, a and b is the slope and interrupt of the calibration
curve, respectively.
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Fig.2 Wavelength calibration for the cellphone-based multi-channel sensor. (A) Spectra of white LED and monochromatic light
through the light dispersion of transmission grating; (B) Spectral curves of white LED and monochromatic light using the gray

analysis model; (C) Linear fitting curve of wavelength and pixel.

2.3 Software design

A cellphone software named MyApp was designed to
utilize the camera of the cellphone, project the image
captured by the cellphone onto the two-dimensional
canvas, and rotate it to a uniformly set angle to obtain the
image. It captured the regions of interest (ROI), i.e.
spectral image regions corresponding to different channels,
which reduced the amount of calculation, optimized the
running speed, and improved the accuracy of data in the
subsequent calculation process compared with analyzing
the whole image. The specific region parameters for further
analysis were set in a configuration file (Note S3).
Subsequently, MyApp converted the images obtained
above into digital information to obtain the signal value
from the optimal image analysis model. The mean value
in the X direction was calculated to reduce the two-
dimensional matrix of signals to one dimension (Eq. (1)),
hence establishing the one-dimensional relationship between
the signal value and the pixel. By establishing and storing
the calibration curves for different contaminants set by
users, MyApp calculated and directly outputted the
concentrations. Moreover, the time and location of in-
field testing were able to be recorded and stored in
MyApp. When an image is captured, the regions of six
channels (i.e. six spectra) can be analyzed at the same

time, and the results can be shown on the interface.
Notably, the water quality index on each channel can be
selected on MyApp. In this way, capturing one image can
realize the detection of six water quality indexes
simultaneously.

2.4 Performance evaluation for various environmental
contaminants

Chemicals and colorimetric analytical methods used for
various environmental contaminants in this study can be
found in Note S4. As a proof-of-concept, each channel was
set to detect one type of water quality indexes: channel 1 —
turbidity, 2 — ammonia nitrogen, 3 — orthophosphate, 4 —
Cr (VI), 5—Fe, and 6 — Zn.

To verify the performance of this multi-channel sensor
for environmental water matrices, the surface water was
spiked with three levels of turbidity, ammonia nitrogen,
orthophosphate, Cr (VI), Fe, and Zn. The water sample
was taken from Hetang pond at Tsinghua campus
(longitude 116°19'15.2" E and latitude 40°0'5.9” N). It is
a landscape pond with area of about 1000 m2. The results
were compared with those measured by the commercial
UV-visible spectrophotometer (HITACHI U-3900).
Notably, the surface water was collected and then filtered
with a 0.45 pm membrane filter to remove particulates
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before the spiking and colorimetric sensing for six water
quality indexes.

3 Results and discussion
3.1 Wavelength calibration

As revealed by Fig. 2(A), the light dispersion effect of the
white LED through the transmission grating was of high
quality with a relatively uniform distribution across the
full spectrum. By using the monochromatic light lasers
named laser 1 to 5 with the wavelength of 630 nm, 591 nm,
525 nm, 465 nm, and 405 nm, respectively, the spectrum
of each monochromatic light was distributed on different
pixels of the full spectrum of white LED, appearing
typical band shapes, even though the spectra of mono-
chromatic light lasers showed a certain spectral band-
width. Taking the gray model as an example, the wavelength
matching with the pixel was determined according to the
position of the gray value peak (Fig. 2(B)). In our work,
the monochromatic lights of 405 nm, 465 nm, 525 nm,
591 nm, and 630 nm were distributed at approximately
1092 pixels, 835 pixels, 680 pixels, 456 pixels, and 286
pixels, respectively. Thus, a linear fitting curve of
wavelength and pixel were obtained with the curve
equation of y = —0.2884x + 716.4, revealing that the
resolution of this cellphone-based sensor was 0.2884
nm/pixel (Fig. 2(C)). The curve fitting showed a high
linear correlation coefficient of 0.994, confirming that the
transmission grating provided a good light dispersion
effect.

3.2 Selection of image analysis models

Using turbidity as the target, a series of solutions with
turbidity gradients were prepared to investigate the
sensitivity of different image analysis models. The
turbidity solution absorbed and scattered all wavelengths
of light, therefore the transmitted image darkened as the
turbidity increased (Fig. S5(A)). Correspondingly, signifi-
cant decrease in the signal values was found in the red
and blue regions associated with pixels of 0-380 and
800-930, respectively, when using model R, in the green
region associated with pixels of 300-700 when using
model G, and in the blue region associated with pixels of
550-750 when using model B (Fig. S5(B)-S5(D)).
Notably, there was a concentration-independent upper
limit of signal value (255) in the blue region of model B,
leading to quantification impossible. Therefore, model B
was not suitable for the detection of the target with the
absorbance wavelength in the blue region. Similarly, with
the increase of turbidity, significant increase in the signal
values was found in the blue regions associated with
pixels of 800-930 when using model S, and in the whole
region associated with pixels of 0-1000 when using

model V; however, no significant change occurred in the
spectral curve when using model H (Fig. S5(E)-S5(G)).
Notably, just like model B, model V also showed a
concentration-independent upper limit of signal value
(255) in the blue region, indicating that it was very
cautious to use the model V to interpret the signals of the
target with the absorbance wavelength in the blue region.
The gray value decreased with the increase of turbidity in
the whole spectral region (Fig. S5(H)), indicating that the
gray model was an ideal one to quantify the various
targets with different absorbance wavelengths in the
visible light range.

The signal value of each model was taken at the
wavelength of 680 nm to determine the relationship
between the turbidity concentration and the absorbance,
resulting in the calibration curves based on Eq. (3). As
depicted in Fig. 3(A), the sensitivities of the calibration
curves derived from R, G, B, S, and V models were
similar with the slopes in the range of 0.0010 to 0.0015.
Except for S model, the linear correlation coefficients of
models were greater than 0.99 (the highest 0.997 of
model R), indicating that the R, G, B, and V models were
highly correlated with the turbidity compared with the S
model (Table 1). Even so, the slope of the calibration curve
established by the gray model was 0.0016 (Fig. 3(B)),
which was highest than the above models, and meanwhile
the linear correlation coefficient reached 0.999 (Table 1).
Similarly, by evaluating and comparing the calibration
curves of ammonia nitrogen and orthophosphate derived
from the R, G, B, S, V, and gray models (Figs. 3(C)—
3(F)), the gray model showed highest sensitivities and
most convincing linear correlation coefficients than other
models (Table 1). Therefore, the gray model was selected
for the subsequent experiments.

3.3 Android-based cellphone software development

To shoot clear and stable image, the parameters of
cellphone CMOS camera were fixed as follows: ISO of
200, focus mode of FIXED, focal length of 10, color
effect of NONE, exposure mode of LOCK, and white
balance of LOCK. According to the Lambert-Beer law,
the absorbance was proportional to the concentration of
the colored substance when the thickness of the absorbent
layer was fixed. And at a particular wavelength, the
higher the absorbance of the sample, the darker the image
taken by the cellphone. Accordingly, the signal value at a
specific wavelength was calculated and converted into the
absorbance by the built-in algorithm of the cellphone
software, and the absorbance was used to establish
calibration curves based on the concentration. The
unknown samples were measured according to the
established and stored calibration curves. Our current
design of the sensor could analyze six water samples or
six contaminants in one water sample simultaneously.

It was worth mentioning that cellphone-based colorimetric
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multi-channel sensor was designed to meet the needs of
rapid and in-field water quality analysis for users from
governments, enterprises, and even families, most of
whom are not professionally trained. As shown in Fig. 4,
MyApp had an easy-to-use user interface to integrate the
functions of calibration, image recognition, signal process-
ing, real-time positioning, data storage, and data transmis-
sion. In the main menu of the software, users could create
calibration curves, start new tests, view historical data,
and change types and languages (Fig. 4(A)). For each
contaminant, apart from the default standard curves

stored in the software, users had the option to create new
standard curves according to their own preferences. After
the selection or creation of the standard curve, a new test
was initiated (Fig. 4(B)). In the shooting interface, the
CMOS camera was started to shoot or upload an image
file saved in the cellphone memory (Fig. 4(C)). After
capturing the diffraction image of the samples, the
intercepted region of the image was previewed and then
used for the generation of signal value (gray value)
curves of different channels on the screen before digital
analysis (Fig. 4(D)). After pressing the “confirm” button,



Front. Environ. Sci. Eng. 2022, 16(12): 155

Table 1 Slope, intercept, and correlation coefficient of calibration curves of turbidity, ammonia nitrogen, and orthophosphate based on different

models
Model types
Substances Factors
R G B H S v Gray
Slope 0.0013 0.0015 0.0014 - —0.0009 0.0013 0.0016
Turbidity Intercept —0.003 —0.003 -0.002 - 0.089 —0.002 0.0014
Correlation coefficient 0.997 0.995 0.991 - 0.964 0.995 0.999
Slope 0.007 0.016 0.040 - —0.028 0.036 0.0070
Ammonia nitrogen Intercept 0.003 0.003 0.006 - 0.053 0.007 1.4E—4
Correlation coefficient 0.88 0.965 0.97 - 0.965 0.979 0.999
Slope 0.161 0.093 0.101 - -0.051 0.165 0.288
Orthophosphate Intercept —5.3E-5 0.002 —0.004 - 0.029 3.4E-4 —4.0E—4
Correlation coefficient 0.985 0.934 0.930 - 0.919 0.985 0.999
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sample name, concentration, time, and GPS coordinates); (F) Interface of temporal and spatial analysis on the AutoNavi Map.

the absorbance of different channels at different wave-
lengths would be calculated automatically following Eq. (3),
which was then converted into the concentration of the

contaminants using the saved standard curves. Conse-
quently, results were exhibited on the screen (Fig. 4(E))
with the test time and GPS coordinates saved in the
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cellphone memory, which could be gathered to conduct
temporal and spatial analysis, such as displaying on the
AutoNavi Map (Fig. 4(F)).

Considering that the speed of image recognition and
data processing were restricted by the hardware of the
cellphone and the software design to a certain extent
(Berg et al., 2015), we used a cloud server, Ubuntu Server
18.04 of Alibaba Cloud with 1 core, 4 GB memory
(including virtual memory), and 10 GB hard disk, to
proceed the image extraction, the data processing, and
save the results for further management and analysis. It
could greatly improve the detection speed, encrypt
algorithms and data, support the massive data storage in
real environmental monitoring, and hence possibly form a
water quality big data network. The data transmission
between the cellphone and the cloud server was realized
by using mobile data or WLAN. It was worth mentioning
that the sensor was able to run in the stand-alone version
if there was no wireless network in the field. Normally,
by transplanting the algorithm and operation to the
powerful cloud server, it took no more than 10 seconds to
proceed the whole analysis.

3.4 Detection performance of six water quality indexes
simultaneously

As a proof-of-concept, six water quality indexes, including
turbidity, ammonia nitrogen, orthophosphate, and three
heavy metal ions of Cr (VI), Fe, and Zn, were tested
simultaneously on the cellphone-based colorimetric six-
channel sensor (Fig.5). As expected, the absorbance,
which was calculated by Eq. (3), increased with the
increase of the concentrations of six water quality indexes.
After fitting by least square method, the linear range of
the multi-channel sensor was approximately 5—400 NTU
for turbidity (Fig. 5(A)), 0.05-5 mg/L for ammonia
nitrogen (Fig. 5(B)), 0.1-10 mg/L for orthophosphate
(Fig. 5(C)), 0.01-0.5 mg/L for Cr (VI) (Fig. 5(D)), and
0.1-2 mg/L for Fe (Fig. 5(E)), and 0.05-2 mg/L for Zn
(Fig. 5(F)), which met the requirement of Environmental
quality standards for surface water of China (GB 3838-
2002). According to the definition of the signal-to-noise
ratio (S/N) = 3, the limits of detections (LODs) were
calculated to be 1.3 NTU for turbidity, 0.014 mg/L for
ammonia nitrogen, 0.028 mg/L for orthophosphate,
0.007 mg/L for Cr (VI), 0.025 mg/L for Fe, and 0.032
mg/L for Zn, respectively.

In theory, the diffraction grating can split the compound
light into spectra with a high nm/pixel resolution. By
diffraction, the cellphone camera can capture the
imperceptible color change at a certain wavelength and
decrease the interferences from light with other wave-
lengths, hence improving the sensor sensitivity. To
confirm that, a direct imaging colorimetric sensing system
was established and tested for comparison. As revealed
by Fig. S6, the grating was not added and the light passed

through the 96-well plate, transmitted by optical fibers
and then directly focused on the CMOS camera of the
cellphone. Taking the turbidity as an example, the
calibration curves obtained by using both systems was
presented in Fig. S7. Obviously, when removing the
grating, the linear range shrank from 5400 NTU to
10-400 NTU, and the LOD increased from 1.3 NTU to
8.7 NTU. The results revealed that the introduction of the
grating, especially after the delicate calculation and
optimization, could significantly lift the sensitivity (slope
increased 630.8%) and the fitting effect (R? increased
0.019), which was essential for the realization of accurate
and stable detection.

Parallel tests (n = 6) were conducted by detecting the
standard solutions of each water quality index with
concentrations of 50% maximum detection range, which
was used to evaluate the stability and repeatability of our
multi-channel cellphone-based sensor. The relative
standard deviations (RSD) of the absorbance measured at
six times were in the range of 0.37% to1.60%, including
0.37% for turbidity, 1.60% for ammonia nitrogen, 1.34%
for orthophosphate, 1.54% for Cr (VI), 1.12% for Fe, and
0.43% for Zn (Fig. 6). Results proved that the cellphone-
based multi-channel sensor had excellent stability and
repeatability.

3.5 Recovery of water quality indexes in surface waters

Ultimately, to confirm the capability of this technology to
analyze different water quality indexes in environmental
monitoring, the sensor was used to detect the spiked
surface water taken from Tsinghua campus and results
were demonstrated in Table 2 and compared with the
conventional methods measured by the UV-Visible
spectrophotometer. The spiked recoveries of six water
quality indexes were in the range of 95.5% to 106.0%,
proving the reliability of this technology. Besides,
compared with the UV-Visible spectrophotometer results
with the spiked recoveries in the range of 96.0% to
103.8%, the sensor technology showed slightly Iess
stability in applications, however was more feasible, low-
cost and simple-to-use, hence with great potential for in-
field detection than other instrumental analysis techno-
logies in lab.

4 Conclusions

In this study, a cellphone-based colorimetric multi-
channel sensor was designed and demonstrated for in-
field simultaneous detection of water quality indexes. In
the sensor, the white light firstly went through the water
samples in the 96-well plates, and was diffracted by the
grating after the transmission of the optical fibers. Own to
the diffraction grating, our sensor demonstrated an over
six-fold improvement in sensitivity compared to the
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Fig.5 Calibration curves of the multi-channel sensor (n = 3). Calibration curves for (A) turbidity, (B) ammonia nitrogen,
(C) orthophosphate, and three heavy metal ions of (D) Cr (VI), (E) Fe, and (F) Zn. Blue words and dotted lines represent the LODs

for different water quality indexes.

grating-less system. The postprocessing after the
cellphone CMOS camera involves converting the gray
value of the spectra into absorbance, in order to calculate
the concentration according to the calibration curves. In
our proof-of-concept demonstration, six indexes were
successfully measured (turbidity: detection limit of 1.3
NTU, linear range of 5400 NTU; ammonia nitrogen:
0.014 mg/L, 0.05-5 mg/L; orthophosphate: 0.028 mg/L,
0.1-10 mg/L; Cr (VI): 0.0069 mg/L, 0.01-0.5 mg/L; Fe:
0.025 mg/L, 0.1-2 mg/L; Zn: 0.032 mg/L, 0.05-2 mg/L).
Moreover, high stability (RSD of 0.37%-1.60%) and
excellent recoveries (95.5%—-106.0%) demonstrated that
our sensor is capable of conducting accurate detection in

real water matrices. Owing to the advantages of remarkable
detection performance, low cost, easy operation, good
portability, and multi-index measurement, our sensor is
highly practical and important in the field of
environmental monitoring, point-of-care diagnosis, food
safety control, risk early warning, etc. Notably, by
introducing the biorecognition materials, such as enzyme,
antibody and functional nucleic acid, the sensor has the
potential to be smarter to realize the detection of trace
organic matters. Further, it can be expected that this
technology would allow the detection channels up to 96
on the premise of overcoming the limitation of the
volume or numbers of the diffraction grating.
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Fig. 6 Repeatability tests of our cellphone-based multi-channel sensor
(n = 3). Concentrations of water quality indexes were set as follows:
turbidity of 200 NTU, ammonia nitrogen of 2.5 mg/L, orthophosphate
of 5 mg/L, Cr (VI) of 0.25 mg/L, Fe of 1 mg/L, and Zn of 1 mg/L.

Table 2 Recovery of six water quality indexes analysis in real water
sample (n =3 for our sensor)

Added Measured by hgiisserﬁgo?y
Water (NTU for spectrophotometer ~ (NTU for Recovery by
quality i‘;{g‘;}f“ftgr’ (NTU for trbidity, ~ turbidiy, " (23%"
others) mg/L for others) rr:)%}/llérts‘())r
Turbidity 0 33 4.3+0.8 -
50 51.5 55.542.0 102.343.1
100 106.5 108.4£2.0  104.1+2.1
200 210.8 196.5£1.7 96.1£1.1
Ammonia 0 0.055 0.048+0.008 -
nitrogen 0.5 0.547 0.548+0.014  100.0+1.5
1 1.067 1.094+£0.023  104.6+2.2
2 2.090 2.101+0.053  102.7+2.3
Orthophosphate 0 0.062 0.059+0.004 -
1 1.054 1.061£0.013  100.2+1.6
2 2.030 2.1224£0.070  103.1+£3.3
4 4.011 3.881£0.046  95.5+1.1
Cr (VI) 0 0 <LOD -
0.05 0.048 0.052+0.001  105.6+1.8
0.1 0.102 0.101£0.004  100.6+4.1
0.2 0.201 0.196+0.004  98.1+1.9
Fe 0 0.053 0.061+0.012 -
0.25 0.304 0.326+£0.012  106.0+5.3
0.5 0.564 0.561+£0.010  99.9+2.0
1 1.067 1.037£0.028  97.6+1.8
Zn 0 0.103 0.111+0.016
0.25 0.353 0.344+0.070  104.6+3.1
0.5 0.604 0.609+£0.071  105.2+5.5
1 1.124 1.0934£0.047 101.0+2.0
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