Front. Mech. Eng. 2022, 17(4): 57
https://doi.org/10.1007/s11465-022-0713-3

RESEARCH ARTICLE

Gear fault diagnosis using gear meshing stiffness identified
by gearbox housing vibration signals

Xiaoluo YU?, Yifan HUANGFU?, Yang YANGP®, Minggang DUY, Qingbo HE (5<)?, Zhike PENG?

4@ State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
b Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072, China

™ Corresponding author. E-mail: gbhe@sjtu.edu.cn (Qingbo HE)

© Higher Education Press 2022

ABSTRACT Gearbox fault diagnosis based on vibration sensing has drawn much attention for a long time. For highly
integrated complicated mechanical systems, the intercoupling of structure transfer paths results in a great reduction or
even change of signal characteristics during the process of original vibration transmission. Therefore, using gearbox
housing vibration signal to identify gear meshing excitation signal is of great significance to eliminate the influence of
structure transfer paths, but accompanied by huge scientific challenges. This paper establishes an analytical mathematical
description of the whole transfer process from gear meshing excitation to housing vibration. The gear meshing stiffness
(GMS) identification approach is proposed by using housing vibration signals for two stages of inversion based on the
mathematical description. Specifically, the linear system equations of transfer path analysis are first inverted to identify
the bearing dynamic forces. Then the dynamic differential equations are inverted to identify the GMS. Numerical
simulation and experimental results demonstrate the proposed method can realize gear fault diagnosis better than the
original housing vibration signal and has the potential to be generalized to other speeds and loads. Some interesting
properties are discovered in the identified GMS spectra, and the results also validate the rationality of using meshing
stiffness to describe the actual gear meshing process. The identified GMS has a clear physical meaning and is thus very
useful for fault diagnosis of the complicated equipment.

KEYWORDS gearbox fault diagnosis, meshing stiffness, identification, transfer path, signal processing

are more sensitive to the fault, signal decomposition
methods [7-9] decompose the fault characteristic
components from the original vibration signal. Signal

1 Introduction

As key machine components of the transmission system,

gearboxes play an essential role in the aerospace,
automotive, wind turbine, and power generation
industries [1]. To avoid unwanted downtime, expensive
repair procedures, and even human casualties, gearbox
condition monitoring and fault diagnosis based on
vibration sensing have drawn much attention for a long
time.

One type of mainstream methods extracts fault features
[2] from the time domain or frequency domain of the
vibration signal, and then determines whether the
machine faulty according to feature changing and fault
mechanism [3]. Furthermore, the fault features can be
used to describe the machine degradation process [4] with
the help of some intuitive properties (e.g., monotonicity
[5] and divisibility [6]). To ensure the extracted features
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decomposition effectively avoids the interference of
signal components unrelated to the fault and thus
succeeds in the field of fault diagnosis. In addition, some
signal decomposition methods (e.g., nonlinear chirp mode
decomposition [10], variational mode decomposition
[11], and synchrosqueezing transform [12]) are able to
deal with non-stationary conditions, and have been
widely used in fault diagnosis of flywheel bearing [13],
wind turbine gearbox [14], and aviation piston engine
[15].

The other type of mainstream methods is to design
different neural networks to let the computer automati-
cally learn the implicit fault mode in the vibration signal,
such as deep belief network [16], sparse filtering [17],
deep transfer learning [18], and stacked denoising
autoencoders [19]. This type of methods weakens fault
mechanism because the artfully designed neural networks


https://doi.org/10.1007/s11465-022-0713-3

2 Front. Mech. Eng. 2022, 17(4): 57

can obtain complex fault features [20] beyond human
understanding by learning [21,22]. However, for the life
cycle [23] of an equipment, that fault data can be acquired
only at the last moment when the fault occurs, causing it
very difficult to obtain fault data in the actual industry
[24]. Therefore, small samples [25] and generalization
[26] are the focus of attention.

The above two types of mainstream methods depend on
the acquisition of vibration signals with good quality. In
other words, they assume the vibration signals in the
healthy state and fault state can be distinguished. In terms
of mechanism, gearbox vibration originates mainly from
the meshing action of the gear teeth, then is transmitted
through the shafts and bearings to the housing [27]. The
structure transfer paths have less influence for simple
rotary machines working under high-speed and heavy-
duty conditions, and vibration transducers can capture the
fault characteristic. The above assumption is established.
However, for some highly integrated complicated mechan-
ical systems, e.g., armored vehicles, installing the
transducers in a location like bearing support is impos-
sible. Unlike the laboratory vibration test, the intercou-
pling of structure transfer paths results in a great
reduction or even change of signal characteristics during
the process of original vibration transmission. Therefore,
using gearbox housing vibration signal to inversely
identify gear meshing excitation signal for eliminating the
influence of structure transfer paths is of great signifi-
cance, but accompanied by huge scientific challenges.

For the inverse problem of excitation identification in
mechanical systems, Moore—Penrose pseudo-inverse [28],
truncated generalized singular value decomposition [29],
and regularization method [30] are popularly used.
Research results of bridge structure’s dynamic load
identification [31], architecture’s wind load identification
[32], propeller blade’s dynamic load identification [33],
and helicopter rotor’s load identification [34] have been
reported. However, it is almost undeveloped for gear
meshing excitation identification due to the lack of
related theories about the forward modeling and the
reverse identification of gear meshing vibration transfer.
The latest research result realizes meshing force
measurement and identification of gear ring using the
dynamic model and vibration signal [35,36]. The
modeling ignores the influence of structure transfer paths
and depends on the accurate calibration of the test
process. Thus, one cannot use the method to deal with
housing vibration signals in real mechanical systems. Our
previous work used the bearing dynamic force as a bridge
connecting gear meshing excitation and housing vibration
and proved that the fault features of bearing dynamic
force are more sensitive to fault than the original
vibration signal [37]. Under the proposed modeling
framework, the structure transfer path is modeled by
frequency response functions (FRFs) in the frequency
domain [38]. It can be used to identify bearing dynamic

forces by housing vibration signals. Nevertheless, gear
meshing is parametric excitation in the view of dynamics.
Therefore, the transfer path equation cannot describe the
vibration transfer process from gear meshing excitation to
bearing dynamic force.

In this paper, an analytical mathematical description of
the entire transfer process from gear meshing excitation
to housing vibration is established by using joint
modeling of dynamics and transfer path analysis. We
propose a two-stage inversion approach to identify gear
meshing stiffness (GMS) using housing vibration signals
based on the analytical model. Specifically, the linear
system equations of transfer path analysis are first
inverted to identify the bearing dynamic forces. Then the
dynamic differential equations are inverted to identify the
GMS. Numerical simulation and experimental results
show that the identified GMS has some interesting
properties. For example, signal components unrelated to
faults are suppressed, and the spectrum noise level is
related to fault severity. The results demonstrate the
proposed approach can realize gear fault diagnosis and
has the potential to generalize to other speeds and loads.
Since the frequency components of the identified GMS
are very similar to theoretical modeling, the research
results also validate the rationality of using time-varying
stiffness to describe the actual gear meshing process. The
identified GMS has a clear physical meaning and thus is
beneficial for fault diagnosis and classification of
complicated equipment.

The following content of this paper is divided into five
parts. In Section 2, joint modeling of gearbox vibration
based on dynamics and transfer path is proposed to
describe the vibration transfer process from gear meshing
excitation to housing vibration. Section 3 elaborates the
proposed gear meshing stiffness identification (GMSI)
approach with detailed formula derivation. In Section 4,
the effectiveness of the proposed method is demonstrated
through a simulation example, with classifying healthy,
pitting, wear, and fracture gears. The experimental
verification on gearbox fault classification is performed in
Section 5. The influence of measuring points’ location
and the generalization ability of the approach are also
discussed. Finally, related conclusions are summarized in
Section 6.

2 Joint modeling of gearbox vibration
based on dynamics and transfer path

The transmission process from gear meshing to gearbox
housing vibration needs to be investigated to realize
GMSI based on gearbox housing vibration signal. We
modeled the gearbox vibration by combining dynamics
and transfer path analysis, as shown in Fig. 1.
Specifically, the vibration transmission process from gear
meshing to bearing dynamic force is described by
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dynamic modeling of the gear—shaft—bearing system.
Then the bearing dynamic force is seen as excitation on
the housing interface, and transfer path analysis is used to
describe the vibration transmission process from bearing
dynamic force to gearbox housing vibration.

2.1 Dynamic modeling of gear—shaft—bearing system

The shaft in a gear system is usually treated as a beam
component in the dynamic modeling. Based on the idea
of element division in the finite element method (FEM).
The shaft is divided into many sections, with each section
simulated by a two-node Timoshenko beam. Considering
lateral deformation and torsional deformation, the degree
of freedom (DOF) of the beam model can be represented
as below:

u = [XA Ya Za O e\'A 0., xg Yp zp O GvB 0.5 ]T,
1)
where u® denotes the displacement vectors of nodes 4 and
B on the Timoshenko beam, x, y, and z denote the
translational DOFs, and 6,, 6,, and 6, denote the rotational
DOFs.

Then the mass matrix, stiffness matrix, and gyroscopic
torque matrix of each DOF can be calculated respectively
based on the classical theory of beam element [39]. Note
that the speed in the gyroscopic torque matrix is the speed
of the corresponding shaft.

The bearing in a gear system is the supporting part of
the shaft. An uncoupled elastic support model is used to
simulate each bearing direction as an elastic element with
equivalent stiffness, without considering the coupling
effect between each DOF. And the motion differential
equation of the bearing used in this paper is as below:

Xp
Yo
kyxy = diag (ke Ky ke Koo, Kkos 0)

= FB’ (2)

Gearbox vibration modeling by combining dynamics and transfer path analysis.

where F; denotes the bearing force, kg and xz denote the
stiffness vector and the displacement vector, k.., k,,, k..,
ko, and k,, denote different translational and rotational
DOFs of bearing stiffness, and x,, yy, zy, 6, 0y, and 6,
denote the DOFs of bearing.

The gear in a gear system is modeled as a lumped mass
model with different mass and moment of inertia in
different directions. Six DOFs in translation and rotation
are considered, same as a node. And the mass matrix M,
is as below:

M, =diag(m, m, m, I I, L), 3)

where M, denotes the mass matrix of a lumped mass
model, m, is gear mass, and I,, I,, and I, denote the
moment of inertia in different directions.

The process of gear meshing is modeled as a spring.
And the stiffness of the spring is the GMS. Suppose the
gears are spur gears with zero helix angle, the generalized
coordinate of the gear pair can be defined as

X = [xl i z1 Oy 9y1 0.0 X Y 2 Oy 9y2 0., ]T,
“4)

where X, denotes the generalized coordinate of the gear
pair, and x;, y;, z;, 0, 6,;, and 6,; denote the DOFs of gear i
i=1.2).

The motion differential equation of the gear pair can be
established by ignoring the influence of tooth backlash,
friction, and meshing damping;:

M,X,+K,X,=F,+F.,, (%)
where M|, is the mass matrix of the gear pair, K, is the
meshing stiffness matrix of the gear pair, F, is the
external load, F. is the excitation caused by no-load
transmission error of the gear pair, and X,, denotes the
second derivative of X,,. The formulas of them can be
written as below:

Mlzzdiag(ml mom I, I, J, my my m, I, I, Jz),
(6)

(7

T
K, = klzalzalb
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a’lz :[_Sinwlz COSlﬂlz 0 O O Sgn(rbl)

sinyr;, —cosy;, 0 0 0 sgn(ry,)], )
F=[0 0000 sgn() 00000 sen(T)],

()]
where m, and m, are the masses of gears 1 and 2,
respectively, I, and I, are the transverse moments of
inertia of gears 1 and 2, respectively, J, and J, is the polar
moments of inertia of gears 1 and 2, respectively, k;, is
the meshing stiffness of the gear pair, @, is the projection
vector of the gear pair, sgn(-) denotes the influence of
gear rotation direction with the value 1 for driving gear
rotates anticlockwise and —1 for driving gear rotates
clockwise, r,,, and ry, denote radii of base circle, T, and T,
denote the torques applied to the input shaft and output
shaft, respectively, and ¢, is the angle between the
positive y-axis and the meshing surface.

Assemble the mass matrix, stiffness matrix, and
damping matrix of the gear—shaft—bearing system based
on the finite element theory, as shown in Fig.2. n;
denotes the node number and K; denotes the unit stiffness
matrix of the system. The motion differential equation of
the whole gear—shaft-bearing system can be represented
as below:

Mii+Du+Ku=F, (10)

where M, D, and K denote the system mass matrix, the
system damping matrix, and the system stiffness matrix,
respectively, u denotes generalized coordinate of the

I:' Bearing element

system, also known as nodes displacement, # and i
denote the first and second derivative of u, respectively,
and F is the external excitation. The mass matrix M
contains shaft mass, gear mass, and lumped mass. The
damping matrix D contains viscous damping, bearing
damping, and gyroscopic torque. The stiffness matrix K
contains shaft stiffness, meshing stiffness, and bearing
stiffness. The viscous damping in the damping matrix D
is described by Rayleigh damping [40].

2.2 Transfer path modeling of gearbox vibration

Without loss of generality, the gearbox to be analyzed is
seen as a linear time-invariant system. Consider ignoring
the axial vibration of the rotor, and the bearing dynamic
force can be applied on the housing interface as an
excitation vector to achieve coupling transfer path
modeling [37,41] in the frequency domain:

x=HF,, (11)

where  F, =[f(®),f,(®),.... f,(®)]" represents the
column vector composed of m bearing dynamic force
excitation spectra, x = [x;(®),X;(®),...,x,(w)]" repre-
sents the column vector composed of n response channels
spectra, w represents angular frequency, and H represents
the transfer function matrix composed of n xm FRFs.

To ensure that structure transfer paths are decoupled in
different directions and eliminate the mutual coupling
effect among structure transfer paths on real and
imaginary parts of the bearing dynamic force excitation
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Fig. 2 Assembly method of the gear—shaft—bearing system matrix.
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signal, Eq. (11) can be modified as below:

excitation spectra vector, respectively.

x,s=H,F,, (12) H,(0) H,(w) H,, (o)
where x,, Hy, and F, denote the decoupled response W= HZI'(w) sz‘(w) Hz'"' (@) , (13)
channels spectra vector, the decoupled transfer function : : :
matrix, and the decoupled bearing dynamic force H, (o) Hp(0) H,, (o)
Hix JxR (w) H ixIjxR (w) H iyR jxR (w) H iyljxR (w) H izR jxR (w) H izl jxR (o)
H ixR jxl () Hig jxl (w) H iyR jxl (w) H iy jxl (w) H izR jxl (w) H izl jxl (w)
H.(0)= HiijyR (w) Hi.ijyR (w) HiijyR (w) Hinij (o) HiszyR (o) Hi:ijR (w) (14)
Y H ixRjyl (w) Hy jxl (w) H iyR jyl (w) H, iyl jxl (w) H, iZR jyl (w) H izl jxl (0) |
H ixRjzR (w) Hy R (w) H, iyRjzR (w) H, iyLjzR (w) H izRjzR (w) H, izl jzR (w)
H ixRjzl (w) Hyg jal () H iyR jzl (w) H, iyLjzl (w) H, izR jzI (w) H, izl jzl (w)

F,=[F,F,,..F,]",
Fi = [fz"xR (C()) ) ﬁxl ((1)) 9ﬁ)‘R (C{)) 9ﬁyl (C()) s ﬁzR (CU) s f;'zl (a))]:i 5)

Xq = [xlsx27""xn]T’
X;= [xij (w), Xjx (w), XjyR (), Xy (w), XjR (0), Xja1 (w)]
(16)
where H,y;.x (w) represents the FRF from the real part of
x component at the excitation channel i to the real part of
x component at the response channel j, and can be
calculated by

T
’

HiijxR (w) = XjxR (CU)/fixR (o), (17)
where x; (w) represents the real part of the x component
of housing vibration response at location j, fix(w)
represents the real part of the x component of bearing
dynamic force at bearing i, and the other elements are
similar. The FRFs can be measured by hammer
experiment or numerically simulated by FEM.

3 GMSI approach

In this section, we propose a GMSI method using gearbox
housing vibration signal.

3.1 Method

Under the modeling framework described in Section 2,
the bearing dynamic forces need to be identified by the
housing vibration first. In most cases the vibration
response channels are less than bearing dynamic force
excitation channels, thus the transfer function matrix is
not a square matrix, and Eq. (12) needs to be modified as

H x,=H H,F,. (18)

Using least square method to solve Eq. (18) will cause

a large error due to the ill-condition, especially for
underdetermined conditions. Therefore, a weighted
iteration approach is proposed to control the error.

Performing weighted decomposition to F,, namely
F,=Wf,, and substitute it into Eq. (18), then the basic
idea of the weighted iteration approach is derived as
follows:

Hix,=HHW,, (19)
where W is the weighted matrix used to regulates the ill-
condition degree of H,H, the upper bound of

identification error can then be derived as below, similar
with Ref. [42]:

[

T T
< k(ﬁdT\I{/dW) ”W|/|—||\fl/de|| ||5ded||
L W] |
T
+k(ﬁ§\ﬁdw)w’ 20)
|,

where k(HngW)z |Hw| '(HngW) H is the
generalized condition number of H,H,W, the terms
without superscript indicate analytical values, the
superscript ~ indicates the term containing a numerical
error, and the numerical error is represented by the prefix
0. The upper bound of identification error without
weighted decomposition can be derived similarly:

E (77, |HH | loHxd| (7) loH: A

e AT I 757
21)

Comparing Eq. (20) with Eq. (21), to ensure the
identification error is reduced after performing weighted
decomposition, the following constraints should be
satisfied:

k(ﬁj\ﬁdw) < k(ﬁﬁ\ﬁd),
Wl || HEH| (TN)IIHEHdII (22)
T E—EEETE d*4d

o] ]

e |

Using 4 to represent H,H, and a;; to represent the
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elements, a diagonal weighted matrix is suggested as
below:

W=diag(w1 W, w,,),w,:

2]

i=1,2,...,n. (23)

Then the main diagonal elements of matrix H, H,W are
weighted by adding ¢ f, on both sides of Eq. (19), and the
equation of the weighted iteration approach is derived as
below:

(HyH.W +aE)f, = Hyx,+af,, (24)

where the weighted factor @ (@ >0) is similar to the
regularization parameter in Tikhonov regularization [43],
and can be chosen by generalized cross validation [44].
Equation (24) can be solved in an iterative form as below:

(H HW +0E) fi*" = Hyx, +af!. (25)

Suppose that after X iterations f, converges to f, the
bearing dynamic force can be reconstructed in the
frequency domain by

Fo=Wfp. (26)

The complex spectra of the bearing dynamic force F,

can be easily obtained using F,, for example, f;(w)=

fir (@) + fia(@)-1, 1 denotes the imaginary unit. Then the

vibration response of all bearing nodes ¥, can be
calculated as

X, = <Fl;vkb>a

— — — —~ T
where Fy = [£1(0), (@) ... fu (@) oo = [1/ k. 1/ Kigs ..
1/ k1%, and Ky, denotes the equivalent stiffness of bearing
corresponding to f; (®).
Defining transition matrix Hr in the frequency domain
to convert the vibration response of bearing nodes to all
nodes as below:

@7

H,=uF(F,F}) | (28)

where u; = FT [u], FT[-] denotes Fourier transform (FT).
The vibration response of all nodes in the frequency
domain can be estimated by
iif =H T-ilb- (29)
Then the inverse Fourier transform (IFT) is used to
convert the estimated vibration response from the
frequency domain to the time domain:
u =1FT [a]. (30)
To numerical identify the system stiffness matrix,
Eq. (10) is rewritten as a discrete form as below:
MAu+DAu+Ku=F. (31)

Calculating the first- and second-order differences of
the estimated vibration response #@, and doing

mathematical manipulation to Eq. (31), we can yield

ai'K' =i(F - MNii— DAR)'. (32)

Simply, let V =", Y =a(F - MAi—DA#&)', and

suppose the system stiffness matrix has p columns. We

can convert Eq. (32) into positive definite linear
equations as below:

VK () =Y(,i), i=1,2,...,p, (33)
where (:,7) indicates the ith column of the matrix. The
generalized minimal residual algorithm [45] is suggested
to solve the linear equations to estimate the system
stiffness matrix K.

Suppose the gear—shaft—bearing system has ¢ gear
pairs, the whole meshing stiffness matrix K, can be
estimated by subtracting the stiffness matrix of gears,
shafts, and bearings from the estimated system stiffness
matrix as below:

K. :K—(K—Zq:Kmf],
i=1

where K, denotes the meshing stiffness matrix of gear
pair i, for single-stage gear—shaft—bearing system,
K,.=K, =K.

The meshing stiffness matrix can be rewritten as the
following form according to Eq. (7):

(34

\ k, - 0 kny -+ O
[N
i=1 0 - Ky 0 o kg

(35)
0,
0,
y=. | (36)
G)q

where k,,; denotes the meshing stiffness of gear pair i, Y
denotes the projection matrix of all gear nodes, and O,
represents the projection matrix obtained by assembling
the projection vector @] e; (can be calculated based on Eq.
(8) for each gear pair) to the corresponding gear nodes.
Note that the dimension of @; is the same as the system
stiffness matrix K.

Then we can derive the temporary variable containing
meshing stiffness of all gear pairs by the least square
method:

/}mq e 0

~ -1

Do : =K.y (yy") .
0 -k 0 Kong

(37)

where k, denotes the temporary variable containing

meshing stiffness of all gear pairs, K, denotes the

estimated whole meshing stiffness matrix, and k,,; denotes
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the estimated meshing stiffness of gear pair .
The meshing stiffness of each gear pair can be finally
identified as below:

Rt = % D ki) i=
Jj=(i-Dp+1

The trend component in the k,; can be eliminated by
averaging the results of each 360° rotation period.

Section 4 will demonstrate that the identified GMS is
different in the time and frequency domains for different
gear faults. Therefore, the identified GMS can be used for
gear fault diagnosis and classification based on the
similarity index.

(38)

3.2 Fault diagnosis process in engineering practice

The proposed GMSI with its application can be
summarized in Fig. 3 where 6 indicates the rotation angle
of the gear pair during meshing process. Clearly, the fault
diagnosis process in engineering practice using the
proposed method is summarized as follows:

(i) According to the theory described in Section 2.1,
building the dynamic model of the gear—shaft—bearing
system (see Eq. (10)) by the mechanical parameters. Then
constructing the system mass matrix M, the system
damping matrix D, the external load vector F, and
calculating the transition matrix (see Eq. (28)) in the
frequency domain.

(i1) Testing the vibration signal x of the gearbox and
obtaining the transfer function matrix H of the gearbox
housing by hammer experiment or FEM model, then
establishing the transfer path equation (see Eq. (11))
according to the theory described in Section 2.2.

(iii) Solving the inverse problem of the transfer path
equation to identify bearing dynamic forces and estimate
displacement responses of the bearing nodes based on
Egs. (18)—(27).

(iv) Estimating all node displacement responses of the
gear—shaft—bearing system by displacement responses of
the bearing nodes and transition matrix. Then calculate
the inverse problem of the dynamic equation to estimate
the system stiffness matrix based on Egs. (30)—(38). The
GMS can be extracted from the estimated system stiffness
matrix.

(v) Combining the identified GMS with the similarity
index to diagnose or classify gear faults.

4 Numerical simulation and results

This section will demonstrate the effectiveness of the
proposed GMSI method through a simulated single-stage
gear—shaft—bearing system fault classification example.
4.1 Housing vibration construction

For a single-stage gear—shaft—bearing system composed
of two spur gears, two shafts, and four bearings, suppose
koo, and ke in Eq. (2) are all zero, and k.. =k, =
1.1837x10* N/m, k..=1x10° N/m. The parameters of
gears and shafts are listed in Table 1.

The GMS is calculated using the loaded tooth contact
analysis method [46,47]. This method is competent in
stiffness calculation under various fault types. We use 20
points to describe the meshing stiffness of the gear pair in
a single-double tooth mesh cycle. Then the sampling

R
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Fig. 3 Flowchart of gear meshing stiffness identification with its application.
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frequency is 5000 Hz when the driving shaft speed is 600
r/min without loss of generality. The torque is 60 N-m,
and clearly, the excitation caused by rotor eccentric is
ignored. The GMS waveforms of healthy and two typical
gear faults (pitting and wear) are given in Fig. 4(a). The
theoretical meshing stiffness spectra of healthy and the
above two typical gear faults are also calculated and
shown in Fig. 4(b). Hereinafter the direct current
component is subtracted from the GMS signal to show
the spectra clearly. Compared with healthy gear, the
magnitudes at meshing frequency (f;,) and its harmonic
components of wear gear reduce obviously. The magni-
tudes at meshing frequency and its harmonic components
of pitting gear increase slightly, accompanying unobvious
sideband frequencies appearing in the spectrum. In the
following, we will demonstrate that some of the above
properties still exist in the identified GMS.

The eight bearing dynamic forces at four bearings (1x,
1z, 2x, 2z, 3x, 3z, 4x, 4z) are calculated based on Eq. (10)

Table 1 Parameters of gears and shafts

Gear Teeth Face Inner Module Shaft
number width/mm diameter/mm length/mm

Gear at driving 25 16 25 25 405

shaft :

Gear at driven 58 16 25 25 405

shaft )

[:
,‘_; 4.0z
=351
Z
2 307
g ' —— Health
S 2.5t calthy
= ' --=- Pitting
2.0 E &~ Wear
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and the above-defined dynamic parameters. Then the
bearing dynamic forces are used to simulate housing
vibration responses by Egs. (12)—(17). Herein the
vibration signals of two ftriaxial accelerometers are
constructed to simulate more difficult underdetermined
conditions in engineering. The spectra of the six housing
vibration signals for healthy gear are given in Fig. 5,
which mainly contain the meshing frequency and its
harmonic components. There are sideband frequencies
modulated by the rotating frequency of the driving shaft
at each meshing frequency. The simulation method and
results are similar for fault gears. Affected by the
structure transfer paths, the magnitudes of the spectra on
different housing locations are very different, although
the frequency components are the same.

4.2 Simulated GMSI

Using the proposed GMSI method to solve the inverse
problem of Eq. (12), we can eliminate the influence of
housing structure transfer paths and identify all the
bearing dynamic forces first. Considering the gearbox
structure in engineering is usually complicated, such
inverse problem is underdetermined in most cases.

Therefore, controlling the error is crucial for the
by x107
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Fig. 4 Simulated gear meshing stiffness (a) waveforms and (b) spectra of healthy and two typical gear faults.
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subsequent GMSI. The identified bearing dynamic forces
compared with theoretical ones for the simulation
example are given in Fig. 6. They are in good agreement,
which shows the inversion error has been effectively
controlled.

Then the identified bearing dynamic forces are used to
further identify the time series of GMS by solving the
inverse problem of Eq. (31). The spectra of the meshing
stiffness can be obtained by performing FT to the
identified time series directly. Furthermore, using the
periodic invariance property of meshing stiffness, the
waveform in a single-double tooth mesh cycle can be
calculated by averaging the segments belonging to
different periods in the identified time series. And the
trend component in the waveform can also be eliminated
in the process.

Bearing dynamic force 1x

Bearing dynamic force 1z

The identified waveforms and spectra of GMS for
healthy, pitting, and wear gear are given in Fig. 7.
Although the absolute magnitudes of the identified
spectra are distorted compared with the theoretical ones,
the relative magnitude and frequency components of
different fault types match well with the theory.
Compared with healthy gear, the magnitudes at wear
gear’s meshing frequency and its harmonic components
reduce, while pitting gear increases slightly. The
spectrum of pitting gear also contains unobvious sideband
frequencies. In addition, from the waveforms, the
meshing stiffness of pitting and wear gear compared with
healthy gear is similar to the simulated ones. The above
properties inspired us to use similarity index in the time
or frequency domain to realize fault diagnosis and
classification instead of relying on the magnitude.
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Fig. 7 Identified gear meshing stiffness: (a) waveforms of healthy, pitting, and wear gear; and (b) spectra of healthy, pitting, and wear

gear.
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4.3 Fault classification based on similarity index

We perform the same process to identify GMS under
another condition (the torque is 50 N-m) and use the
GMS shown in Fig. 7 (the torque is 60 N-m) as the basis
of similarity to classify healthy and different fault gears.
For fault diagnosis methods that rely on the magnitude,
the decrease in load means the decrease in magnitude,
resulting in the wrong diagnosis conclusion. However,
using the proposed GMSI method with some simple
similarity indexes, such as 2-norm and energy ratio, can
avoid the above limitation. Considering the properties of
waveform and spectrum for different gear fault types
mentioned above, 2-norm (defined as S;) is used to
classify healthy and pitting gears, while energy ratio
(defined as S.) is used to classify healthy and wear gears:

§2= [, — .

‘2’
S. = Z e, 1i = K, /Z e )i~ K ),

where k,, and k,, denote the 1dent1ﬁed meshing stiffness
spectrum and basis spectrum, k,, and k,, represent the
normalization of k,, and k,,, [k, |, and [k, ]|, denote the
ith element of the g-dimensional vectors k, and k,,,
respectively, and k., and k,, indicate their mean value or
direct current component, respectively. Note that the
definition of similarity index is not unique, and one can
define a more powerful similarity index to obtain more
robust fault classification results in practice.

The similarity index results of the simulation example
are listed in Table 2. Compared with the basis healthy
GMS, S, of the identified healthy GMS is the smallest,
while compared with the basis pitting GMS, S, of the
identified pitting GMS is the smallest. The above
phenomenon proves that the proposed GMSI method with
a 2-norm similarity index can correctly classify gear
pitting fault. Furthermore, S, of the identified GMS for
wear gear is about 70% of that for healthy gear, proving
that the proposed GMSI method with an energy ratio
similarity index can correctly classify gear wear fault.

(39

(40)

5 Experimental verification

5.1 Experiment settings

This section will verify the potential of using the

Table 2 Similarity index results of the simulation example under 600
r/min

Case of combination S, for pitting S, for wear

Identified healthy GMS & basis healthy GMS 0.3551 0.7748
Identified healthy GMS & basis fault GMS 0.6832 1.0605
Identified fault GMS & basis healthy GMS 0.6542 0.5202
Identified fault GMS & basis fault GMS 0.3382 0.7121

proposed GMSI method to diagnose real gear faults. The
experiments are conducted in a single-stage gearbox test
rig, as shown in Fig. 8. The pitting and wear fault gears
are manufactured to simulate the working state of the test
rig for different gear faults, which is achieved by
replacing the healthy gear pairs with the manufactured
fault gear pairs. The manufactured fault gears are shown
on the bottom of Fig. 8. Note that the manufactured single
tooth wear gear has similar fault characteristics to pitting
gear, which is different from all teeth wear gear in the
simulation. The gear parameters are given in Table 3.

Let the test rig operate for a period of time under four
operating conditions (including two speeds, 1800 and
2400 r/min, and two loads, 3 and 9 N-m) and three states
(healthy, gear pitting, gear wear), respectively. We use
nine triaxial accelerometers to test twelve groups of
vibration signals with their serial numbers and locations
marked (e.g., 1#) in Fig. 8. The sampling frequency is set
as 8000 Hz. Without loss of generality, we uniformly use
signal segment of 10 s for analysis in the following.

Obviously, the vibration signals measured by
accelerometers 1# to S5# contain more complicated
structure transfer paths compared with that of 6# to 9#.
Therefore, the FRFs from different bearing dynamic
forces to locations 1 to 5 are approximately tested by
hammer experiment. We hammer four bearing supports in
different directions (x, y, z) and test the hammer force and
vibration signals simultaneously. Then the complex FRFs
of the gearbox housing are obtained by calculating the
ratio of these two types of signals in the frequency
domain. Taking the FRFs from bearing dynamic force 1x
to measuring points 1#-5# as an example, Fig. 9 shows
the real and imaginary FRFs test results.

Figure 10 shows the spectra of the measured radial
vibration signals at measuring point 1# for 1800 r/min
and 9 N'm condition. Clearly, the full-band signals in the
x and y directions and the local band signals marked with
fault characteristic frequencies (f, denotes the meshing
frequency, f;; denotes the driving shaft rotating frequency,
and f;, denotes the driven shaft rotating frequency) are
given simultaneously. From the x- and y-direction
vibration signals, the spectra contain many interference
frequencies that do not belong to the fault characteristic
frequencies. And the signal characteristics of different
faults are very similar. We also extract the magnitudes at
fault characteristic frequencies in Fig. 10. The results
show that not all the fault characteristic frequencies can
indicate pitting fault, and the fault characteristics of wear
fault are almost the same as the healthy state. Therefore,
it is tough to diagnose and classify pitting and wear faults
only based on the vibration signals.

5.2 Experimental GMSI

Using the vibration signals of measuring points 1#, 2#,



Xiaoluo YU et al. Fault diagnosis using gear meshing stiffness identified by housing signals 11

.

A\ A

\
\\\, B

=—

Fig. 8 Gearbox test rig and different fault gears.

Table 3 Gear parameters of the single-stage gearbox test rig

G Tooth ~ Meshing frequency Rotating frequency
ear
number order order
Gear on the driving
shaft 21 21 1
Gear on the driven 82 21 0.2561
shaft )

and 3#, the bearing dynamic forces are identified first, as
shown in Fig. 11. The meshing frequency with its
harmonic component are clearly observed in each bearing
dynamic force spectrum, indicating the inversion error
has been effectively controlled.

To ensure the identified bearing dynamic forces can be
further used to identify the time series of GMS, we need
to build the dynamic model of the gear—shaft—bearing
system in the gearbox of the test rig. The modeling

approach is illustrated by Fig. 12, where the system mass
matrix and damping matrix are easily calculated using the
drawings and material properties. The bearing stiffness is
estimated by the tested FRFs. Finally, the meshing
stiffness matrix containing the GMS information can be
identified. Similar to the simulation, the spectra of the
meshing stiffness can be obtained by directly performing
FT to the identified time series. At the same time, the
waveform in a single-double tooth mesh cycle can be
calculated by averaging the segments belonging to
different periods.

Figure 13 shows the identified waveforms and spectra
of GMS for healthy, pitting, and wear gear. Limited by
non-periodic sampling and noise, the waveforms
(Fig. 13(a)) have been distorted, although the relative
magnitude still matches with the simulation. The pitting
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Fig. 10 Spectra of the measured vibration signals for different fault types.

and wear faults in the experiment are all single-tooth shown in Fig. 13(b). Different from simulation, the
faults, similar to the simulated pitting gear fault. experimental identification results are interfered by
Therefore, the spectra contain sideband frequencies, as background noise. Thus, only the sideband frequencies
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Dynamic modeling of the gear—shaft—bearing system of the test rig.

eliminated in the GMS spectra. Clearly, the magnitudes at
fault characteristic frequencies are extracted in the
following, as shown in Fig. 13(c). Compared with the
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original housing vibration signal, the magnitudes at fault
characteristic frequencies in the identified GMS spectra
can better indicate the fault. Actually, after transferring
through complicated structure paths and being polluted
by measurement noise, some weak fault features in the
gear meshing vibration have already been very difficult to
be distinguished in the housing vibration signal. The
GMS identified by the proposed approach reflects the
original vibration of the gear pair, and thus more sensitive
to gear fault. Considering the properties reflected by
Fig. 13, the identified GMS spectra are used to achieve
fault diagnosis.

As a comparison, herein, we use a traditional method to
diagnose gear fault. Specifically, the intrinsic mode
function (IMF) corresponding to gear fault characteristic
frequencies is decomposed using variational mode
decomposition (VMD) [11], which is achieved by

,
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Fig. 13

defining the central frequency of the IMF as gear
meshing frequency. Figure 14(a) shows the waveform
and time-frequency distribution of the decomposed IMF,
taking the Y-direction signal of measuring point 1# as an
example. The normalized root mean square (RMS),
defined as the ratio of root mean square to the healthy
state, is calculated for the decomposed IMFs of the
measuring points 1#-5# (Y direction) and compared with
that of the identified GMS, as shown in Fig. 14(b). The
results show that only part of the measuring points can
diagnose pitting fault, and almost all the measuring points
are incapable of diagnosing wear fault. In contrast, the
identified GMS can simultaneously diagnose pitting and
wear fault, which is superior to the original vibration
signals. The above results also demonstrate that the
proposed GMSI approach is effective and has advantages
compared to the traditional VMD fault diagnosis method.

(b) Gear mesh stiffness spectrum
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5.3 Influence of measuring location
Based on the proposed GMSI approach, the GMS spectra
are identified using the vibration signals of measuring
points 2#-4# and 3#-5#, respectively. The magnitudes at
fault characteristic frequencies are also extracted and
given in Fig. 15. Overall, the phenomenon reflected by
Fig. 15 is the same as Fig. 13. The influence of measuring
location on the identified GMS spectra is reflected by the
magnitude of noise relative to the fault characteristic
frequencies. The smaller the magnitude of noise relative
to the fault characteristic frequencies is, the more
sideband frequencies appear and clear. From the
perspective of fault diagnosis, the properties of the
identified GMS spectra using housing vibration signals at
different measuring points are consistent.

To give a more in-depth explanation of the phenome-
non, we simply decompose the proposed GMSI approach
into a two-step inverse problem shown as:

{km - f(M,D,F,F,),
Fy— f(x4,H,).

Considering the mass matrix M, the damping matrix D,
and the external excitation F are independent of the
measuring location, the identified GMS depends on the
accuracy of identifying bearing dynamic forces using
different vibration signals. For two different sets of
measuring points, the vibration transfer equation can be
expressed as:

(41)

{ Xqp = Hyy Fy, (42)

X = Ha)Fo,

where x4, and x,; denote the ith and jth set of housing
vibration signals, respectively, and H,, and H,; denote
the corresponding transfer function matrix, respectively.
We can derive the relationship between the vibration
signals of different measuring points from Eq. (42) as

below:
Xay = Ha Hy X (43)

where the superscript | denotes Moore—Penrose pseudo-
inverse. Equation (43) demonstrates that using different
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Fig. 15
using (a) measuring points 2#—4# and (b) measuring points 3#-5#.

vibration signals to identify meshing stiffness is
intrinsically associated with the inversion error of Hj,.
The inversion error is further reflected as the magnitude
of noise relative to the fault characteristic frequencies in
the identification results. Therefore, the gear fault can be
diagnosed using vibration signals measured on any
locations by controlling the inversion error with the
proposed method.

5.4 Generalization ability under different speed

As stated in the numerical simulation, using the identified
GMS spectra with some simple similarity index can
potentially achieve fault classification further. In this
subsection and next subsection, we want to discuss the
generalization ability of the fault classification based on
similarity index under different speeds and loads,
respectively. Considering the pitting and wear faults in
the experiment and the pitting fault in the simulation
belong to single-tooth faults with different severity,
hereinafter the similarity index S, (defined in Eq. (39)) is
used to classify healthy, pitting, and wear.

Figure 16 shows the fault characteristic frequency
magnitudes extracted from the identified GMS spectra of
different gear faults under another speed (2400 r/min).
The reflective phenomenon is still the same as Figs. 13
and 15. The amplitude at each fault characteristic
frequency together indicates the gear pair has a single-
tooth fault, which is better than the original housing
vibration signal.

Then we use S, to classify the two single-tooth faults.
As a comparison, we calculate S, of the original housing
vibration signal under 2400 r/min first. The housing
vibration signal spectrum under 1800 r/min and 9 N'm
conditions is used as the basis. Considering the meshing
frequency is different at different speeds, we perform
order tracking to the vibration signals. At the same time,
considering the housing vibration signals contain many
interference frequencies unrelated to the fault, only
[18, 24] range of order band is used to analyze in the
following. Same as before, the smaller the similarity
index is, the closer it is to the basis. Fairly, we also
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perform order tracking to the identified GMS and use
[18, 24] range of order band to calculate the similarity
index. The GMS identified under 1800 r/min and 9 N'-m
conditions is used as the basis. The results are listed in
Table 4. It can be seen from Table4 that under
2400 r/min, using the original housing vibration signal
can only distinguish pitting fault, while using the identi-
fied GMS can correctly classify pitting and wear faults.

5.5 Generalization ability under different load

Figure 17 shows the fault characteristic frequency
magnitudes extracted from the identified GMS spectra of
gear pitting fault and healthy states under another load
(3 N'm). The amplitude at each fault characteristic frequ-
ency can still indicates the gear pair has a single-tooth
fault.

Then we use S, to classify healthy gear and pitting fault
gear. Similarly, we calculate S, of the original housing
vibration signal under 3 N-m as a comparison. The
housing vibration signal spectrum and the identified GMS
under 1800 r/min and 9 N'm conditions are still used as
the basis. We also perform order tracking to them and use
[18, 24] range of order band to calculate the similarity
index. The results are listed in Table 5. It can be seen
from Table 5 that under 3 N-m, using the original housing
vibration signal cannot distinguish healthy gear and
pitting gear, while using the identified GMS can correctly
classify them.

The above analysis shows the potential of the proposed
GMSI approach to generalize to other speeds and loads.
This property is beneficial for fault diagnosis and
classification of complicated equipment due to the
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Fig. 16 Identified gear meshing stiffness in the experiment:
fault characteristic frequency magnitude of healthy, wear, and
pitting gear under another speed.

identified GMS has clear physical meaning. The results
also demonstrate that the identified GMS is superior to
the original housing vibration signal in fault diagnosis
and classification.

5.6 Relationship between spectrum noise and fault severity

In this subsection, we want to discuss another interesting
phenomenon found in the identified GMS spectrum: the
spectrum noise level corresponds to the fault severity.

The spectrum noise level (defined as the root mean
square value of the magnitude of the displayed frequency
band) of all the identified GMS spectra used in the above
experimental analysis are calculated for healthy and
different faults states. Note that the pitting and wear gears
used in the experiment have single-tooth faults, and the
fault severity of pitting gear is more serious. Figure 18
demonstrates that the spectrum noise level matches the
fault severity exactly for every condition. This property
makes the identified GMS spectrum noise level have the
potential to be further used to describe the machine
degradation process.

We try to explain this phenomenon from the
perspective of fault impact. Considering introducing a
noise disturbed fault pulse J(¢) with amplitude 4 in the
GMS time series k(f), then 4 = 0 for healthy gear pair.
Then GMS spectra of healthy gear and different fault
gears can be calculated as below:

k. () = fk(z) edr = A,

k(@)= [k@e™d+ [Adne™di=A+A,, (44)

k(@)= [k@e™dr+ [Ag@ned=A+A,

where k, (w), k, (w), and k,(w) denote GMS spectrum of
healthy gear, wear gear, and pitting gear, respectively,
and Ay, A,, and A, denote healthy spectrum amplitude
and additional amplitude caused by wear and pitting
faults. In this paper, the pitting fault is more serious,
namely, A, > A,. Obviously, we can get A, +A, > A+
A, > A, and thus verify that the above phenomenon is
intuitive.

Table 4 Similarity index results under different speed using the housing vibration signals or the identified GMS under 1800 r/min and 9 N'm

conditions as the basis

Conditions of vibration

A\

signals or GMS Healthy housing vibration  Pitting housing vibration =~ Wear housing vibration Healthy GMS Pitting GMS Wear GMS
signal basis signal basis signal basis basis basis basis
Healthy (2400 r/min) 2.8552 2.9223 2.9556 6.0981 3.9826 5.9761
Pitting (2400 r/min) 2.3120 1.4709 2.5707 6.6985 3.8285 6.0991
Wear (2400 1/min) 2.3688 2.0241 2.8034 6.4100 5.9921 5.7597
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Fig. 17 Identified gear meshing stiffness in the experiment:
fault characteristic frequency magnitude of healthy and pitting
gear under another load.

Table 5 Similarity index results under different load using the
housing vibration signals or the identified GMS under 1800 r/min and 9
N-m conditions as the basis

S

Conditions of

vibration signals E:s;;gy Pitting housing  Healthy Pitting
or GMS vibratiogn vibration signal ~ GMS GMS
signal basis basis basis basis
Healthy (7= 3 N'm) 2.5424 2.4864 6.3155 4.0944
Pitting (7= 3 N'm) 2.3711 1.9553 6.4963  3.9728

Spectrum noise level under different conditions

B Healthy '

20 [ Wear 4
2 [ Pitting
[
g 15f 1
£10t ]
<
205t ]

0

Condl Cond2 Cond3 Cond4 Cond5

Fig. 18 Spectrum noise level of the identified gear meshing
stiffness indicates gear fault severity. Condl: measuring points
1#-3#, 1800 r/min, and 9 N-m; Cond2: measuring points 2#-4#,
1800 r/min, and 9 N'm; Cond3: measuring points 3#-5#,
1800 r/min, and 9 N'm; Cond4: measuring points 1#-3#,
2400 r/min, and 9 N'm; Cond5: measuring points 1#-3#,
1800 r/min, and 3 N'm.

5.7 Discussion

Finally, we want to discuss some noteworthy points of the
proposed GMSI approach.

The traditional fault diagnosis methods are mainly
amplitude-based diagnosis, thus highly related to the
load. GMSI provides a novel technical route for fault
diagnosis, 1i.e., shape-based diagnosis. Shape-based
diagnosis has many potential advantages over amplitude-
based diagnosis, such as being robust to operating
conditions (speed and load) variation, easily achieving
fault classification.

Additionally, the identification of GMS
significant on the following aspects:

(i) First, the GMS can be considered to reflect the state

is also

of the gear pair at the source since possible structural
transfer effects are eliminated. This is not only beneficial
for fault diagnosis of the gearbox with complicated
structure but also avoids selecting sensors’ location. One
can install sensors at the locations that are convenient for
measurement instead of close to bearing support because
the GMS can be identified by housing vibration signals
measured at any location.

(i1) Second, the GMS identified by the GMSI approach
is highly similar to that modeled in the classical dynamics
theory, which means that the dynamic model can
effectively describe the real mechanical system. The fault
simulation based on the dynamic model is expected to
save huge manpower and material resources.

(ii1) Finally, our experimental results also demonstrate
that the spectrum noise level of the identified GMS can
indicate gear fault severity, which is expected to further
enable quantitative diagnosis.

All of the experimental results in Section 5 demonstrate
the above statements. Note that the identified GMS can
be regarded as another type of vibration signal. Thus, the
research fields associated with the vibration signal are
also beneficial to meshing stiffness, e.g., denoising
algorithm, similarity index. To our best knowledge, the
research on sparse measures in the field of classical fault
diagnosis has been very mature, which plays an important
role in improving the effect of fault diagnosis. Similarly,
we believe that research on similarity indexes can also
improve the effect of fault diagnosis using GMS.

6 Conclusions

This paper establishes an analytical mathematical
description of the whole transfer process from gear
meshing excitation to housing vibration. Then, we
propose GMSI approach using housing vibration signals
based on the mathematical description. Numerical
simulation and experimental results demonstrate the
proposed approach can realize gear fault diagnosis better
than the original housing vibration signal. With the
identified GMS and simple similarity indexes, the
proposed approach also has the potential to generalize to
other speeds and loads. Some interesting properties are
discovered in the identified GMS spectra. For example,
the frequency components not belonging to the meshing
frequency and sideband frequencies are eliminated, and
the spectrum noise level matches with the fault severity
exactly. Since the frequency components of the identified
GMS are very similar to theoretical modeling, the
research results also validate the rationality of using time-
varying stiffness to describe the actual gear meshing
process. Finally, the identified GMS has a clear physical
meaning, which is beneficial for fault diagnosis and
classification of complicated equipment.



Front. Mech. Eng. 2022, 17(4): 57

18

Nomenclature

Abbreviations

DOF Degree of freedom

FEM Finite element method

FT Fourier Transform

FRF Frequency response function

GMS Gear meshing stiffness

GMSI Gear meshing stiffness identification

IMF Intrinsic mode function

IFT Inverse Fourier Transform

Variables

D System damping matrix

Jisros fia Real and imaginary parts of the x component of bearing
dynamic force at bearing i, respectively

fu Meshing frequency

fa Intermediate variable of the decoupled bearing dynamic
force excitation spectra vector

F External excitation

F,, External load

F, Bearing dynamic force excitation spectra vector

Fy Bearing force

F, Decoupled bearing dynamic force excitation spectra vector

F, Load caused by no-load transfer error of the gear pair

H,jw-Hia;q  Frequency response functions

H Transfer function matrix

H, Decoupled transfer function matrix

H; Transition matrix

I, 5L Transverse moments of inertia of gears 1 and 2, respectively

Ji, J Polar moments of inertia of gears 1 and 2, respectively

kiy Meshing stiffness of the gear pair

ki Meshing stiffness of gear pair i

ke, ks ks Bearing stiffnesses of translational DOF in x-, y-, and z-
direction, respectively

ko.0.5 koo, Bearing stiffnesses of rotational DOF in x and y directions,
respectively

k, Bearing flexibility vector

kg Bearing stiffness vector

k. Temporary variable containing meshing stiffness of all gear
pairs

K System stiffness matrix

K, Meshing stiffness matrix of the gear pair

K; Unit stiffness matrix of the system

K, Estimated whole meshing stiffness matrix

K., Meshing stiffness matrix of gear pair i

Tots Too
S>
Se
I, T,

X1, X2

Xy

XjR> Xja1

215 22

0.1, 0.

0,1, 6,

Number of bearing dynamic force excitation channels

Mass of gear

Masses of gears 1 and 2, respectively

System mass matrix

Mass matrix of a lumped mass model

Mass matrix of the gear pair

Number of response channels

Node number

Radii of base circle

2-norm similarity index

Energy ratio similarity index

Torques applied on the input shaft and output shaft,
respectively

Nodes displacement vector

DOF of the beam model

Vibration response of all nodes in the frequency domain
Element of the weighted matrix

Weighted matrix

Translational DOF of beam in x direction

Translational DOFs of gears 1 and 2 in x direction,
respectively

Translational DOF of bearing in x direction

Real and imaginary parts of the x component of housing
vibration response at location j, respectively

Response channel spectra vector

Vibration response of all bearing nodes

Displacement vector of bearing

Decoupled response channel spectra vector

Generalized coordinate of the gear pair

Translational DOF of beam in y direction

Translational DOFs of gears 1 and 2 in y direction,
respectively

Translational DOF of bearing in y direction

Translational DOF of beam in z direction

Translational DOFs of gears 1 and 2 in z direction,
respectively

Translational DOF of bearing in z direction

Weighted factor

Projection vector of the gear pair

Angle between the positive y axis and the meshing surface
Projection matrix of all gear nodes

Numerical error

Angular frequency

Rotational DOFs of beam in x, y, and z directions,

respectively
Rotational DOFs of gears 1 and 2 in x direction, respectively

Rotational DOFs of gears 1 and 2 in y direction, respectively
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6.,6., Rotational DOFs of gears 1 and 2 in z direction

6w, Oy, O Rotational DOFs of bearing in x, y, and z directions,
respectively

0, Projection matrix
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