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Abstract The term environmental innovation system
refers to an innovation network composed of enterprises,
universities, and research institutions involved in the
development and diffusion of environmental technology,
with the participation of a government. An environmental
innovation system not only exerts important impact on the
achievement of carbon neutrality but also affects social
and economic activities. Investigations on environmental
innovation system performance constantly assume a single-
stage independent system while ignoring its internal struc-
ture. However, such systems are composed of environmen-
tal innovation research and development (R&D) and envi-
ronmental innovation conversion subsystems. A two-stage
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data envelopment analysis (DEA) model is developed in
this study to analyze the efficiency of Chinese regional
environmental innovation system by opening the “black
box™ and considering shared resources. Empirical results
indicated that China presents high overall environmental
innovation efficiency although some regions need to
improve. Regions with low efficiencies in both environ-
mental innovation R&D (EIR) and environmental innova-
tion conversion (EIC) subsystems should expand their
investment in and strengthen the management of environ-
mental innovation resources. Regions with low EIR effi-
ciency should improve the absorption and transformation
of environmental innovation achievements. Regions with
low EIC efficiency should increase investment in the
commercialization of environmental innovation achieve-
ments and encourage green economy industries, such as
new energy, art, tourism, and environmental protection.

Keywords data envelopment analysis, environmental
efficiency, environmental innovation system, shared
resources, two-stage structure

1 Introduction

Problems of carbon emission and energy shortage have
attracted considerable research attention in recent years
(Zhou et al., 2010, Satterthwaite, 2011; Zhu et al., 2020).
Carbon emission caused by economic activities has
become a serious barrier to sustainable development
(Yang et al., 2015). China has pledged to achieve the
peak of its CO, emissions by 2030 and carbon neutrality
by 2060 (Chen et al., 2021). Such ambitious goals lead to
requirements for sustainable development. Energy short-
age caused by an imbalance between limited supplies and
increasing energy consumption has also become a serious
challenge in sustainable development (Zhao et al., 2019).
Environmental regulation and innovation are two
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important concepts in the field of sustainable development
that have been extensively investigated by many scholars
and policymakers to alleviate problems of carbon emission
and energy shortage (Meyer, 1995; Bressers and Rosen-
baum, 2000; Chen, 2008). Yew and Zhu et al. (2019)
indicate that innovative practices beyond the government
provision addressing environmental problems are usually
adopted by social sectors in addition to environmental
regulation implemented by official authorities. Therefore,
environmental innovation can be viewed as a proactive
measure to address current regulatory inadequacies and
eliminate energy shortage and environmental issues (Yew
and Zhu, 2019). Impacts of environmental innovation
addressing environmental issues have been empirically
investigated. For example, Brunnermeier and Cohen
(2003) propose that pressures of both pollution abatement
and international competitiveness of an industry positively
activate environmental innovation. Hemmelskamp et al.
(2000) indicate that innovation-oriented policies are more
effective than the diffusion of environmental innovation.
On the basis of a study on South Korean-owned firms
in China, Long et al. (2017) reveal that environmental
innovation positively impacts both economic and envi-
ronmental performance.

Studies on the impact of environmental innovation on
energy and environmental performance typically use
three main perspectives: Pollution reduction, industrial
environment performance, and regional sustainable
development. First, environmental innovation is an effi-
cient way to curb pollution emissions. For instance, the
empirical study of Zhang et al. (2017) indicates that envi-
ronmental innovation measures effectively promote the
reduction of carbon emissions in China. Mensah et al.
(2018) apply three models to analyze the impact of inno-
vation on carbon emissions in Organization for Economic
Cooperation and Development (OECD) countries. The
finding of the authors reveals that innovation is necessary
to reduce carbon emissions. Sterner and Turnheim (2009)
investigate the effect of technical change on abatement in
Sweden and demonstrate that both innovation and tech-
nology dispersion play an important role in emission
reduction.

Second, empirical evidence indicated that environmental
innovation may improve the environmental performance
of industries. For example, Brunnermeier and Cohen
(2003) analyze the determinants of environmental inno-
vation in American manufacturing industries and show
that environmental innovation will likely occur in indus-
tries with high levels of international competition. Lin
et al. (2013) investigate the relationship among market
demand, green product innovation, and firm performance
in the Vietnamese motorcycle industry. The evidence in
this study indicates that green product innovation exerts a
positive impact on firm performance. Fraj et al. (2015)
examine environmental strategies and competitiveness
in the hotel industry and indicate that innovativeness

directly impacts organizational competitiveness.

Third, environmental innovation is the key driver for
sustainable development at the regional level. On the
basis of these observations, some studies investigate the
inner mechanism between environmental innovation and
performance. For example, Costantini et al. (2013) exam-
ine the links between environmental performance and
innovation in 20 Italian regions and empirically demon-
strate that innovation plays a major role in influencing
environmental performance. Ghisetti and Quatraro (2017)
investigate how environmental innovation affects envi-
ronmental performance in Italian regions and show that
environmental innovation positively affects environmental
performance in regions and sectors. Zhang et al. (2018)
analyze whether technological innovation can promote
green development in 105 cities in China and reveal that
technology innovation exerts a positive effect on eco-
efficiency, in which the effect is greater in eastern cities
than that in central and western cities.

Shephard (1971) first introduces the concept of envi-
ronmental efficiency. Indexes for measuring environ-
mental efficiency can be divided into two categories:
Nonparametric and parametric methods (Reinhard et al.,
2000). The data envelopment analysis (DEA) method
proposed by Charnes et al. (1978) is a nonparametric
method for evaluating the relative efficiency of a set of
decision-making units (DMUs) (Zhu et al., 2022). For
example, Zhou et al. (2008) consider different environ-
mental technologies and discuss DEA techniques for
evaluating the performance of carbon emission in eight
world regions. Kortelainen (2008) proposes a Malmquist
index approach for measuring the dynamic environmental
performance of 20 European Union member states. Wang
et al. (2013) measure the regional energy and environ-
mental efficiency of three areas in China.

Song et al. (2014) extend the DEA to a two-stage
model considering undesirable outputs to measure envi-
ronmental performance. Chen and Jia (2017) develop a
set of DEA models to evaluate the performance of a two-
stage network process with shared inputs. The compre-
hensive evaluation of environmental efficiency originated
from a study on carbon dioxide emissions treated as
undesirable outputs (Song et al., 2012). DEA uses four
perspectives to evaluate environmental factors properly
and model undesirable outputs (Halkos and Petrou, 2019).
First, the traditional measure simply ignores undesirable
production output (He et al., 2013). However, disregarding
undesirable outputs may lead to misleading results
(Chung et al., 1997). For example, Pathomsiri et al. (2008)
investigate the productivity of airports, compare the
results with those obtained by models without undesirable
outputs, and demonstrate that both desirable and undesir-
able outputs should be included in the evaluation. Second,
some studies regard undesirable outputs as inputs in
production (Chen and Jia, 2017). For example, Hailu and
Veeman (2001) incorporate undesirable outputs into their
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models to provide a comprehensive representation of the
production technology. Third, one can assume that unde-
sirable outputs are weakly disposable whereas desirable
outputs are strongly disposable. For example, Fare et al.
(1996) develop an environmental performance indicator
decomposed into pollution and input—output indexes on
the basis of the DEA method under the assumption that
undesirable outputs are weakly disposable (Yang and
Pollitt, 2009). Fourth, transformation can be applied to
undesirable outputs (Halkos and Petrou, 2019) (e.g.,
subtracting the amount from the maximum value) to eval-
uate efficiency on the basis of transformed data (Song
et al., 2012). For example, Amado et al. (2012) combine
DEA and the transformation method for enhanced perfor-
mance assessment (Halkos and Petrou, 2019).

Previous studies seldom investigate the impact of envi-
ronmental innovation on environmental efficiency while
considering the inner structure of the innovation system.
According to Gopalakrishnan and Damanpour (1997), we
can recognize the inner structure of an innovation system
as a composition of multiple stages. Guan and Chen
(2010) and Wang et al. (2016) divide the progress of
innovation into research and development (R&D) and
innovation marketing stages, but both studies are based
on the standard two-stage model and ignore shared inputs.
Some input resources are proportionally shared by two
stages in many practical cases (Chen et al., 2010). For
example, Wu et al. (2017) propose that two nonenergy
factors, namely, industrial labor force and capital, can be
used in both energy utilization and pollution treatment
stages in the system modeling Chinese industry.

We investigate the impact of environmental innovation
on environmental performance by constructing an envi-
ronmental innovation system with two substages of envi-
ronmental innovation R&D (EIR) and environmental
innovation conversion (EIC) in this study. Compared
with the traditional DEA model, the linear programming
model adopted in this study considers the impact of
different stages of environmental innovation and the allo-
cation of R&D resources in different stages on the overall
efficiency. We first investigate overall efficiencies of the
environmental innovation system to evaluate the efficien-
cies of Chinese provincial-level regions. We then further
obtain the efficiency of the two stages in a practical real-
world linkage. We treat environmental investment as a
shared input used in both EIR and EIC stages in this link-
age. Moreover, some outputs from EIR are viewed as
inputs of EIC. We evaluate environmental innovation
systems of Chinese provincial-level regions to obtain
helpful insights and practical advice for decision makers.
The ecological efficiency of environmental innovation
systems is evaluated in this study using DEA. It expands
the theoretical connotation of ecological efficiency. The
proposed two-stage system of environmental innovation
in this study can thoroughly analyze the role of innovation
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in energy conservation and carbon dioxide emission
control.

The rest of this paper is organized as follows. Our two-
stage model for measuring efficiencies of the environ-
mental innovation system in a linkage setting is introduced
in Section 2. The empirical results of the model for evalu-
ating environmental innovation systems in China from
2015 to 2019 are discussed in Section 3. Policy recom-
mendations and conclusions for Chinese provincial-level
regions to improve their environmental innovation
system efficiencies are presented in Section 4.

2 Proposed model

A two-stage network DEA model that considers shared
inputs and undesirable environment outputs is proposed
in this section to investigate the efficiency of the environ-
mental innovation system. The economic implication of
the following linear programming models determines
whether minimal R&D resources can be invested to
achieve the current output level of environmental innova-
tion under the existing technology level, policy, and
industrial structure. R&D resources are generally consid-
ered underutilized. Meanwhile, environmental innovation
efficiency is considered effective. Suppose that n DMUs
exist, and each DMU; (j=1, ..., n) consists of two
stages (EIR and EIC stages) in the environmental inno-
vation system. Figure 1 shows the two-stage network
process of the environmental innovation system.

Expenditure on R&D Environmental innovation
—_ —
> R&D New products

R&D full-time equivalent Green patent applications

A,

Environmental innovation GDP .
B conversion
Electricity
Labor

l Carbon emissions

Fig. 1 The two-stage environmental innovation system with
shared inputs.

Both stages of EIR and EIC consume general and
shared inputs. General inputs are used in only one stage
(EIR or EIC), but shared inputs are used by both stages.
Let parameter @, (0 <a; < 1) denote the proportion of
shared inputs to be used in the EIR stage. Specifically,
EIR uses inputs X/, and @;K,,; to generate outputs Y/, and
intermediate outputs Z;. EIC uses inputs X7, (1-a,)K,;
and intermediate outputs Z; to generate desirable Y7, and
undesirable F; outputs.
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On the basis of the traditional CCR (Charnes—
Cooper—Rhodes) model (Charnes et al., 1978), we can
measure the efficiency of a focal DMU (DMU,) in EIR
as follows:

Tyl T
. J7i Yj0+(5 Z,
Jo T Tyl T
©VIXE +aT (@), K),)

W, v, 1, 6 20), (1)

where e} is the ratio of the weighted sum of outputs to
the weighted sum of inputs in EIR, and y, v, 7, d represent
the weights of relevant inputs and outputs respectively.
The efficiency of EIC can be measured as follows:
oY, -£'F,

e = w, T, p, 0, E=0).
fo pTXJZ.0+7rT(1 -a,;)K,+06'Z, ( P, 0,620)
2

The negative sign of the second term in the numerator
of model (2) is due to the vector ¢ that represents the
weights of undesirable outputs, which is a small positive
number (Korhonen and Luptacik, 2004; Amirteimoori,
2013; Wu et al., 2016a). @ and p represent the weights of
relevant outputs and inputs respectively.

We define the overall efficiency of DMU, as the
combination of the two stages in a weighted sum of effi-
ciency scores:

E. = /lle]l.o +/lze§0, 3)

Jo

where 4, and A, reflect the relative importance of EIR and
EIC stages, respectively. On the basis of previous studies
(Chen et al., 2010; Amirteimoori, 2013; Lei et al., 2015;
Wu et al., 2016a), we assume that A, and A, are externally
determined and satisfy the condition A,+4, =1. The
overall efficiency of the whole process can then be calcu-
lated as follows:

Max E;

— 1 2
W= /llejO +/lzejO

subject to e
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where L; and U, are the lower and upper proportion
bounds of a shared resource, respectively (Wu et al.,
2016a). Similar to previous studies (e.g., Amirteimoori,
2013; Wu et al., 2016a), we define the following:

VTX]].U +1" (e, K;,)

A = :
VX + 0K, "X 4072,
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where v'X} +7'K; +p'X2 +6'Z;, is the total amount of
input resources used in the whole system of DMU,.
Hence, the following formula is obtained: E; =
Y +0'Z, +0"Y: - £'F),
VIX! + 77K, +p"X2 +0'Z;,

The efficiency of the entire system can be modeled as
follows:

1 2 _
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T
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Although model (6) is a nonlinear program, we can
transform it into a standard linear program by following
the technique of Charnes and Cooper (1962). The trans-
formation is shown in the following steps.

Step 1: Charnes—Cooper transformation

1

+p"X2 +0'Z;

Jo

Letr= and @' =tu, ' = tw,

TY! T
VX +7 K,

v =tv, ' =tn, p=tp, & =15, & =t£. Program (6) can
be transformed into the following:

Max E, = 'Y} + &Y +5"Z, —&"F,
subjectto  p"Y; +8"Z; - (V/TX; +" (ajKj)) <0,
WY —E"F, - (p" X+ 1" (1- ) K, +67Z,) <0,
VIX, +7K, +p X +67Z, =1,

W, oV, 0, d, & >0. @)

Step 2: Variable alteration
Program (7) is still a nonlinear program because of the
presence of n"(a,;K;) and #n"(1-e;)K; in some
constraints. Let y;K; =n""(@;K;). Then we can convert
7

program (7) into program (8). Hence, «;=
71-/

J
(j=1, ..., n), given that y, = a;7".
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Efficiency decomposition

We further investigate the efficiency decomposition of
the whole system to examine the inefficiency and potential
of each of the two stages (Lei et al., 2015). Kao and
Hwang (2008), Liang et al. (2008) and Chen et al. (2009)
explore the details of related issues of efficiency decom-
position in a two-stage network DEA. Chen et al. (2009)
propose that the overall efficiency of the whole system
should be a weighted sum of individual stages rather than
a simple combination of efficiencies. Independently eval-
uating the two stages can identify the sources of ineffi-
ciency in the entire system (Kao and Hwang, 2008). Lei
et al. (2015) extend efficiency decomposition to a parallel
system in a two-stage network DEA method to measure
the performance of nations in the Summer Olympic
Games. A barrier of decomposition efficiency in a two-
stage system appears because the individual stage’s effi-
ciency may not be unique given that model (8) may
present multiple solutions. We can measure the optimal
efficiency of one stage while maintaining the overall effi-
ciency to solve this problem (Wu et al., 2016a).

If the overall system is efficient, then each stage must
also be efficient. If the overall system is inefficient, then
we can decompose the efficiency of the whole system
into efficiencies for each stage (Lei et al.,, 2015). E},
denotes the overall efficiency of DM U,. EIR’s maximum
efficiency e}, can be measured while maintaining the
overall efficiency E; as follows:

@Y +3'z,
VIX, +7" (@), K),)
u'Y} +6'Z,

subject to — <1,
/ X+ (@,K)

o'V - £F,
. <
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Hs @, v, T, p, 6, &20. )
Model (9) can be converted into the following program
on the basis of the Charnes—Cooper transformation:

Max ej, = u"Y, +6"Z,

Jo

subject to wY+ VAR VX, —yiK; <0,

Y —ETF;-p" X —n"K;+y1K; - 6"Z; <0,
/Tyl /T /Ty2 /T . At
WY, +3"Z, + oY, —E"F, = E;,

V’TXJI.0 + yan 1,

o =

w,o, v, n,p,d8, & 20. (10)

According to Lei et al. (2015) and Wu et al. (2016a),
the EIC’s efficiency score for DMU, can be measured
E: = e},
using ¢, = /”—llj" Here, A} and A; are optimal
weights based on model (10). However, the optimal value
of ¢); in this formula cannot be guaranteed. Therefore,

we calculate the optimal efficiency of EIC as follows:

0

* Ty2 _ @T
Maxe;, = oY —€"F,

subject to wY+ 0"z, VIX —71K; <0,
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u'Y, +3"Z, +o0"Y, —E"F, = E;,
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J

w,o,v,n, p,d8, &>0. (11)

We can obtain the EIC’s optimal efficiency e;, while
maintaining the optimal efficiency of the entire system by
solving model (11). Similarly, we can calculate the EIR’s
E: — Xe;.
efficiency score using e}, = eI OV e}, = ey, and
e, = é¢,,, then we obtain a unique result of efficiency
decomposition.

3 Application

The impact of environmental innovation on environmental
performance is investigated using the constructed frame-
work with two stages and shared inputs by considering
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the inner mechanism of environmental innovation accord-
ing to the data of 30 provincial-level administrative
regions of China. Notably, Tibet, Taiwan, Hong Kong,
and Macao are excluded from the analysis due to lacking
data. The statistical information is obtained from the
China Statistical Yearbook on Science and Technology,
State Intellectual Property Office of China, China Energy
Statistical Yearbook, China Statistical Yearbook, and
China Environment Yearbook. Empirical data of variables
covers the period from 2015 to 2019. Statistical descrip-
tions of the dataset are listed in Table 1.

We use the two-stage network model for evaluating the
efficiency of the environmental innovation system in

Table 1 Statistical descriptions of the dataset

China. The whole system in our model is divided into
two subsystems: EIR and EIC. Multiple input—output
variables should be available and appropriate in the
empirical data to evaluate systems and their subsystems
properly (Guan and Chen, 2010). Hence, we demonstrate
the appropriateness and feasibility of input—output vari-
ables in this section.

As shown in Fig. 1, EIR’s unique input is the expenditure
on R&D and the output is new products and green patent
applications. The R&D full-time equivalent is a type of
shared input modeling labor used in both EIR and EIC.
Expenditure on R&D and R&D full-time equivalent are
selected to measure the economic and labor investments

Variables 2015 2016 2017 2018 2019
Expenditure on R&D Min 115842.70 139976.70 179108.60 172951.10 205680.10
Max 18012271.00 20351439.90 23436283.20 27046969.00 30984890.00
Mean 4722253.49 5224843.35 5867754.90 6558074.18 7379747.62
SD 5182068.27 5778686.80 6492727.04 7234770.81 8117404.69
New products Min 24.00 37.00 36.00 49.00 72.00
Max 15127.00 22541.00 32392.00 38526.00 46263.00
Mean 2571.93 3104.27 3795.80 4387.10 5223.87
SD 3717.68 4865.39 6462.94 7550.92 8997.01
Green patent applications Min 124.00 145.00 155.00 256.00 342.00
Max 13554.00 15575.00 18693.00 28621.00 26176.00
Mean 3282.57 3890.50 4175.03 5923.47 5534.67
SD 3720.31 4292.47 4770.06 6901.04 6484.31
Electricity Min 272.36 287.31 304.95 327.00 354.89
Max 5310.69 5610.13 5958.97 6323.00 6695.85
Mean 1896.42 1989.93 2118.90 2279.30 2413.60
SD 1346.39 1433.11 1502.58 1604.27 1676.25
Labor Min 321.41 324.28 326.97 329.26 330.20
Max 6723.30 6726.39 6766.86 7132.99 7150.25
Mean 2777.57 2766.12 2766.24 2770.74 2750.14
SD 1809.62 1804.02 1801.15 1830.15 1812.12
R&D full-time equivalent Min 4007.70 4165.60 5655.80 4301.10 5476.00
Max 520302.50 543437.70 565287.30 762733.30 803207.80
Mean 125257.25 129231.05 134411.64 145995.87 159967.29
SD 135187.98 139860.03 148161.03 174246.07 189819.45
Gross domestic product (GDP) Min 2417.05 2572.49 2624.83 2865.23 2965.95
Max 72812.55 80854.91 89705.23 97277.77 107671.07
Mean 24058.05 25963.95 28194.31 30440.99 32787.84
SD 18046.47 19937.99 22025.35 23731.16 25774.58
e Min 3647.83 4518.03 4231.69 6326.27 3953.70
Max 105702.99 110811.29 110615.20 121494.22 125030.31
Mean 34186.58 34440.09 35424.97 37264.38 37904.16
SD 23181.53 23852.49 24527.65 26589.50 28425.38
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in the EIR stage, respectively. The majority of R&D
activities geared toward environmental innovation are
indirectly market-oriented; hence, we define this variable
as an intermediate output of EIR, which would be used in
the EIC stage as an input. The innovation activity related
to environmental improvement is analyzed in this study.
However, specific statistical information on EIR is lack-
ing. Therefore, we use expenditure on R&D, R&D full-
time equivalent, and new products as appropriate proxies
for environmental innovation. Our data for green patent
applications are based on the green inventory defined by
the World Intellectual Property Organization (WIPO).
The input/output variables are defined as shown in
Table 2.

Expenditure on R&D: This proxy for environmental
innovation is the intramural expenditure on R&D of the
provincial region (Chen et al., 2018) that refers to the
actual internal expenditure of the R&D institution in the
current year. Expenditure on R&D is a technological
innovation indicator in China’s high-technology industries
at the provincial level (Guan and Chen, 2010). Expendi-
ture on R&D is selected as the capital input of the EIR
stage in this study.

New products: This proxy for environmental innovation
is the number of new product projects with new technical
principles, new design, and production, as specified in the
relevant yearbook. R&D activities can be directly gener-
ated in the form of projects. A new product project begins
as an idea and then proceeds to the steps of screening,
project definition, and business analysis before finally
completing product development (Pujari, 2006). The
number of new products developed is the indicator of the
output of science and technology (Tomkovick and Miller,
2000). We select this indicator to reflect the effect of
R&D on economic development and achievements of
basic and applied research in a provincial region.

Green patent applications: The number of patents is
the suitable indicator for measuring invention output
(Guan and Chen, 2012). Patents are also an input of
science and technology resources needed in the conver-
sion stage of technology innovation. However, the cate-
gorization of green patent application in China’s patent

Table 2 Variables and definitions

classification system is unclear. Data on green patent
applications are collected from the website of the State
Intellectual Property Office of China and searched using
the International Patent Classification (IPC) number
related to “green technology” (Fujii and Managi, 2019).
“Green technology” is an environmental technology
selection standard corresponding to IPC (Cho and Sohn,
2018) that analyzes the field of green technology accord-
ing to officially recognized number of invention and utility
model patents. The corresponding relationship between
the environmental technology field and IPC classification
is established by comparing the technical field with the
IPC classification number. The number of green patent
applications in this study is selected as the indicator of an
intermediate output.

R&D full-time equivalent: This measure refers to the
total number of full-time and part-time personnel
converted into full-time personnel according to workload
(Li et al., 2020). The expenditure on R&D and R&D full-
time equivalent inputs fully show the innovation strength
and potential of a region, respectively, which comprehen-
sively represent the regional innovation capacity. The two-
stage environmental innovation of a provincial region,
including both stages of technological innovation and
application, is a continuous process; hence, the R&D full-
time equivalent is split between the two stages. R&D full-
time equivalent is treated as a shared input and the
proportion of R&D full-time equivalent «;, is considered
a parameter in this study. The R&D full-time equivalent
portion «,; K, is allocated to the EIR stage, and the
remaining part (1 — ;) K, is assigned to the EIC stage.

Electricity: This basic indicator can quantitatively
measure the electric power consumption at the provincial
level. The annual electric power consumption of each
provincial region is used to represent the energy input.
Although energy consumption can promote economic
growth by increasing productivity, it can also aggravate
environmental damage by increasing pollutant emissions
(Tiba and Omri, 2017). Developments in science and
technology are transformed into economic and environ-
mental benefits using resources, such as labor and energy,
through the conversion of environmental innovation.

Indicator Variable Units Definition

Input in EIR Expenditure on R&D 10000 yuan Intramural expenditure on R&D by provincial region
Output in EIR New products Unit Number of new product development projects
Intermediate output in EIR (Input in EIC) Green patent applications Piece Number of green patent applications

Shared input R&D full-time equivalent
Input in EIC Electricity

Labor
Desirable outputs in EIC GDP

Undesirable outputs in EIC Carbon emissions

Person-year
100 million kWh
10000 persons
100 million yuan

10 thousand tons

Total workload of full-time and part-time personnel
Regional consumption of electricity
Number of full-time employees of a specific region in China
Gross domestic product

Annual regional carbon emissions
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Electric power is an efficient, clean, and convenient form
of energy utilization and widely used in all aspects of
economy and society. Therefore, electricity is selected as
the energy input in the conversion stage of environmental
innovation in this work.

Labor: Labor is the number of employed people in the
population of the region. According to the yearbooks, the
employed population refers to the people aged 16 or
above who engage in certain social labor or business
activities and obtain labor remuneration or business
income. Hence, the number of employees in different
regions is used as the input of labor in the EIC stage in
this study.

Gross domestic product (GDP): The GDP is utilized
to measure the value of all final products and services
produced by each provincial region’s economy in a year
(Wu et al., 2010) and the optimal indicator for measuring
the condition of a region’s economy. Enhancing the
regional environmental innovation capacity aims to
increase the economic benefit and potential. Hence,
GDP is chosen as the economic output of the EIC stage.

Carbon emissions: Carbon emission refers to the aver-
age greenhouse gas emissions produced in processes of
production, transportation, utilization, and recovery,
which is an undesirable output negatively correlated with
the impact of innovation on the environment. On the
basis of the carbon footprint model, the measurement of
carbon emission is successfully used in Chang et al.
(2013) and Wu et al. (2016b). We calculate carbon emis-
sions from the consumption of fossil fuels according to
guidelines from the International Panel on Climate
Change (IPCC) for measuring carbon emission (Eq. (12)).
We can use the consumption of fossil fuels of each
provincial region over the years to calculate its carbon
dioxide emissions. Accordingly, fossil fuels are divided
into six categories: Coal, petrol, diesel, kerosene, fuel oil,
and natural gas (Wu et al., 2020).

- 44
Carbon emissions = Z(AXCCF,»XHE,»XCOF,«)X v

(12)

where A4 represents all fossil fuels, CCF is the carbon
content factor, HE is the heat equivalent, and COF is the
carbon oxidation factor of fossil fuels. Additional infor-
mation on carbon emission factors is listed in Table 3.
The subscript i represents different kinds of fossil fuels
(Chang et al., 2013).

i=1

Table 3 Carbon emission factors of major fossil fuel types in China
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4 Results and analysis

Efficiencies of environmental innovation systems of 30
provincial-level regions in China are measured using our
model. On the basis of Wu et al. (2016a), we set the
bounds to L; = 0.25 and U; = 0.75 on the proportional use
of the shared resource. Note that we have used different
bounds (i.e., L; =0.1and U;=0.9, L; =0.2 and U; = 0.8)
and further revealed that the results are insensitive to the
bound setting. We then obtain the empirical results from
2015 to 2019 using these bounds in the model. Efficiencies
of environmental innovation systems of different regions
in 2019 are listed in Table 4. The E column shows the
overall efficiency of environmental innovation systems.
e}, and e, columns present the maximum efficiency
scores of EIR and EIC subsystems, respectively, while
maintaining the overall system efficiency E;. a; and
1 —¢; columns present the optimal proportions of a
shared resource for the two stages. The last row shows
the average efficiency scores and regional optimal
proportions.

The following conclusions can be drawn from Table 4.
First, Beijing, Inner Mongolia, Shanghai, Jiangxi, Fujian,
Hubei, Hunan, Guangdong, Guangxi, Hainan, Chongging,
Sichuan, Yunnan, Qinghai, and Xinjiang are overall effi-
cient in their environmental innovation systems. There-
fore, each subsystem of these 15 regions is also efficient.
Other regions, such as Hebei (0.7856), Zhejiang (0.7356),
Gansu (0.6787), and Ningxia (0.7319), demonstrate low
overall efficiency. The average overall environmental
innovation efficiency is high at 0.9012, which indicated
that China presents a relatively high overall environmental
innovation efficiency although some regions need to
improve their overall efficiency.

Second, 13 provinces (Hebei, Shanxi, Liaoning, Jilin,
Heilongjiang, Jiangsu, Zhejiang, Anhui, Shandong,
Henan, Guizhou, Shaanxi, and Gansu) present low effi-
ciency in the EIR subsystem while 3 provinces (Zhejiang,
Gansu, and Ningxia) show low efficiency in the EIC
subsystem. However, the average efficiencies of EIR and
EIC stages are 0.8363 and 0.9208, respectively, while
maintaining the overall efficiency. These results indicated
that the EIC performs better than EIR in China’s environ-
mental innovation system.

Third, we consider the optimal proportion of the
resource shared between EIR and EIC subsystems from
the perspective of the optimal proportion of shared
resources in the environmental innovation system. For

Fossil fuels Coal Petrol Kerosene Diesel Fuel oil Natural gas
CCF 27.28 18.90 19.60 20.17 21.09 15.32
HE 192.14 448.00 447.50 433.30 401.90 0.38
COF (%) 92.3 98.0 98.6 98.2 98.5 99.0
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Table 4 Efficiencies of environmental innovation systems of 30
Chinese provincial-level regions in 2019

*

Region Ej, Lo “2jo o 1-aj
Beijing 0.9690 0.9095 1.0000 0.25 0.75
Tianjin 0.8368 0.8433 0.8334 0.57 0.43
Hebei 0.7856 0.7174 0.8015 0.53 0.47
Shanxi 0.8216 0.6152 0.8595 0.53 0.47
Inner Mongolia 1.0000 1.0000 1.0000 0.56 0.44
Liaoning 0.8453 0.6524 0.9011 0.53 0.47
Jilin 0.8521 0.6202 0.9003 0.57 0.43
Heilongjiang 0.8237 0.6000 0.8667 0.63 0.37
Shanghai 0.9935 0.9751 1.0000 0.53 0.47
Jiangsu 0.8044 0.6890 0.8858 0.51 0.49
Zhejiang 0.7356 0.6906 0.7787 0.35 0.65
Anhui 0.8087 0.6012 0.8799 0.34 0.66
Fujian 1.0000 1.0000 1.0000 0.51 0.49
Jiangxi 0.9530 0.9413 0.9610 0.38 0.62
Shandong 0.8457 0.6814 0.9082 0.48 0.52
Henan 0.8998 0.7714 0.9459 0.55 0.45
Hubei 0.9771 0.8602 1.0000 0.51 0.49
Hunan 0.9941 0.9672 1.0000 0.36 0.64
Guangdong 1.0000 1.0000 1.0000 0.26 0.74
Guangxi 0.9847 0.9538 1.0000 0.60 0.40
Hainan 1.0000 1.0000 1.0000 0.55 0.45
Chongqing 1.0000 1.0000 1.0000 0.26 0.74
Sichuan 1.0000 1.0000 1.0000 0.26 0.74
Guizhou 0.8613 0.7430 0.8828 0.61 0.39
Yunnan 1.0000 1.0000 1.0000 0.51 0.49
Shaanxi 0.8662 0.6308 0.9337 0.57 0.43
Gansu 0.6787 0.7829 0.6139 0.62 0.38
Qinghai 0.9679 1.0000 0.9616 0.61 0.39
Ningxia 0.7319 0.8424 0.7085 0.57 0.43
Xinjiang 1.0000 1.0000 1.0000 0.57 0.43
Average 0.9012 0.8363 0.9208 0.49 0.51

example, the optimal proportions of R&D full-time
equivalent for EIR and EIC in Gansu are 0.62 and 0.38,
respectively. Hence, Gansu should invest more of its
shared input in EIR than EIC to achieve an optimal division
of shared resources. The average optimal proportion of
shared resources of 30 regions for EIR to consume is
0.49. We can conclude that the Chinese government
should allocate more shared resources to EIC than
EIR to improve the overall efficiency of the national
environmental innovation system.

Figure 2 shows the overall efficiency of 30 Chinese
regions from 2015 to 2019. Three regions (Chongqing,
Guangdong, and Hainan) are at the frontier of environ-
mental innovation efficiency. Chongqing and Guangdong

present high economic strength and strong environmental
technical foundations. The large investment of regional
government and enterprises in human and innovation
resources have attracted many innovative talents and
businesses. Hainan demonstrates an excellent tourism
industry and environmental quality. Moreover, Hainan
has took the lead in building a sustainable ecological
province in China since 1999. Although the overall effi-
ciencies of the environmental innovation system in
Beijing, Fujian, Guangxi, Hunan, Inner Mongolia, and
Shanghai are less than 1, their values have reached a high
level. The above mentioned nine regions need to play a
demonstration role using their environmental technology
advantages and actively help other regions with low
innovation efficiency values to progress and improve
the overall efficiency of the national environmental inno-
vation system. Anhui, Gansu, Hebei, Ningxia, Shanxi,
and Zhejiang present low overall efficiency values. These
provinces should first expand their investment in environ-
mental innovation resources to close the regional gap,
strengthen their management, and use an optimal
allocation of environmental innovation resources to
improve their efficiency in utilizing environmental
innovation resources.

As shown in Figs. 3 and 4, the environmental innovation
efficiency of eleven provinces (Anhui, Gansu, Guizhou,
Henan, Hebei, Heilongjiang, Liaoning, Shaanxi, Shan-
dong, Shanxi, and Zhejiang) is low in the EIR subsystem
while that of six provinces (Anhui, Gansu, Hebei,
Ningxia, Shanxi, and Zhejiang) is low in the EIC subsys-
tem. Anhui, Gansu, Hebei, Shanxi, and Zhejiang present
low efficiencies in both EIR and EIC subsystems. For
example, the poor scientific research infrastructure and
insufficient government investment in Gansu directly
lead to minimal environmental innovation achievements
and a backward environmental industry. Although
Zhejiang boasts of rich R&D resources and high
economic strength, it has not achieved a corresponding
level of efficiency in the environmental innovation
system. Zhejiang is competitive in the fields of internet
service, chemical industry, and medical and communica-
tion equipment. We can combine our own scientific
research resource advantages with industrial competitive-
ness and vigorously develop the new energy industry
under the background of carbon neutralization. Some
provinces with low EIR efficiency (Guizhou, Henan,
Shaanxi, and Shandong) demonstrate acceptable capacity
for environmental innovation absorption and transforma-
tion, as reflected in their relatively high EIC score,
although their independent EIR should be improved.
These provinces can potentially optimize their absorption
and transformation of environmental innovation achieve-
ments according to their capacity of independent EIC.
However, their lack of independent R&D capability, as
reflected in their low EIR score, is not conducive to
improving the overall efficiency of their environmental
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Fig. 3 EIR efficiency of 30 Chinese regions from 2015 to 2019.
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Fig. 4 EIC efficiency of 30 Chinese regions from 2015 to 2019.

innovation systems. Ningxia presents a low EIC efficiency
and acceptable performance in EIR. However, its imple-
mentation of environmental innovation must be enhanced.
On the one hand, Ningxia should increase investment
support for the commercialization of environmental inno-
vation achievements to enhance its capability to convert
and absorb environmental technology. On the other hand,
it should encourage the development of green economy
industries, such as new energy, art, tourism, and environ-
mental protection.

5 Conclusions and policy implications

Environmental protection has become a serious concern
to society because of large emissions of industrial
pollutants with the development of China’s economy.
The government formulates corresponding regulatory
policies to address environmental pollution by promoting
environmental protection and reducing emissions. Enter-
prises may choose to reduce production or implement
green technology innovation measures to comply with
environmental policies. However, production reduction
will harm economic development. Hence, China can
realize the win—win situation of economic development
and environmental protection through environmental
innovation. The efficiency of a region’s environmental

innovation system reflects its ability to create and transfer
knowledge and deploy new products related to environ-
mental protection.

5.1 Conclusions

The efficiency of environmental innovation systems is
investigated at the Chinese provincial level in this study.
A two-stage network DEA model with a shared resource
is constructed on the basis of a two-stage system involved
in environmental innovation. The proposed model
measures the efficiencies of EIR and EIC subsystems.
We empirically evaluate the environmental innovation
system of 30 provincial-level administrative regions in
China using the proposed model. The results indicated
that China presents high overall environmental innovation
efficiency. Although Chongqing and Guangdong demon-
strate high economic strength and environmental technical
foundation, they must use their advantages in environ-
mental innovation and help other areas with low innova-
tion efficiency to enhance the overall efficiency of the
national environmental innovation system.

Some regions need to improve their overall environ-
mental innovation system efficiency. Four provinces
(Anhui, Gansu, Shaanxi, and Zhejiang) should expand
investment in and strengthen the management of environ-
mental innovation resources to improve the utilization of
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environmental innovation resources and enhance their
low overall efficiency. Guizhou, Henan, Shaanxi, and
Shandong show low EIR efficiency but demonstrate an
acceptable capacity for EIC (i.e., with satisfactory EIC
score). These provinces should enhance their independent
R&D capability to improve their overall efficiency
because their ability to perform independent innovation
R&D is low (i.e., with low EIR score). Ningxia has low
efficiency in the EIC subsystem, but performs better in
the EIR subsystem, and the application of its environmental
innovation achievements needs to be strengthened. It is
necessary to increase investment support for the commer-
cialization of environmental innovation achievements and
develop green economy industries, such as new energy,
art, tourism, and environmental protection.

5.2 Policy implications

The following suggestions are presented on the basis of
the discussion in this study.

(1) Central and local governments should increase
the investment in environmental innovation and pro-
mote environmental innovation R&D and conversion.
However, relying on their own strength is difficult
because a shortage of environmental innovation funds
exists in some areas. The central government should
increase the financial support for R&D and conversion of
environmental innovation through financial allocation
and environmental innovation awards. Local governments
should prioritize projects related to environmental inno-
vation and stop those that fail to meet environmental
protection technical standards in time. We can accelerate
the diffusion and absorption of environmental innovation
among regions and promote the overall improvement on
environmental innovation efficiency by dispatching and
introducing environmental technological talents.

(2) We should improve the regional environmental
innovation system and narrow the gap between regional
environmental innovation ability. We should encourage
scientific research institutions, colleges, universities,
social organizations, and enterprises to become actively
involved in the process of environmental innovation;
build an environmental innovation network using a
combination of production, study, and research; and
establish an environmental innovation ecosystem in line
with regional characteristics.

(3) Enterprises must be encouraged to increase their
expenditure on environmental innovation R&D and
conversion. First, the government should arrange the
corresponding special funds and preferential tax policies
to support environmental innovation R&D and conversion
plans formulated by enterprises and alleviate the financing
difficulties of enterprises. Second, central and local
governments should actively build a cross-regional
platform for environmental innovation investment and
trading to guide the flow of social funds to enterprise
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environmental innovation R&D and conversion.

Note that we only consider the two basic aspects of
social impact of environmental innovation, namely,
economic development and environmental protection,
while ignoring other factors in this study. We can expand
the scope of research and establish an increasingly
comprehensive evaluation framework by incorporating
other aspects, such as social welfare and international
trade. In addition, although the operational relationship
between the two subsystems is discussed, this study
ignores regional heterogeneity. These limitations of the
proposed model may be regarded as the focus of future
investigations.

References

Amado C A, Santos S P, Marques P M (2012). Integrating the data
envelopment analysis and the balanced scorecard approaches for
enhanced performance assessment. Omega, 40(3): 390-403

Amirteimoori A (2013). A DEA two-stage decision processes with
shared resources. Central European Journal of Operations Research,
21(1): 141-151

Bressers H T A, Rosenbaum W A (2000). Innovation, learning, and
environmental policy: Overcoming “a plague of uncertainties”.
Policy Studies Journal: The Journal of the Policy Studies Organiza-
tion, 28(3): 523-539

Brunnermeier S B, Cohen M A (2003). Determinants of environmental
innovation in US manufacturing industries. Journal of Environ-
mental Economics and Management, 45(2): 278-293

Chang Y T, Zhang N, Danao D, Zhang N (2013). Environmental effi-
ciency analysis of transportation system in China: A non-radial
DEA approach. Energy Policy, 58: 277-283

Charnes A, Cooper W W (1962). Programming with linear fractional
functionals. Naval Research Logistics Quarterly, 9(3—4): 181-186

Charnes A, Cooper W W, Rhodes E (1978). Measuring the efficiency
of decision making units. European Journal of Operational
Research, 2(6): 429444

Chen J, Cui H, Xu Y, Ge Q (2021). Long-term temperature and sea-
level rise stabilization before and beyond 2100: Estimating the
additional climate mitigation contribution from China’s recent 2060
carbon neutrality pledge. Environmental Research Letters, 16(7):
074032

Chen L, Jia G (2017). Environmental efficiency analysis of China’s
regional industry: A data envelopment analysis (DEA) based
approach. Journal of Cleaner Production, 142: 846—853

Chen X, Liu Z, Zhu Q (2018). Performance evaluation of China’s high-
tech innovation process: Analysis based on the innovation value
chain. Technovation, 74-75: 42-53

Chen Y, Cook W D, Li N, Zhu J (2009). Additive efficiency decompo-
sition in two-stage DEA. European Journal of Operational Research,
196(3): 1170-1176

Chen Y, Du J, Sherman H D, Zhu J (2010). DEA model with shared
resources and efficiency decomposition. European Journal of Oper-
ational Research, 207(1): 339-349



Jiangjiang YANG et al. Sustainability performance of environment innovation systems 437

Chen Y S (2008). The driver of green innovation and green
image—green core competence. Journal of Business Ethics, 81(3):
531-543

Cho J H, Sohn S Y (2018). A novel decomposition analysis of green
patent applications for the evaluation of R&D efforts to reduce CO,
emissions from fossil fuel energy consumption. Journal of Cleaner
Production, 193: 290-299

Chung Y H, Fére R, Grosskopf S (1997). Productivity and undesirable
outputs: A directional distance function approach. Journal of Envi-
ronmental Management, 51(3): 229-240

Costantini V, Mazzanti M, Montini A (2013). Environmental perfor-
mance, innovation and spillovers: Evidence from a regional
NAMEA. Ecological Economics, 89: 101-114

Fdre R, Grosskopf S, Tyteca D (1996). An activity analysis model of
the environmental performance of firms: Application to fossil-fuel-
fired electric utilities. Ecological Economics, 18(2): 161-175

Fraj E, Matute J, Melero I (2015). Environmental strategies and organi-
zational competitiveness in the hotel industry: The role of learning
and innovation as determinants of environmental success. Tourism
Management, 46: 3042

Fujii H, Managi S (2019). Decomposition analysis of sustainable green
technology inventions in China. Technological Forecasting and
Social Change, 139: 10-16

Ghisetti C, Quatraro F (2017). Green technologies and environmental
productivity: A cross-sectoral analysis of direct and indirect effects
in Italian regions. Ecological Economics, 132: 1-13

Gopalakrishnan S, Damanpour F (1997). A review of innovation
research in economics, sociology and technology management.
Omega, 25(1): 15-28

Guan J, Chen K (2010). Measuring the innovation production process:
A cross-region empirical study of China’s high-tech innovations.
Technovation, 30(5-6): 348-358

Guan J, Chen K (2012). Modeling the relative efficiency of national
innovation systems. Research Policy, 41(1): 102115

Hailu A, Veeman T S (2001). Non-parametric productivity analysis
with undesirable outputs: An application to the Canadian pulp and
paper industry. American Journal of Agricultural Economics, 83(3):
605-616

Halkos G, Petrou K N (2019). Treating undesirable outputs in DEA: A
critical review. Economic Analysis and Policy, 62: 97-104

He F, Zhang Q, Lei J, Fu W, Xu X (2013). Energy efficiency and
productivity change of China’s iron and steel industry: Accounting
for undesirable outputs. Energy Policy, 54: 204-213

Hemmelskamp J, Rennings K, Leone F (2000). Innovation-oriented
Environmental Regulation: Theoretical Approaches and Empirical
Analysis. Berlin, Heidelberg: Springer—Verlag

Kao C, Hwang S N (2008). Efficiency decomposition in two-stage data
envelopment analysis: An application to non-life insurance compa-
nies in Taiwan. European Journal of Operational Research, 185(1):
418-429

Korhonen P J, Luptacik M (2004). Eco-efficiency analysis of power
plants: An extension of data envelopment analysis. European Journal
of Operational Research, 154(2): 437—446

Kortelainen M (2008). Dynamic environmental performance analysis:
A Malmquist index approach. Ecological Economics, 64(4):
701-715

Lei X, Li Y, Xie Q, Liang L (2015). Measuring Olympics achievements
based on a parallel DEA approach. Annals of Operations Research,
226(1): 379-396

Li H, Chen J, Wan Z, Zhang H, Wang M, Bai Y (2020). Spatial evalua-
tion of knowledge spillover benefits in China’s free trade zone
provinces and cities. Growth and Change, 51(3): 1158-1181

Liang L, Cook W D, Zhu J (2008). DEA models for two-stage
processes: Game approach and efficiency decomposition. Naval
Research Logistics, 55(7): 643—653

Lin R J, Tan K H, Geng Y (2013). Market demand, green product
innovation, and firm performance: Evidence from Vietnam motor-
cycle industry. Journal of Cleaner Production, 40: 101-107

Long X, Chen Y, Du J, Oh K, Han I (2017). Environmental innovation
and its impact on economic and environmental performance.
Energy Policy, 107: 131-137

Mensah C N, Long X, Boamah K B, Bediako I A, Dauda L, Salman M
(2018). The effect of innovation on CO; emissions of OCED countries
from 1990 to 2014. Environmental Science and Pollution Research
International, 25(29): 29678-29698

Meyer S M (1995). The economic impact of environmental regulation.
Journal of Environmental Law and Practice, 3(2): 4-15

Pathomsiri S, Haghani A, Dresner M, Windle R J (2008). Impact of
undesirable outputs on the productivity of US airports. Transporta-
tion Research Part E: Logistics and Transportation Review, 44(2):
235-259

Pujari D (2006). Eco-innovation and new product development: Under-
standing the influences on market performance. Technovation,
26(1): 76-85

Reinhard S, Knox Lovell C A, Thijssen G J (2000). Environmental
efficiency with multiple environmentally detrimental variables:
Estimated with SFA and DEA. European Journal of Operational
Research, 121(2): 287-303

Satterthwaite D (2011). How urban societies can adapt to resource
shortage and climate change. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
369(1942): 17621783

Shephard R W (1971). Theory of Cost and Production Functions.
Princeton, NJ: Princeton University Press

Song M, An Q, Zhang W, Wang Z, Wu J (2012). Environmental effi-
ciency evaluation based on data envelopment analysis: A review.
Renewable & Sustainable Energy Reviews, 16(7): 44654469

Song M, Wang S, Liu W (2014). A two-stage DEA approach for envi-
ronmental efficiency measurement. Environmental Monitoring and
Assessment, 186(5): 3041-3051

Sterner T, Turnheim B (2009). Innovation and diffusion of environmental
technology: Industrial NO, abatement in Sweden under refunded
emission payments. Ecological Economics, 68(12): 2996-3006

Tiba S, Omri A (2017). Literature survey on the relationships between
energy, environment and economic growth. Renewable & Sustain-
able Energy Reviews, 69: 1129-1146

Tomkovick C, Miller C (2000). Riding the wind: Managing new product
development in an age of change. Journal of Product Innovation
Management, 17(6): 413-423

Wang K, Yu S, Zhang W (2013). China’s regional energy and environ-
mental efficiency: A DEA window analysis based dynamic evalua-
tion. Mathematical and Computer Modelling, 58(5-6): 11171127



438 Front. Eng. Manag. 2022, 9(3): 425-438

Wang Q,Hang Y, SunL, Zhao Z (2016). Two-stage innovation efficiency
of new energy enterprises in China: A non-radial DEA approach.
Technological Forecasting and Social Change, 112: 254-261

WuJ, Xiong B, An Q, SunJ, Wu H (2017). Total-factor energy efficiency
evaluation of Chinese industry by using two-stage DEA model with
shared inputs. Annals of Operations Research, 255(1-2): 257-276

Wu J, Yang J, Zhou Z (2020). How does environmental regulation
affect environmental performance? A case study of China’s
regional energy efficiency. Expert Systems: International Journal
of Knowledge Engineering and Neural Networks, 37(3): €12326

Wu J, Zhou Z, Liang N A (2010). Measuring the performance of
Chinese regional innovation systems with two-stage DEA-based
model. International Journal of Sustainable Society, 2(1): 85-99

Wu J, Zhu Q, Chu J, Liu H, Liang L (2016a). Measuring energy and
environmental efficiency of transportation systems in China based
on a parallel DEA approach. Transportation Research Part D:
Transport and Environment, 48: 460472

Wu J, Zhu Q, Liang L (2016b). CO, emissions and energy intensity
reduction allocation over provincial industrial sectors in China.
Applied Energy, 166: 282-291

Yang H, Pollitt M (2009). Incorporating both undesirable outputs and
uncontrollable variables into DEA: The performance of Chinese
coal-fired power plants. European Journal of Operational Research,
197(3): 1095-1105

Yang L, Ouyang H, Fang K, Ye L, Zhang J (2015). Evaluation of
regional environmental efficiencies in China based on super-
efficiency-DEA. Ecological Indicators, 51: 13—19

Yew W L, Zhu Z (2019). Innovative autocrats? Environmental innova-
tion in public participation in China and Malaysia. Journal of Envi-
ronmental Management, 234: 28-35

Zhang J, Chang Y, Zhang L, Li D (2018). Do technological innovations
promote urban green development? A spatial econometric analysis
of 105 cities in China. Journal of Cleaner Production, 182: 395403

Zhang Y J, Peng Y L, Ma C Q, Shen B (2017). Can environmental
innovation facilitate carbon emissions reduction? Evidence from
China. Energy Policy, 100: 18-28

Zhao L, Zha Y, Zhuang Y, Liang L (2019). Data envelopment analysis
for sustainability evaluation in China: Tackling the economic, envi-
ronmental, and social dimensions. European Journal of Operational
Research, 275(3): 1083-1095

Zhou P, Ang B W, Han J Y (2010). Total factor carbon emission
performance: A Malmquist index analysis. Energy Economics,
32(1): 194-201

Zhou P, Ang B W, Poh K L (2008). Measuring environmental perfor-
mance under different environmental DEA technologies. Energy
Economics, 30(1): 1-14

Zhu Q, Aparicio J, Li F, Wu J, Kou G (2022). Determining closest
targets on the extended facet production possibility set in data
envelopment analysis: Modeling and computational aspects. Euro-
pean Journal of Operational Research, 296(3): 927-939

Zhu Q, Li X, Li F, Wu J, Zhou D (2020). Energy and environmental
efficiency of China’s transportation sectors under the constraints
of energy consumption and environmental pollutions. Energy
Economics, 89: 104817



	1 Introduction
	2 Proposed model
	3 Application
	4 Results and analysis
	5 Conclusions and policy implications
	5.1 Conclusions
	5.2 Policy implications

	References

