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Abstract The identification of spreading influence nodes
in social networks, which studies how to detect important
individuals in human society, has attracted increasing atten-
tion from physical and computer science, social science and
economics communities. The identification algorithms of
spreading influence nodes can be used to evaluate the
spreading influence, describe the node’s position, and identify
interaction centralities. This review summarizes the recent
progress about the identification algorithms of spreading
influence nodes from the viewpoint of social networks,
emphasizing the contributions from physical perspectives
and approaches, including the microstructure-based algo-
rithms, community structure-based algorithms, macrostruc-
ture-based algorithms, and machine learning-based algo-
rithms. We introduce diffusion models and performance
evaluation metrics, and outline future challenges of the
identification of spreading influence nodes.

Keywords complex network, network science, spread-
ing influence, machine learning

1 Introduction

Complicated interactions between individuals can be well
described by social networks, where nodes represent
online users and offline individuals, and edges denote
relations between nodes (Yan et al., 2013; Buyalskaya
etal.,2021). Therefore, the social network has been studied
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by many branches of science in solving a wide range of
problems, including information diffusion (Watts and
Dodds, 2007; Muthukrishna and Schaller, 2020), spread
of infectious disease (Jia et al., 2020; Bertozzi et al.,
2020), formation of social relationships (Liben-Nowell
and Kleinberg, 2007), and identification of online user
reputation (Liu et al., 2017b; Dai et al., 2018). One of the
key academic questions of social networks is the so-
called identification of spreading influence nodes, which
aims to find nodes that can maximize the scale of infor-
mation diffusion. For instance, in online social platforms,
such as Weibo, Facebook, and Twitter, a group of users
serves as the influencer who can spread information
widely and rapidly and arouse widespread concern and
discussions of a topic in a short period (Lou and Tang,
2013). Identifying these spreading influence nodes is of
importance for a great number of applications (Hou et al.,
2014), such as viral marketing (Huang et al., 2019),
controlling rumor (Borge-Holthoefer and Moreno, 2012),
and fake news verification (Campan et al., 2017). Specifi-
cally, knowing the spreading influence of each node,
marketing managers can accurately identify which influ-
encers can help to promote their new products to target
customers more effectively, thereby maximizing the use
of advertising budgets. Official departments will be able
to detect the rumor spreading sources and take corre-
sponding measures before the rumor causes huge influence
on social order. Online users can judge whether a news is
fake by verifying the importance of news sources.
Identifying the spreading influence nodes of social
networks is a long-standing challenge in modern social
science, which has attracted considerable research effort
over the past decades. Measure the influence of each
node by conducting real-world experiments in social
networks with more than millions of nodes is unfeasible
because resources and time are limited. The mainstream
ideology of this field is to estimate the spreading influence
of nodes based on nodes’ attributes and structural charac-
teristics because it can sharply reduce the costs if the
identification algorithms of spreading influence nodes are
accurate (Li et al., 2016; Liu et al., 2021). Existing litera-
ture reviews summarized the identification algorithms of
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spreading influence nodes with different focuses. Liu
et al. (2013b) gave an overview of the identification algo-
rithms of spreading influence nodes from the network
topology and diffusion models’ viewpoints and system-
atically analyzed the advantages and disadvantages of
different algorithms. Ren and Lii (2013) introduced more
than 30 different algorithms before 2014. Lii et al. (2016)
presented a survey on the identification algorithms of
spreading influence nodes and performance evaluation
metrics, and compared the performance of representative
methods in different types of networks. Liu et al. (2021)
reviewed the algorithms developed on the basis of
centralities (Freeman, 1977; 1978), PageRank (Brin and
Page, 1998), and Hyperlink-Induced Topic Search (HITS)
(Kleinberg, 1999). In addition to algorithms designed for
the static network, the temporal network-based method
has received increasing attention in recent years (Yang
etal., 2018a; Yin et al., 2018; Guo et al., 2019) because it
can well describe the dynamic characteristics of social
systems. Chen et al. (2020) summarized three different
types of algorithms proposed for the temporal network:
The network topology-based, the random walk-based,
and machine learning-based algorithms. Ren (2020)
pointed out the challenges when applying the temporal
network-based algorithms in the growing networks, time-
varying networks, and perturbed temporal network.

A number of novel algorithms based on new techniques
and ideas have emerged in recent years due to the conflu-
ence of improved computational capabilities, the explosive
growth of new datasets, the increasing trend of interdisci-
plinary collaboration, and fast-changing demands. The
existing algorithms can be classified into four categories
in accordance with the type of structural attributes used
to design identification algorithms: The microstructure-
based (MSB), community structure-based (CSB), macro-
structure-based (MASB), and machine learning-based
(MLB) algorithms. Specifically, the MSB algorithms are
developed to meet the efficient identification of spreading
influence nodes in large-scale networks. Recent studies
have given more attention to the relations and attributes
of high-order neighbors rather than simply aggregating
the structure information of nearest neighbors to enhance
the accuracy of the MSB algorithms (Dai et al., 2019;
Sun et al., 2019). Community structure information,
which can help researchers to obtain a more comprehensive
understanding of the social network, has been increasingly
used to identify spreading influence nodes (Galvao et al.,
2010; Ghalmane et al., 2019a; Zhang et al., 2019b).
Combining the macro and micro structure information to
enhance the generalizability of algorithms has become a
new trend (Zareie et al., 2019; Namtirtha et al., 2021).
The MLB algorithms have begun to appear in this field
and still lack a systematic review (Yu et al., 2020; Fan
et al., 2020). To catch up with the recent progress of the
identification of spreading influence nodes, we present a
review on new developments of the MSB, CSB, MASB,

and MLB algorithms. We introduce diffusion models and
performance evaluation metrics commonly used in studies
of the identification of spreading influence nodes. We
attempt to summarize the current challenges of this field.
Details, including the methodology, study problems, data,
and main findings of representative MSB, CSB, MASB,
and MLB algorithms are summarized in Table 1.

The rest of this review is organized as follows. Section
2 presents the basic definitions of the social network and
the description of the identification problem of spreading
influence nodes. Section 3 introduces the MSB algo-
rithms. Section 4 summarizes the CSB algorithms.
Sections 5 and 6 discuss the MASB algorithms and the
MLB algorithms, respectively. Sections 7 and 8 describe
the diffusion models and performance evaluation metrics,
respectively. Section 9 summarizes the future study
trends and unsolved problems of this field.

2 Related definition and problem
description

Let G(V, E) be an unweighted network consisting of
|V| = n nodes and |E| = m edges, where V = {v, v,, ..., v,}
and E={e;|i, j=1, 2, ..., n} denote the set of nodes
and the set of edges, respectively. In social networks,
online users or offline individuals can be regarded as
nodes, and edges describe the relations between these
nodes. Considering whether the edge has weights and
directions, social networks can be classified into the
undirected and weighted network, the undirected and
unweighted network, the directed and unweighted
network, and the directed and weighted network, as
shown in Fig. 1. The social network can also be represented
by its adjacency matrix A = {a;;} , where a;; = 1 if node
i is connected to node j, a;; = 0 otherwise.

The identification task of spreading influence nodes in
social networks is to find nodes that can cause a great
influence on the structure of social networks or maximize
the scale and speed of information spreading. Specifically,
the identification of spreading influence nodes can be
further divided into the task of node ranking and the task
of influence maximization. The node ranking task refers
to ranking nodes in descending order in accordance with
their spreading influence scores obtained by applying an
evaluation function f(-) of spreading influence nodes.
The influence maximization problem aims to find a set of
seed nodes S with a fixed-size k to achieve the maximum
influence.

3 MSB algorithms

In the era of big data, social networks, such as Weibo, are
characterized by large scale and intricate connections
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Table 1 Approach names, categories, study problems, data, diffusion models, and main analysis findings of the representative MSB, CSB,

MASB, and MLB algorithms

Approach Category Study problem Data Diffusion model Main analysis findings
Percolation-based ~ MSB Influence GrQc (Leskovec et al., 2007), HepTh Susceptible-infected- The spreading influence of nodes can
greedy algorithm maximization (Leskovec et al., 2007), Enron (Leskovec et al.,  recovered (SIR) be approximately estimated by using
(PBGA) (Hu et al., 2009), NoLA Facebook, DBLP (Yang and (Hethcote, 2000) the local structural information
2018) Leskovec, 2012), QQ (Ren et al., 2015), of nodes
LiveJournal (Yang and Leskovec, 2012),
Weibo, Delicious (Lii et al., 2011)
Spreading Node ranking  Facebook (McAuley and Leskovec, 2012),  SIR (Hethcote, 2000)  The indirect influence of a node on
strength (SS) (Yu PGP (Boguiia et al., 2004), Protein (Jeong its neighborhood is important for
etal., 2019) et al., 2001), Guntella08 (Leskovec et al., measuring the spreading influence
2007), GrQc (Leskovec et al., 2007), of the node
CondMat (Leskovec et al., 2007), HepTh
(Leskovec et al., 2007), US Air, PowerGrid
(Watts and Strogatz, 1998)
Local centrality Node ranking Blog (Xie, 2006), Netscience (Newman, SIR (Hethcote, 2000) The degree information of high-order
(LC) (Chen et al., 2006), Router (Spring et al., 2002), neighbors can improve the accuracy
2012) Email (Guimera et al., 2003) and resolution of the degree
centrality (DC)
Neighborhood Node ranking Email (Guimera et al., 2003), HepTh SIR (Hethcote, 2000) Considering the structural information
centrality (NC) (Leskovec et al., 2007), Hamster (Kunegis, of a node’s neighbors within two
(Liu et al., 2016b) 2016), PGP (Boguia et al., 2004), Astro steps is a good choice to balance
Physics (Newman, 2001), Router accuracy and efficiency
(Spring et al., 2002)
Local structure Influence GrQc (Leskovec et al., 2007), Router SIR (Hethcote, 2000), The local structural property of nodes
similarity (LSS) maximization (Spring et al., 2002), Hamster Susceptible-infected can help identify multiple spreading
(Liu et al., 2017a) (Kunegis, 2016), Polblogs (SI) (Barabasi and  influence nodes more accurately than
Albert, 1999) by using the distance
VoteRank (Zhang Influence YouTube (Yang and Leskovec, 2012), SIR (Hethcote, 2000),  The performance of VoteRank is
etal., 2016) maximization CondMat (Leskovec et al., 2007), SI (Barabasi and Albert, highly correlated with the number
Berkstan (Leskovec et al., 2009), 1999) of ranked nodes
Notre DAME (Albert et al., 1999)
ClusterRank (CR) Node ranking Delicious (Lii et al., 2011), SM SIR (Hethcote, 2000) Nodes with small clustering
(Chen et al., 2013) coefficients are likely to connect with
more nodes in the future
Local structure Node ranking Email (Guimera et al., 2003), Blog, SIR (Hethcote, 2000)  The positive effect of the clustering
centrality (LSC) PGP (Boguiia et al., 2004), Twitter coefficient of a node’s second-order
(Gao et al., 2014) neighbors has a significant influence
on the spreading influence of the node
V-communities CSB Node ranking  Facebook (McAuley and Leskovec, 2012),  SIR (Hethcote, 2000) The number of communities
(Vc¢) (Zhao et al., GrQc (Leskovec et al., 2007), Netscience connected to a node can help detect
2014b) (Newman, 2006), Protein (Jeong et al., 2001) the spreading influence nodes that a
single centrality may ignore
Community-based Node ranking  Facebook (McAuley and Leskovec, 2012),  SIR (Hethcote, 2000)  The size of the community and the
centrality (CbC) Metabolic, Email, PowerGrid (Watts and distribution of a node’s neighbors in
(Zhao et al., 2015) Strogatz, 1998), Router (Spring et al., 2002), each community play important roles
Blogcatalog in measuring the node’s spreading
influence
Community-based Node ranking  Karate (Zachary, 1977), American football ~ SIR (Hethcote, 2000) The edge density within each
mediator (CbM) network (Girvan and Newman, 2002), community and the edge density
(Tulu et al., 2018) Dolphin (Lusseau et al., 2003), between communities can be used to
Airport, Internet identify spreading influence nodes
accurately with low computational
complexity
Community-hole Node ranking GrQc (Leskovec et al., 2007), Weibo SIR (Hethcote, 2000) The importance of communities
index (CHR) (Tang and Liu, 2009), arXiv (Pan and connected to a node is related to the
(Wang et al., Saraméki, 2012), Amazon node’s spreading influence
2018)
Modular centrality Node ranking  Facebook (McAuley and Leskovec, 2012),  SIR (Hethcote, 2000) Dividing the network with an
(MC) (Ghalmane Netscience (Newman, 2006), GrQc overlapping community structure into
etal., 2019a) (Leskovec et al., 2007) local and global networks can help
identify spreading influence nodes
more accurately
Network global MASB Influence QOdlis, Netscience (Newman, 2006), SIR (Hethcote, 2000) The network components and
structure-based maximization Advogato (Massa et al., 2009) network density have a significant

centrality (NGSC)
(Namtirtha et al.,
2021)

Gravity centrality
(GC) Macetal.,
2016)

Node ranking Facebook, Netscience (Newman, 2006), Email
(Guimera et al., 2003), TAP (Zeng and Zhang,
2013), Y2H (Kumar and Snyder, 2002), Blogs
(Xie, 2006), Router (Spring et al., 2002),
HepTh (Leskovec et al., 2007),
PGP (Boguiia et al., 2004)

influence on the performance of
identification algorithms

SIR (Hethcote, 2000) The gravity model can be applied to
identify the spreading influence of
nodes with relatively high accuracy
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(Continued)
Approach Category Study problem Data Diffusion model Main analysis findings
Cgsrg (Shang Node ranking  Jazz, Netscience (Newman, 2006), GrQc SI (Barabasi and Replacing the Euclidean distance of
etal., 2021) (Leskovec et al., 2007), EEC, Email, PB, Albert, 1999) the gravity model by the effective
Facebook, US Air, Physicians, PDZBase, distance can achieve higher accuracy
Haggle, Infectious
Dynamic-sensitive Influence Erdos, Email contact (Kitsak et al., 2010),  SIR (Hethcote, 2000), The spreading influence of a node is
(DS) (Liu et al., maximization Router (Spring et al., 2002), SI (Barabasi and determined by topological structures
2016a) Protein (Jeong et al., 2001) Albert, 1999) and the spreading dynamics
Influence capacity Node ranking Karate (Zachary, 1977), Netscience (Newman, SIR (Hethcote, 2000) The order in which nodes within the
(Wang et al., 2006), Dolphin (Lusseau et al., 2003), Email same layer are removed can
2016) (Guimera et al., 2003), Jazz, PGP (Boguna distinguish the spreading influence of
et al., 2004), Blog (Xie, 2006), Facebook, nodes located in the same shell
Enron (Leskovec et al., 2009), Twitter
Link entropy (Liu Node ranking  Router (Spring et al., 2002), Email contact ~ SIR (Hethcote, 2000) ~ The node with high coreness is a
et al., 2015a) (Kitsak et al., 2010), AS, Email (Guimera spreading influence node with a
et al., 2003), HepTh (Leskovec et al., 2007), strong edge diversity to nodes located
Hamster (Kunegis, 2016), PGP (Boguiia et al., in other shells of the network
2004), Netscience (Newman, 2006), Astro
Physics (Newman, 2001)
6 (Liu et al., Node ranking Email (Guimera et al., 2003), PGP (Boguiia ~ SIR (Hethcote, 2000) The distance from the node to nodes
2013a) et al., 2004), AS, P2P (Leskovec et al., 2007) in the core—shell layer can effectively
distinguish the spreading influence of
nodes in the same shell layer
Multicentrality MLB Node ranking  Adolescent, Advogato (Massa et al., 2009), SIR (Hethcote, 2000) The spreading influence nodes

predictors (Bucur,

Astro Physics (Newman, 2001), CondMat

identified by the MSB algorithms

2020) (Leskovec et al., 2007), GrQc (Leskovec et al., may be located in the peripheral
2007), HepTh (Leskovec et al., 2007), AS, regions of the network, and the
Brightkite, Email, Epinions, Euroroad, MASB algorithms can help to
Facebook, Github, Guntella, Googleplus, rectify this shortcoming
Hamster (Kunegis, 2016), IMDB,
OpenFlights, PGP (Boguiia et al., 2004),
Twitch, Twitter Stanford, US Airports,
PowerGrid (Watts and Strogatz, 1998),
WikiTalk
Perturb and Node ranking Email (Klimt and Yang, 2004), SIR (Hethcote, 2000)  The idea of ensemble learning can
combine (P&C) Epinions, WikiVote improve the robustness of the k-core
(Tixier et al., and PageRank algorithm
2019)
Influence deep Node ranking Sina Weibo, Epinions, WikiVote, Independent cascading The graph convolutional networking
learning (IDL) NetHEPT (Pal et al., 2014) (IC) (Kempe et al., (GCN) model has a great potential for
(Wang et al., 2003) the identification of spreading
2019) influence nodes

(a) (b)

Fig. 1 Diagram of four types of networks: (a) undirected and unweighted network; (b) directed and unweighted network; (c) undirected

and weighted network; and (d) directed and weighted network.

between users. For such networks, directly using the
structure information of the entire network to identify
spreading influence nodes will be costly and inefficient.
To develop efficient identification algorithms that can be
applied to large-scale social networks, an increasing
number of researchers attempt to identify spreading influ-
ence nodes by considering only the micro-level structural
information. Hu et al. (2018) proved the feasibility of
identifying the spreading influence nodes via the micro-
level structure information on the basis of percolation
theory (Dorogovtsev et al., 2008). They found the nucle-
ation behavior of the spreading process, that is, if the

number of individuals influenced by spreading sources is
larger than a small characteristic number, then the infor-
mation will rapidly reach the percolation cluster regardless
of the global structure of the network, and it will be
contained within a local area otherwise. Over the past
decades, a great number of the MSB algorithms that can
achieve relatively high accuracy while keeping low
complexity have been proposed (Liu et al., 2017a; Bao
etal., 2017).

The simplest MSB algorithm is the degree centrality
(DC) (Freeman, 1978), which defines the number of a
node’s first-order neighbors as its spreading influence,
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which is given as

k(i)

DC (i) = P

, (1

where k(i) denotes node i’s degree, and n is the total
number of nodes in the network. In common sense, infor-
mation shared by online users may influence their followers
and indirectly affect followers’ friends. Having users
with the same number of followers on online social plat-
forms is common. In such cases, only considering the
number of directly connected nodes may be extremely
naive. An example is shown in Fig. 2 that although the
degree centralities of nodes 1 and 2 are the same, the
difference in the number of second-order neighbors will
be ignored by the DC method.

In spite of the above limitations, many MSB algorithms
borrowed the idea of the DC method because it requires
the least information. The local centrality (LC) (Chen
et al., 2012) improved the performance of the DC method
by simply aggregating the degree of high-order neighbors.
However, for large-scale social networks, the more inclu-
sion of information of higher-order neighbors, the better
the performance of the identification algorithm is not
always the case. Therefore, deciding how many steps of
neighbor nodes to consider is a key point in balancing the
accuracy and computational complexity of identification
algorithms. Liu et al. (2016b) compared the changes in
accuracy and complexity of their proposed algorithm
called neighborhood centrality (NC) when using the
structural information of different order neighbors. They
found that once the structure information of more than
three-order neighbors are used, the accuracy will not
obtain remarkably improvement while the complexity
increases intensely. The NC algorithm is given as

NCf=r,-+aZ:rj+azZrz+a3 Z Fot..td Z Tes

jeli zel'j\i oel;\j g€l \x

2

where r denotes a benchmark identification algorithm of
spreading influence nodes, I; is the set of first-order
neighbors of node i, a € [0, 1] is a free parameter, and /
represents the neighbor’s order. As shown in Eq. (2), the
NC algorithm assuming a node’s spreading influence will
be largely affected by neighbors close to it and will be
slightly influenced by distant neighbors. In other words,
Liu et al. (2016b) thought that the neighbors’ contribution

Fig.2 Diagram of nodes with the same number of first-order
neighbors but a different number of second-order neighbors.

to the node’s spreading influence is related to distances
from the neighbor nodes to the target node.

The local neighbor contribution (LNC) algorithm (Dai
et al., 2019) considers the node’s self-influence and its
neighbors’ contribution to the spreading influence, which
is given as

LNC (i) = [D (i)ZP(j) DC (j)]

J=1

k(i)
X [k(i) 2, CPGA - P(j))“‘“’”], 3)

J=1

where D (i) is the sum of neighbors’ degree of node i and
h denotes number of first- and second-order neighbors of
node i. P(j) =1/k(j) represents node j’s contribution to
the spreading influence of node i. C|” represents the
combination in mathematics.

Except for the difference in neighbors’ contributions on
the spreading influence of the node, two connected nodes,
i and j, have different influence on each other in directed
networks. Yu et al. (2019) thought that this difference
should be considered in undirected networks and defined
the spreading strength (SS) of node i on node j, thatis, c;;,
as the combination of the direct influence of node i on
node j and the indirect influence of node i’s neighbors on
node j, which is given as

\diia|
| 4)

where k$" denotes the number of node j’s neighbors that
are not neighbors of node i, )d,»,,2| represents the number
of paths between i and j with length 2, and a is a free
parameter.

The algorithms based on the degree information of
high-order neighbors, that is, high-order-neighbor-degree-
based algorithms, are efficient and easy to understand.
However, in addition to the degree information of neighbor
nodes, the topological connection of a node’s neighbors,
which indicates the potential for the node to spread infor-
mation to other parts of networks, plays an important role
in measuring its spreading influence (Soffer and Vazquez,
2005; Ren et al., 2013b). The local clustering coefficient
¢; is used to design the MSB algorithms for quantifying
the interactions between neighbor nodes. Mathematically,
the local clustering coefficient in undirected networks is
defined as

ci=1 +k;?‘“[1 +

CiIZe{v|],.veI“,|' )
k(@) (k (i) —1)

Soffer and Vazquez (2005) uncovered the negative
correlation between the clustering coefficient and degree
value in undirected networks. On this basis, Chen et al.
(2013) further discovered that nodes with small
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clustering coefficient are likely to connect with more
nodes in the future and proposed ClusterRank (CR)
method, represented by s;, which is defined as

5= fe) ) (km+1), (©6)

Jjeli

where f (c;) represents the effect of node i’s local clustering
coefficient on its spreading influence. Specifically, f(c;)
is a decreasing function concerning the local clustering
coefficient because a higher local clustering coefficient of
a node indicates that its neighbors interact with each
other closer than with nodes in other parts of networks,
resulting in information shared by the node being easily
contained only in a local area. In addition to the local
clustering coefficient of first-order neighbors, Gao et al.
(2014) proposed local structure centrality (LSC) by
further considering the positive effect of the local cluster-
ing coefficient of a node’s second-order neighbors on
its spreading influence, which is given as

LSC (i) = Z

JeTi

aN (u) +(1 —a)ch], 7)

2
vel

where N (u) = |l"f| is the total number of a node’s first-
and second-order neighbors, and a€[0, 1] is a free
parameter that can be adjusted in accordance with structural
attributes of networks to guarantee a stable performance.
However, the adjustment of the free parameter leads to
high extra computational complexity. Berahmand et al.
(2018) presented a parameter-free centrality algorithm
that considers the degree and the local clustering coefti-
cients of a node’s first- and second-order neighbors,
which is defined as

Centrality (i) = %;)k(t) + Z cj. ®)

Inspired by the positive effect of the local clustering
coefficient of second-order neighbors on the spreading
influence of the node, Yang et al. (2020) introduced
entropy technology to calculate the weights assigned to
degree and local clustering coefficient, and proposed a
novel centrality (DCC) algorithm, which is given as

DCC (i) = al, (i) + bl (i), )

where ID(i):k(i)+Z_rk( J) accounts for the effect
of degree and neighb(/)ré’ degree of node i, I.(i)=

e Z -, €j measures the effect of first- and second-order
€]

neighbjor's’ local clustering coefficients, and a+b = 1.

The introduction of the local clustering coefficient
enables the identification algorithms to have a higher
resolution in distinguishing the spreading influence of
nodes with the same number of neighbors, and local clus-
tering coefficient-based algorithms can identify nodes

located in the dense parts of networks. However, nodes
located in locally dense but globally peripheral regions of
the network are easily misclassified as spreading influ-
ence nodes because the local-clustering-coefficient-based
algorithms give less attention to the position of nodes.
The main challenge of designing an effective MSB
algorithm for identifying multiple spreading influence
nodes is how to reduce the overlapping spreading influence
of selected nodes. Taking DC algorithm as an example,
social networks often have the heterogeneous property,
that is, nodes with a small degree are more likely to
connect with nodes with a large degree. Seed nodes
selected by the DC method are easy to gather within a
local area of social networks (Barabasi and Bonabeau,
2003; Zhou et al., 2018). One of the main ideas to alleviate
this problem is to avoid selecting seed nodes with similar
topological attributes within a local area to ensure that
they are distributed in different parts of the network.
Sheikhahmadi et al. (2015) considered the distance and
the number of common neighbors between seed nodes to
ensure that selected nodes are evenly distributed in the
network. However, calculating the distances between
each pair of nodes in large-scale networks is time
consuming. Instead of using distance, Liu et al. (2017a)
proposed local structure similarity (LSS), which sets the
structure similarity between seed nodes as a constraint
when identifying seed nodes. Specifically, LSS first
selects the node with the largest degree as the initial seed
and then find other seeds in an iterative manner. In each
iteration, the next seed node will be chosen from the
first- and second-order common neighbors of all selected
seed nodes in accordance with the structure similarity
score s, which is given as

|P.nT)|
sij = k(l) k4 (10)

where P; denotes the set of first-order neighbors of node i,
I'; is the first-order neighbors of node j if node i is
connected to node j, and I'; is the set of first- and second-
order neighbors of node j if node j is the second-order
neighbor of node i. If the structure similarity scores
between the target node and all seed nodes are smaller
than a given threshold y, then the target node will be
selected as the next seed node. To ensure that seed
nodes are detected from different parts of the network,
Bao et al. (2017) borrowed the idea of k-means clustering
(Macqueen, 1967) and presented heuristic clustering (HC)
to reduce the overlapping spreading influence. Initially,
centers of k clusters are randomly chosen. Noncenter
nodes are classified into these clusters in accordance with
the local path similarity (Zhou et al., 2009) between them
and center nodes, which is defined as

W= A+aA’, an
B()= ) W, (12)
JeC,
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where C, denotes the set of nodes in cluster ¢, W is the
similarity matrix, a is a free parameter, and B(i) is used to
update the cluster center, which represents the significant
of node i in cluster . The node classifying step and center
updating step are repeated until the steady-state is reached.
The center of each cluster is selected as the seed node.

Similarity-based algorithms ensure that those seed
nodes will not gather in a local region of networks by
setting the number of common neighbors or distance
between seced nodes as the constraint. However, the
performance of this type of algorithms is sensitive to the
selection of the initial seed node. For instance, the LSS
algorithm only considers the degree of initial seed node,
and structural attributes, such as the local clustering
coefficient and the node’s position, which are proven to
have a significant influence on the spreading influence
of nodes, are ignored.

Inspired by the voting process, Zhang et al. (2016)
proposed the VoteRank algorithm. In the initial phase, all
nodes will be assigned the same voting ability Z, and
voting score S;. Nodes will then start to vote for their
neighbors in an iterative manner. In each voting round,
node i’s voting score S; will be updated by using the

following equation
$.=>.2,

Jeli

(13)

The node with the highest voting score of each round
will be selected as the seed node, and its voting score will
be reset to 0 in the next round. The voting abilities of the
node’s neighbors will be decreased in the next round to
avoid the overlapping influence problem. The VoteRank
algorithm initially sets the voting abilities of all nodes to
1, which implicitly assumes that neighbors are the same
as the target node, thereby leading to low resolution. To
solve this problem, inspired by social conformity theory
and community structure of networks, Zhang et al.
(2019b) improved VoteRank from the viewpoints of the
individual and the group. In common sense, attractiveness
between individuals are different, which is quantified by
the node’s in-degree and out-degree, that is, attractive
power (AP), to measure the individual-level voting ability
of the node, which is given as

rgut
— Y=o
Y e
AP@, j)=3 o , (14
1 in out
et D=0+ 0
J vers

where I'" and I'™ denote the set of in- and out-neighbors
of node 7 in the directed network, respectively. The group-
level voting ability, that is, initiating power (IP), is
measured by the size of the community that the node

belongs, which is defined as

07 NCom, = NCom/
., (15)

s VG‘/’NCOm,iNCum/

where N, represents the size of the community to
which node i belongs. The voting score of each node is
calculated as follows

S,= > (APG, p+IPG, })).

Jeri

(16)

Zhang et al. (2019b) presented node selection strategies
from individual and group perspectives to reduce the
overlapping spreading influence. From the viewpoint of
the individual, the node will be removed from the
network once the node is selected as the seed node. From
the group viewpoint, the candidate will not be selected
when the community to which the candidate node
belongs is strongly connected with the communities that
the seed nodes belong to. Kumar and Panda (2020) intro-
duced the neighborhood coreness algorithm (NCRank)
to enhance the resolution of the VoteRank algorithm.
Considering the k-shell values of neighbors, the voting
score is given as

$,= D (Zx(1-a)xCoe () +Z xa,

Jjeli

(17)

where C,.(j) represents the neighborhood coreness of
node j, and a € [0, 1] denotes a free parameter. Guo et al.
(2020) proposed the EnRenew algorithm by considering
the difference between nodes when decreasing their
influence on the basis of information entropy, which
is defined as

entropy (i) = ZHij = _Zpijlogpij’

=y JeT,
k(@)

SEYIY

[T}

(18)

(19)

After the node is selected, the voting scores of its
[-order neighbors will be decreased by using following
equation to avoid the overlapping spreading influence

H.F‘ = 1 Hjlfljl , (20)
2 entropy(i),
. 1
entropy(i)y, = log —, (21)

(k)

where j' denotes the I-length reachable nodes of node j,
and (k) is the average degree of the network. Sun et al.
(2019) extended the use of VoteRank in weighted
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networks by considering the edge weight and proposed
the WvoteRank algorithm. The voting score of the node
in weighted networks is defined as

(22)

where w;; is the weight of edge e;;.

The VoteRank-based algorithms are efficient because
no distance calculation is included. However, the initial
state of each node and the spreading influence decreasing
strategy will cause a large influence on the performance
of the VoteRank-based algorithms.

The spreading influence of nodes depend on their struc-
tural attributes and the spreading mechanism. On the
basis of the spreading mechanism of the independent
cascading (IC) model, the degree discount (DD) algorithm
(Chen et al., 2009) selects a set of seed nodes by
discounting a node’s degree in accordance with the
number of seeds in its neighborhood to alleviate the over-
lapping spreading influence between seed nodes. Chen
et al. (2019) assumed that if the information propagated
by a node can easily influence its high-order neighbors,
this node will be considered to have more potential to
initiate large-scale propagation. Considering the diffusion
process and the sum of probabilities that high-order
neighbors being influenced by the target node, the
spreading influence of nodes is quantified by using the
following equation

Rank (i) = 23: Z score(j, 1),

=1 je'

(23)
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where score(j, [) represents the probability of the /-order
neighbor j being influenced by node i, which is defined
as

score(j, ) =1 —uninF,(j, ), (24)

uninF, (j, I) = ]_[ (1-score(v, I-1)xB), (25

v(El"f‘1

where uninF (j, [) represents the probability that node j
is not infected by nodes belong to I'”", B denotes the
infection rate, and score (v, 0) = 1.

The diffusion model-based algorithms consider the
spreading dynamics when evaluating the spreading
influence of nodes, which is more in line with reality.
However, the diffusion mechanism varies with the
spreading events, thereby restricting the applications of
this type of algorithms in different scenarios.

The MSB algorithms have offered solutions for identi-
fying spreading influence nodes in large-scale social
networks. Specifically, the MSB algorithms can be
further classified into five main method streams based on
the idea used to design identification algorithms: The
high-order-neighbor-degree-based, the local-clustering-
coefficient-based, the similarity-based, the VoteRank-
based, and the diffusion-model-based methods. The
advantages and disadvantages of representative algorithms
and the five main method streams mentioned in this
section are listed in Tables 2 and 3. Although the MSB
algorithms have achieved promising performance, several
challenges still need to be addressed in the future.

For the node ranking problem, the high-order-neighbor-
degree-based algorithms are efficient because they
mainly focus on the degree values of nodes. However,

Table 2 Advantages and disadvantages of representative MSB algorithms, where  is the total number of iteration rounds, (k) is the average
degree of nodes, and n and m are total number of nodes and edges of a network, respectively

Methods Advantages Disadvantages Computational complexity
DC (Freeman, Low computational complexity; The structure information of high-order O(n)
1978) Simple and easy to understand neighbors is ignored
LC (Chenetal., Considers the degree of high-order neighbor nodes Other structural attributes are disregarded, 1) (( k) nz)
2012) except the degree of the node
LNC (Dai et al., Measures the contributions of different neighbors to the Unsuitable for the random network O ((kyn)
2019) spreading influence of the node; Outperforms DC and
betweenness while keeping low computational complexity
VoteRank Uses the idea of voting to aggregate the structural The differences in the initial voting abilities 0(n)
(Zhang et al., 2016) information of high-order neighbors; The accuracy of nodes are ignored
is higher than PageRank and LeaderRank;
Low computational complexity
AlRank Distinguishes the voting abilities of nodes from the The performance will be unstable when the O(n)
(Zhang et al., perspective of individuals and groups edge density between communities is low
2019b)
NCRank (Kumar Distinguishes the voting abilities of nodes by Adjusting free parameters to obtain a stable 0O(n)
and Panda, 2020) considering the position of the node performance is time consuming
EnRenew Different initial voting abilities of nodes are The computational complexity is higher 2

(Guo et al., 2020) distinguished on the basis of the information entropy

DynamicRank
(Chen et al., 2019)

Uses the probabilities of high-order neighbors being
influenced to measure the spreading influence of nodes

m
than VoteRank O(m+n+rlog(n)+ oy

Adjusting the free parameter to obtain a
stable performance is time consuming

O(n)
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Table 3 Advantages and disadvantages of five main MSB method streams

Method streams Related works

Advantages Disadvantages

High-order-neighbor- LC (Chen et al., 2012); NC (Liu et al., 2016b);
degree-based LNC (Dai et al., 2019); SS (Yu et al., 2019)

Local-clustering-
coefficient-based

CR (Chen et al., 2013); LSC (Gao et al.,
2014); Centrality (Berahmand et al., 2018);
DCC (Yang et al., 2020)

Similarity-based
LSS (Liu et al., 2017a); HC (Bao et al., 2017)

VoteRank (Zhang et al., 2016); AIRank
(Zhang et al., 2019b); NCRank (Kumar and
Panda, 2020); EnRenew (Guo et al., 2020)

DD (Chen et al., 2009);
DynamicRank (Chen et al., 2019)

VoteRank-based

Diffusion-model-
based

Efficient and easy to understand

Higher resolution; Enables the
spreading influence of nodes with
the same degree value to be
further distinguished

DegreeDistance (Sheikhahmadi et al., 2015); Ensures that seed nodes are distributed
in different parts of the network

No distance calculation is included

The topological information and the
diffusion mechanism are considered

Topological information, such as interactions
between neighbors and the edge density,
is ignored

The performance will be suppressed in
densely connected networks because it only
focuses on the edge density in the node’s
neighborhood

The selection of initial seed nodes has a
large influence on its performance

The initial state of each node and the
spreading influence decreasing strategy will
cause large influence on its performance

When the diffusion mechanism changes,
its performance will be affected

the topological connections between neighbors did
not receive sufficient attention. The local-clustering-
coefficient-based algorithm improved this shortcoming
by considering the relations of a node’s first- and
second-order neighbors. The two types of MSB algorithms
implicitly assume that spreading influence nodes are
nodes located in densely connected regions of networks,
which might lead to identification algorithms performing
poorly in networks with a high edge density because the
community structure and macro-level information are
ignored. Therefore, improving the performance of MSB
algorithms in densely connected networks while keeping
low computational complexity can be a future direction
worthy of attention.

For the influence maximization problem, the similarity-
based algorithms try to reduce overlapping spreading
influence by suppressing the similarity between seed
nodes, which depend on the selection of initial seed
nodes and similarity measurements. Researchers are
encouraged to modify the initial seed node selection
strategies and similarity indices to develop more effective
algorithms. The VoteRank-based algorithms select seed
nodes by considering neighbors’ contributions in the
spreading influence of nodes in an iterative manner. How
to quantify the difference in neighbors’ contributions is
still worthy of study. Although diffusion-model-based
algorithms consider the topological attributes of nodes
and spreading dynamics when choosing seed nodes, they
depend on a specific diffusion model. Whether this type
of algorithms can work well when using different diffusion
models needs to be further explored.

4 CSB algorithms

Community structure is a ubiquitous characteristic of
social networks (Girvan and Newman, 2002; Yang et al.,
2018b; Dong et al., 2021) because individuals tend to
organize as groups based on their interests, occupations,
social status, and other attributes. Each community can be
viewed as a subnetwork in social networks, where nodes

in the same subnetwork are densely connected, and edges
between subnetworks are relatively sparse. Exploring the
community structure can help researchers obtain an in-
depth understanding of the network structure and the
mechanism of the spreading process. For example, infor-
mation transmission between communities requires the
participation of individuals serving as the bridge. These
individuals often have strong control over the information
flow in common sense. In terms of this idea, Zhao et al.
(2014) combined the centralities with index of the num-
ber of communities a node is connected with to identify
the spreading influence nodes and discovered that this
strategy can help detect spreading influence nodes that
single centrality may ignore. However, the community
structure of a network may change when applying differ-
ent community detection algorithms (Palla et al., 2005;
Newman, 2006; Pan et al., 2010; Tang et al., 2016), leading
to this strategy being unstable. To alleviate this short-
coming, Zhao et al. (2015) considered the size of the
community and the distribution of neighbors to reduce
the dependence on community detection algorithms
(Cantwell and Newman, 2019) and proposed community-
based centrality (CbC), which is defined as

ZC N,
Cbc (1) = kiq Comy, ,
gq=1

n

(26)

where k;, denotes the number of node i’s neighbors in
community ¢, ¢ is the total number of communities, and
Neon, 18 the size of community /. Tulu et al. (2018) intro-
duced the Shannon entropy to measure the spreading
influence of nodes and proposed the community-based
mediator (CbM), which defines the relations between the
target node and nodes in the same community it belongs
and nodes in other communities as its spreading influence,
which is given as

ChM (i) = H(x — 2,

Zk(j)

@7
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HG) = (=) pl'log(p))+(= D, pin log (51)

where H (i) denotes the internal entropy and external edge
density of node i, and A, is the community. p§ and p;"
represent the external and internal edge densities of node
i, respectively. Zhao et al. (2020c) improved the accuracy
of closeness centrality (CC) (Sabidussi, 1966) by intro-
ducing the community structure information of the node
and its neighbors. The mathematical formulation of the
improved CC (ICC) is given as

(28)

ICC() = CC(Z)

+Zmax CC(j)} —= Neon. ,(jew),

wew;

29)

where CC (i) denotes the CC of node i, and W, is the set
of communities the node i’s neighbors are connected to,
except the community containing node i.

From the perspective of network division based on the
community structure of networks, Ghalmane et al. (2019b)
proposed a CSB spreading influence identification
framework called modular centrality (MC). Specifically,
the whole process is as follows: 1) Construct the local
network and the global network by removing edges
between communities and within each community;
2) Calculate the spreading influence of nodes in the local
network and the global network by using the selected
node spreading influence identification algorithm; and
3) The final spreading influence of a node is the sum of
its spreading influence on local and global networks.
They found that identifying spreading influence nodes in
the local network will be more accurate than in the global
network when a clear community structure is found in the
original network, and the accuracy will be higher in the
global network otherwise. In the real world, one node can
belong to multiple communities, indicating that networks
may have an overlapping community (OC) structure. In
such a case, the local and global networks constructed by
the proposed framework will be inappropriate. Therefore,
Ghalmane et al. (2019a) modified the network construc-
tion rule, which is shown in Fig. 3.

To detect the spreading influence nodes in networks
with the OC structure, Wei et al. (2018) used the
BigCLAM model (Yang and Leskovec, 2013) to identify
the OC structure of the network. The seed nodes are
found in accordance with network constraint coefficient
and the number of communities the first- and second-
order neighbors are connected with. The mathematical
formulation of the proposed method is defined as

Z Z 1075 x Comy (v)

OC N Jjeli vel; ’
0= axioc(h 1jeV)

(30)

where C, denotes the network constraint coefficient of
node v, and Comy (v) is the number of communities

” N
/ Local network N

Global network

___________________

Fig.3 Diagram of local and global network division of the
network with overlapping community structure.

node v is connected with.

The CSB node ranking algorithms have shown advan-
tages of using the community-level information to identify
spreading influence nodes. However, the computational
complexity of identification algorithms will increase
because more community structural attributes are consid-
ered. Therefore, filtering significant attributes is a key
step for designing an effective CSB algorithm. The use
of the community structure information by splitting
networks into subnetworks provides a novel perspective
for designing CSB algorithms. However, the community
structure of networks depends on community detection
algorithms because the community structure of most real-
world networks is unknown, which may affect the perfor-
mance of this type of algorithm.

In addition to helping in analyzing network structure,
community structure information can be used to reduce
the time complexity when dealing with the influence
maximization task. On the basis of submodular property
of the influence spread (Galstyan and Cohen, 2007),
Halappanavar et al. (2016) found that the overall influence
of'seed nodes selected from each community independently
approximates to the influence of seed nodes identified by
using the global structure information. Inspired by the
community structure of social networks, Wang et al.
(2010) developed a community-based greedy algorithm
(CGA) based on the IC model (Kempe et al., 2003),
which is more efficient than the MixGreedy algorithm
(Kempe et al., 2003). Specifically, the CGA algorithm
uses dynamic programming to determine which commu-
nity can bring the largest importance gain AR; in each
step to narrow the searching space from the network level
to the community level. The largest importance gain that
community i, Com;, can bring is defined as

AR; = max{R;(I,_; Uv) —R;(I;) | v € Com;}, (31)

where I,_, denotes the set of nodes with the size k— 1, and
R; (I,_,) represents the overall spreading influence of [,_,.
On the basis of Eq. (31), the community selection strategy
is defined as
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R(u, k) =max{R(u—-1, k), R(u, k—1)+AR.}, (32)

R(u, 0)=0, R(0, k) =0, (33)

where AR, is the largest importance gain that community
¢, Com,, can bring, and R (z — 1, k) denotes the importance
gain of selecting the kth seed node from previous u—1
communities. As shown in Eq. (32), CGA will attempt to
detect the kth spreading influence node in community u
if the importance gain of finding the kth seed node in
community u is larger than in previous u — 1 communities.
Although this strategy has relatively low complexity, it
cannot guarantee high accuracy. On the basis of spreading
dynamics, Shang et al. (2017) divided the whole process
into two phases: 1) The set of seed nodes S influences
their nearest neighbors in N (S); and 2) N(S) influences
nonseed nodes in each community. In the first phase,
the probability of nodes in N(S) being influenced by
seeds is defined as

P(S)=1-[]-py.

jerins

(34

where p; denotes the probability of node j being influenced
by seed node i. In the second phase, the influence of
N (S) is calculated as follows

FS)= ), (8,8, Com,

Com;eCom

(35)

f(S’ S/’ Comi) = Z PV(S’ S,’ Comi)’

veCom;

(36)

where P, (S, S’, Com;) represents the probability of node
v in community i being influenced. The spreading influ-
ence of the set of seeds S is defined on the basis of
the weighted cascading model (Guo et al., 2020)

gES) =IN(S)I+alNC(S)I, (37

where NC (S) denotes the set of neighbors of S, and a is a
free parameter. Determining a reasonable probability of
nonseed nodes being influenced by N (§) to ensure a high
accuracy will be time consuming.

The CSB algorithms based on the spreading mechanism
can identify seed nodes more comprehensively. The main
limitation of this type of algorithm is similar to the diffu-
sion model-based algorithms mentioned in the MSB
algorithm section. Specifically, the performance of this
type of algorithms might be influenced once the diffusion
mechanism changes.

Intuitively, communities’ contributions to information
diffusion are different. For example, compared with
an independent small-scale community, a large-scale
community with high inner edge density and strong rela-
tions with other communities is more likely to spread
information on a large scale. On the basis of this intuition,
Chen et al. (2014) used the community size as a criterion

to first filter a set of significant communities and then
identify seed nodes in each significant community by
comprehensively considering the degree and the similarity
of neighbor nodes, and whether the node is a hub.
Although this strategy can achieve high accuracy while
keeping low complexity, the information provided by the
community size is limited and fails to reflect the relations
between nodes in different communities. Wang et al.
(2018) suggested that the spreading influence of a
community can be measured from two aspects, which are
its internal and external spreading influence, and the
proposed community-hole index (CHR) considers the
community spreading influence and the node’s position.
Specifically, the spreading influence of community i,
that is, C,, is defined as

C,=axI™+bxI" (38)
where a and b denote two free parameters. I and I™
represent the edge density of the community containing i
and the influence of the community structure on commu-
nity importance, respectively. The position of a node is
quantified by using the following equation

Z e;C,

jer o
JEL:

—’
§ €

(el,"

B, = (39)

where I'" and '™ denote the set of neighbors that belongs
and does not belong to the community containing node i,
respectively. The final spreading influence of a node is
calculated by combining the community-level spreading
influence and its position, which is given as

CHR(i)=C, XB,. (40)

From the viewpoint of the seed node selection process,
Qiu et al. (2019) divided the process into three steps:
1) Find candidates on the basis of the number of commu-
nities the node is connected to and its degree; 2) Further
filter candidates by considering the number and the average
size of communities the node is connected to, and the
node’s degree; and 3) Select seed nodes from candidates
based on the greedy algorithm and the IC model. Specifi-
cally, in the first phase, the core node set S... and the
periphery node set Syoundary are identified in each commu-
nity independently. In the second phase, candidates will
be selected in accordance with the following equation

k(l) + NC()m, + anNC0m1/3s
k(l) + NCom,/Z’

i € S boundary

ClI(i)= , (41)

i e SCOFC

where CI(i) is the influence of community i, and
avgN,,, denotes the average size of communities node i
is connected to. After the searching space is narrowed,
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the greedy algorithm will identify seed nodes from the set
of candidates.

The CSB algorithms have shown their potential in
increasing the accuracy of node ranking and accelerating
the speed of seed node selection. The advantages and
disadvantages of representative CSB algorithms and the
main method streams mentioned in this section are
summarized in Tables 4 and 5. However, several chal-
lenges still need to be addressed.

For the node ranking problem, the community-
structural-attribute-based algorithms directly exploit the
community-level information when identifying spreading
influence nodes. However, the more consideration of the
community-level attributes, the better the performance of
the algorithms is not always the case because the efficiency
of the identification algorithms is important. Thus, how
to balance the accuracy and efficiency of the community-
structural based algorithm needs to be further explored.

The CSB node ranking and influence maximization
algorithms do rely on community detection algorithms
because the community structures of most real-world net-
works are unknown. The community structure identified
by different community detection algorithms may be
different even for the same network. Thus, how to reduce
the dependence of CSB algorithms on community struc-
ture detection algorithms is still a challenge in the future.
The community structural attributes will be considered
when designing the CSB algorithms. However, few studies
focus on the relationship between node spreading influ-
ence and community structural attributes. Most real-
world networks display an overlapping community
structure, but most existing CSB algorithms are devel-
oped on the basis of the nonoverlapping community
structure. Therefore, another challenge is extending these
algorithms’ application to networks with the overlapping
community structure.

Table 4 Advantages and disadvantages of representative CSB algorithms, where K is the number of seed nodes, ps is the total number of
communities, T, is the time to compute the degree of a node in community p, Ncom, is the size of community p, and n” and m’ are the number of

candidate nodes and edges, respectively

Methods Advantages

Vc (Zhao et al., 2014b)
detected by a single centrality

CbC (Zhao et al., 2015)

CbM (Tulu et al., 2018)

CGA (Wang et al., 2010)

to the community scale

Community-based
framework for influence
maximization (CoFIM)
(Shang et al., 2017)

PHG (Qiu et al., 2019)

ICC (Zhao et al., 2020c)
community structural attributes

Community-based influence
maximization (CIM) (Chen
etal., 2014)

CHR (Wang et al., 2018)

by the size of the community

importance to node-level importance

Identifies spreading influence nodes that cannot be

Alleviates the instability of V¢ by considering the
community size and the distribution of neighbors

The edge densities within and between communities
are considered; CbM outperforms CbC

Reduces the computational complexity of
MixGreedy by narrowing the searching space

Divides the propagation process into two phases,
which is more explainable; The computational
complexity is low while keeping high accuracy

Reduces the computational complexity by filtering
candidates before applying the greedy algorithm
Improves the performance of CC by adopting

Narrows the seed nodes’ searching space

Considers the influence of community-level

Disadvantages Computational complexity
The performance will be unstable O (n)
when the community structure of the
network changes
Other community structural attributes O (n(ky)
are not used except the size of the
community
The computational complexity is O (mnky)
higher than CbC
The accuracy is lower than MixGreedy 0( MKT, + KNcom Tp)
»
Determining an appropriate infection o ( K2 nkmax)

rate and free parameters is time
consuming

Only considers the degree of nodes
when identifying the core node set

O(nlogn+n+Kn'm’)
Unsuitable for large-scale networks -

Other community structural attributes -
are ignored, except the size of the
community

Unsuitable for large-scale networks -

Note: “~” denotes that the time complexity is not provided in the original paper.

Table 5 Advantages and disadvantages of three main CSB method streams

Method streams Related works

Advantages Disadvantages

Community-
structural-
attribute-based

2015); CbM (Tulu et al., 2018); ICC
(Zhao et al., 2020c); OC (Wei et al.,
2018); MC (Ghalmane et al., 2019a)

CGA (Wang et al., 2010);
CoFIM (Shang et al., 2017)

Diffusion-
mechanism-based

Ve (Zhao et al., 2014b); CbC (Zhao et al., Community-level structural information can help
detect spreading influence nodes that centralities

The topological information and diffusion
mechanism are considered; Community structure

Its performance relies on the
community detection algorithms and
the selection of community structural

attributes

may ignore

Application scenarios are limited by
the diffusion mechanism

information helps to accelerate the speed of seed

Community-

importance-based et al., 2018); PHG (Qiu et al., 2019)

CIM (Chen et al., 2014); CHR (Wang The difference in the importance of communities is
considered; Community structure information

node selection

How to quantify the importance of
community has not been well studied

helps to accelerate the speed of seed node selection
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5 MASB algorithms

Regarding the high time complexity, the MASB algo-
rithms, identifying the spreading influence nodes based
on the network’s global structure information, perform
well in densely connected networks (Namtirtha et al.,
2018). The commonly used MASB centralities include
betweenness centrality (BC) (Freeman, 1977), closeness
centrality (CC) (Sabidussi, 1966), eigenvector centrality
(EC) (Bonacich, 1972), and k-shell decomposition
(Kitsak et al., 2010). BC defines nodes serving as the role
of the bridge of two disconnected groups as spreading
influence nodes, which is given as

BC(i) = Z o, uli)

o, u)’ (42)

v,ueV
where o (v, u) denotes the number of shortest paths
between node v and node u, and o (v, u | i) represents the
number of shortest paths between node v and node u
that pass node i.

CC defines nodes located in the center of the network
as spreading influence nodes. Specifically, the location of
a node is quantified by the average distance between it
and the rest, which is defined as

n—1

2.y

J#E

CCi)= (43)

where d; is the length of the shortest path between node i
and node j.

EC measures the spreading influence of a node by the
spreading influence of its neighbors, which is defined as

EC()=p Z a;x;, (44)
j=1

where a; =1 means there is an edge between nodes i
and j, a;; = 0 otherwise. p denotes a proportional param-
eter, and x = (x, X, ..., X,) 1S an eigenvector where
each element corresponds to each node’s spreading influ-
ence. A convergence state can be achieved by updating
x iteratively. PageRank is one of the most well-known
algorithms developed on the basis of EC and is designed
to rank the searching results returned by the Google
search engine (Brin and Page, 1998). The original version
of PageRank can only work well in strongly connected
networks. A return probability was added to overcome
this limitation. However, determining a proper return
probability requires many tests, which is less efficient
when used in social networks. Lii et al. (2011) proposed a
parameter-free version of PageRank called LeaderRank
(LR), which can converge faster than PageRank. Specifi-
cally, in the initialization phase, LeaderRank will first
add a ground node interconnected with all existing nodes

to make the network strongly connected. The LR values
of all nodes, except the ground node, will be set to 1.
After the initialization step, the LR value of each node
will be updated iteratively by using the following
equation

LR(H= 4y 2D, (45)

< k.(;ut

When the steady-state is reached, the LR value of the
ground node will be evenly allocated to other nodes, and
the final LR value of each node corresponds to its spread-
ing influence. Li et al. (2014) suggested the LR value of
the ground node should not be evenly assigned. Nodes
with larger in-degree should obtain more LR value from
the ground node. For example, in social networks, the
larger the in-degree of users is, the more followers they
have, which can reflect users’ popularity. The improved
update rule by considering the in-degree of the node is
defined as

LRK[):ZWi»LRj(t_l), (46)

7 n+l

j=1
§ Wi

where for any node i and the ground node g, w,, = (k)"
and a denotes a free parameter. For any node pair i and j,
w;; = 1 when a;; = 1, w;; = 0 otherwise.

The main idea of iteration-based algorithms is to aggre-
gate high-order neighbors’ structural information in an
iterative manner, which is relatively more effective than
algorithms that directly exploit the distance information.
However, neighbors’ contributions to the spreading influ-
ence of the target node are mainly quantified by degree
values. Measuring the importance of each neighbor node
in a more comprehensive manner might further improve
the performance of iterative-based algorithms.

Liu et al. (2016a) presented the dynamic-sensitive (DS)
algorithm by simulating the discrete susceptible-infected-
recovered (SIR) model to measure the spreading influence
of nodes. Specifically, the DS algorithm assumes that the
activated node has the probability S to activate inactive
nodes, and the activated node has the probability u to
return to the inactive state. The probability that a node
will be activated at time ¢ is as follows

x(H)=x(t=1)=BABA+ (1) D" x(0),

where x(f) denotes the cumulative probability of the node
being activated from time 1 to time ¢, and 7 is the identity
matrix. x(f) is further approximated as

47

x()= ) (x()=x(r=1D)+x(1).

r=2

(48)

Lete,=(0, ..., 0, 1, 0, ..., 0)" when node i is the initial
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activated node, and the spreading power of node i can be
calculated by

Si(0) = Z BAH'e,, (49)

=0
where H=B8A+(1—u)I. DS considers the network
topology and the spreading dynamics.

As mentioned above, the MSB algorithms give less
attention to the macro-level position of the node. How-
ever, Kitsak et al. (2010) found that a node’s position in
the network can reflect its spreading influence more accu-
rately than its degree and proposed k-shell decomposition,
which splits nodes into different layers by recursively
removing nodes in accordance with their degree. A
simple example of finding nodes belonging to shell layer
1 by k-shell decomposition is shown in Fig. 4. Specifi-
cally, the whole process is as follows: 1) Removing nodes
with degree value 1 in the original network (Fig. 4(a)), and
a new network can be obtained (Fig. 4(b)); 2) Continue
to remove nodes with degree value 1 (Fig. 4(b)); and
3) Repeat step 2 until all remaining nodes’ degree is
larger than 1 (Fig. 4(c)).

Although the k-shell decomposition can identify nodes
located in the core—shell of networks, the spreading influ-
ence of nodes in the same shell cannot be distinguished.
In recent years, considerable research efforts have been
made to improve this limitation. Specifically, the
proposed ideas can be mainly classified into distance-
based, degree-based, removing-order-based and edge-
diversity-based (Zeng and Zhang, 2013; Ren et al.,
2013a; Maji et al., 2020). Liu et al. (2013a) alleviated
this issue by considering the length of shortest paths
between the target node and core nodes, which is given as

0G| ks) = (ks —ks+1) ) dyj, i € S,

jeJ

(50)

where J denotes the set of nodes in the core—shell layer
and S,, represents the set of nodes in the ksth shell layer.
Instead of using the distance, Ma et al. (2014) borrowed
the idea of “the rich get richer” and designed an algorithm
that combined resource allocation dynamic and k-shell
decomposition to measure the spreading influence of

nodes. In the initialization phase, every node will be
assigned the same resources. Then each node will itera-
tively allocate its resources to neighbor nodes according
to their k-shell values. The number of resources allocated
by node j to node i at time ¢+ 1 is defined as

ks (i)

Z ks (1)

uel’;

R (t+1)= a; |1;(1), (5D

where ks (i) denotes the k-shell value of node i and /;(¢)
denotes resources that node j has at time ¢. This iteration
process will stop once the resource gain is lower than a
given threshold. The following equation calculates the
total resource value of node i at time 7+ 1

L(t+1) = ZRH(” D).

Jjeli

(52)

By modifying the pruning rule of the k-shell decompo-
sition algorithm to be more fine-grained, Liu et al. (2015c)
presented an improved k-shell (IKs) algorithm. Specifi-
cally, the rule is changed to remove nodes with the smallest
degree value in each iteration and assign the IKs value to
each node. Based on the IKs algorithm, Zareie et al.
(2019) proposed an algorithm that measures the spreading
influence of nodes by considering the diversity of its
neighbor nodes, and the spreading and the intensity of
influence. In order to calculate the diversity of node i’s
neighbor nodes, the Shannon entropy, H, (i), is intro-
duced, which is defined as

1Ks() ( IKs(j)

== L4 TKs(T) IKs(T)

), (53)

where IKs(I";) denotes the sum of IKs values of node i’s
neighbors. The spreading and intensity of the node are
quantified by Jensen-Shannon Divergence (JSD) (Lin,
1991), namely

Ty — 1oyl L
JSD(jeT) = H[Z 6 xxj] 2% xH(X,), (54)

JeT,

Fig. 4 Diagram of k-shell decomposition: (a) original network; (b) network after the first removal of nodes with degree 1; and

(c) network after all nodes with degree 1 have been removed.
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where X; = (pji, P2 - Pjksnn) denotes the distribution of
IKs values of node j’s neighbors. The diversity-strength
centrality, DSC (i), of node i is calculated as follows

DSC (i) = IKs(T)x H, ()X JSD(€T).  (55)

Although many nodes will be regarded as the same by
k-shell decomposition algorithm, these nodes may have
different DC values. Bae and Kim (2014) used degree
and k-shell values of nodes’ neighbors to distinguish
differences in the spreading influence of nodes located in
the same shell layer and proposed neighborhood coreness
(Cyo), which is defined as

Cuci) = ) ks ().
JeT
Focusing on nodes with the largest k-shell value, Lin
et al. (2014) used the sum of neighbors’ k-shell value to
identify the most influential node of the networks, and
proposed improved neighbors’ k-core (INK) algorithm,
which is given as

(56)

INK (i) = Z ks(j)", (57)

JeLi

where a is a tunable parameter.

In addition to the difference in degree value of nodes in
the same layer, the order in which nodes located in the
same shell are removed is also different. Wang et al.
(2016) suggested that iteration factors of the k-shell
decomposition can be used to distinguish the spreading
influence of nodes in the same shell layer. Compared
with these early removed nodes, later removed nodes are
closer to the core layer of the network and thus have
stronger spreading influence. The mathematical formula-
tion is defined as

5(i) = ks(i)x(l L rer® )

iter (total) (58)

where iter (i) denotes the iteration round that node i being
removed and ifer(total) represents the total number of
iteration rounds. Based on this, the influence capability
of node i, InfC (i), is defined as
IﬂfC(i)=5(i)k(i)+z5(j)k(j)- (59)

jeT,

According to the order in which nodes are removed and
nodes’ k-shell values, Li et al. (2018) divided neighbors
of each node into four categories according to the order
in which nodes are removed and nodes’ k-shell value:
1) The upper class contains the set of neighbors that have
greater k-shell values than the target node; 2) The equal
upper class contains neighbors with the same k-shell
value of the target node, and the deletion order is the
same or later than the target node; 3) The equal lower
class represents the set of neighbor nodes that have the

Front. Eng. Manag. 2022, 9(4): 520-549

same k-shell value as the target node, and the deletion
order is the same as the deletion order of the target node
or before the target node; and 4) The lower class contains
neighbor nodes with smaller k-shell value than the target
node. Based on the numbers of different types of neigh-
bors, the spreading capability of node i, Ks~ (i), is quan-
tified as follows

KsN(@)=a,Xe" +a,Xe" +as X e +a, xé, (60)

where a,, a,, a; and a, are free parameters, and ¢*, e, e,
and ¢' denote the number of neighbors belonging to upper,
equal upper, equal lower, and lower class, respectively.

Except for the low resolution, the k-shell decomposition
algorithm cannot always guarantee a good performance
across different types of networks. Liu et al. (2015a)
found that nodes located in the core—shell layer can be
further divided into true core and core-like groups in
accordance with the edge diversity between these core
nodes and nodes in other shell layers. Specifically, nodes
in the true core group refer to nodes located in the
core—shell layer and have a stronger spreading influence
than nodes in other shell layers, and the node belongs to a
core-like group otherwise. The edge density is used to
judge whether core nodes belong to the true core group,
which is defined as

(61)

where [ denotes the total number of shell layers of the
network and r,, ., represents the average edge strength of
the ksth shell to the ks’th shell. Inspired by this, Liu et al.
(2015) presented a strategy to improve the accuracy of
k-shell decomposition, that is, removing redundant edges
to better identify nodes belonging to the true core group
by adding a weight to each edge and setting a threshold
value before applying k-shell decomposition. Specifically,
the redundant edge refers to the edge that has relatively
low spreading influence but may lead to form a core-like
group, and the weight of each edge is related to the
number of common neighbors between two connected
nodes. The fewer the common neighbors are, the larger
the weight is. Namtirtha et al. (2021) suggested that MSB
and MASB algorithms have their advantages in networks
with different connectivity strengths and discovered that
k-shell decomposition performs well in networks with
strong connectivity and neighbor degree centrality is
suitable for sparse networks. On this basis, network
global structure-based centrality (NGSC) that combines
k-shell decomposition and neighbor degree centrality
was proposed, which is defined as

NGSC (i) = Z(axks(i)+b><k(j))+(a><ks(j)+b><k(j)),

(62)
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where a and b are two free parameters that can be modified
in accordance with the network’s connectivity strength to
ensure that NGSC can obtain a stable performance in
different types of networks. However, tuning parameters
is a time-consuming procedure. To solve this issue, Maji
(2020) has designed a parameter-free version of NGSC,
that is

ksd (i) = st(i)+ks(j)+/l(k(i)+k(j)), (63)

Jjeli

where A = (ks)/(k). Ma et al. (2020) proposed an algorithm
that simultaneously measures the spreading influence of
the node from the viewpoints of its local and global
spreading influence. The entropy of k-shell values is
introduced to quantify the global spreading influence of
nodes, which is defined as

KSmax
E =- Z pi(x;) xlog,pi(x)), (64)
=1
)
pi(x) = 5 —, (63)
x.

J
j=1

where x;=(1, 2, ..., kSn.) denotes the set of k-shell
values of node j’s neighbors, and |xj| represents the
number of nodes in the jth shell layer. The local spreading
influence of a node is measured on the basis of the
assumption that the higher the similarity between the
target node and its neighbors is, the higher the belonging
of its neighbors to the target node is. The similarity
between the target node and its neighbors is defined as

B = s, j), (66)
J=T;

2w+ Z wWaW,,

s(i7 J) _ tel;Nl; 7 (67)
[1 +Zwi][l +Zw§,]

tel’; tel’;
_|rnr| s
ij — |F,-UF_,-|' ( )

On the basis of the global and local importance, the
final importance of node i, that is, Influence (i), is calcu-

lated as follows
Influence (i) = aE; + bB;, (69)

where a+b = 1.
Although the combination of micro and macro structural

attributes has significantly improved the generalizability
of the identification algorithm of spreading influence
nodes, the weight assigned to each attribute needs to be
defined manually, limiting the introduction of more struc-
tural information.

Structural hole theory (Burt et al., 2013) suggested that
nodes with strong control over the information flow in
the entire network are spreading influence nodes. As
shown in Fig. 5, a structural hole node 1 exists in Fig. 5(a)
compared with three interconnected nodes in Fig. 5(b). In
Fig. 5(a), if node 2 would like to transmit information to
node 3 or node 4, then it requires the participation of
node 1. If the edge between nodes 2 and 3 is added, the
control ability of node 1 will decrease. The network
constraint coefficient is used to decide whether the node
is a structural hole, which is given as

2
C= Z(Pi_/ + Zpiqpq_i] N7ESRIA (70)
q

JeT,

Pij = — (71)

L

JeLi

However, the network constraint coefficient only
considers the relations between the node and its first-
order neighbors, which may lead to low resolution. Su
and Song (2015) improved the network constraint coeffi-
cient by further considering the interactions between
second-order neighbors, which is defined as

,__90)

Dij = m’

vel'

(72)

where Q (j) denotes the sum of the degree of j’s neighbor
nodes. Zhang et al. (2019a) used the improved version of
network constraint coefficient (Su and Song, 2015) and
network connectivity to measure the local and global
importance of the node and proposed CumulativeRank.
Specifically, the local spreading influence of node i,
denoted by INCC (i), is defined as

(b)

Fig. 5 Diagram of the structural hole (adapted from Su
and Song (2015)): (a) network with a structural hole; and
(b) network without a structural hole.
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INCC(i)ZZ(p;j'+ >, pik’pk/}- (73)

Jjer; k=1,k#i,j

The global importance of CumulativeRank of node i,
denoted by R, is defined as the influence caused by
removing the node on the network structure

R = _n{|i|+m(G—i)

G w(G—i)>2}, (74)

where |i| denotes the cost of removing node i, m(G —1i)
represents the size of the largest connected component,
and w(G —1i) is the number of connected components
after node i is removed. The final spreading influence of
the node i is calculated as follows

INCC (i)

+ ,
J Z INCC()) J Z TC())

(75)

TCG
CumulativeRank (i) = @

where T'C (i) denotes the normalized global importance.
Ullah et al. (2021) proposed a global structure model
(GSM) by combining the self-importance and global
spreading influence of the node, which is defined as

ksG) i
GSM(i)=e¢ n X k“;(’),
ij

(76)

i#j
where the node’s self-importance is measured by its
k-shell value, and the global importance of the node is
quantified by the distances between the node and other
nodes in the network and k-shell values. Inspired by the
gravity law, Ma et al. (2016) first introduced the gravity
formulation to measure the importance of nodes and
proposed gravity centrality (GC), which sets the k-shell
value as the mass and the length of the shortest path as
the distance. The mathematical formulation of GC is
defined as

GC (i) = Z M

(77)
Z

Jeri

Li et al. (2019) thought that nodes with larger degree
values are more influential than nodes with smaller
degree values. The gravity model (GM) was proposed by
considering the distance between a node and all other
nodes and replacing the k-shell values as degree values,
which is given as

T JAULL

(78)

2

i#] 2
The GM algorithm considers all the paths between the
target node and other nodes, thereby resulting in high
computational complexity. To this end, Li et al. (2019)
designed a local version of GM algorithm (LGM) by only

considering the interactions between nodes within a local
area, which is defined as

LGM@)= ) k(izilf(j 2

dij<R.j#i i

(79

where R is the truncation radius. Yan et al. (2020)
considered multilevel structural attributes when evaluating
the spreading influence of nodes. On the basis of GC, the
mass is defined as the weighted sum of different centrali-
ties, where weights are calculated by entropy technology.
In the real-world diffusion process, the distance from
node i to node j is not necessarily the same as the
distance from node j to node i. However, the Euclidean
distance used in the GC assumes that these distances are
equal, thereby leading to the dynamic information being
ignored. Shang et al. (2021) introduced the effective
distance (Brockmann and Helbing, 2013) to capture the
hidden dynamic information rather than modifying the
mass part of the GC, which is given as

n k . k -
Crig (1) = Z %,

j=1,j#i Jii

(80)

where D;; denotes the effective distance from node i to
node j, which is defined as

D_j\i = 1 - IOgZP/-“, (81)

ai; ..
Pj|i=_{7l¢]' (82)

k(i)

If multiple paths are found between nodes i and j, the
shortest path will be used.

The MASB algorithms can accurately identify spreading
influence nodes in densely connected networks because
they focus on the macro-level structural attributes of
networks, such as the position and the distance. However,
in the era of the explosive growth of information and data,
researchers are often faced with large-scale networks,
making the use of MASB algorithms to be more limited.
Specifically, the challenges of the MASB algorithms are
as follows.

For the node ranking problem, the k-shell-based algo-
rithms pay more attention to the difference in the spreading
influence of nodes located in the same shell. Studies have
shown that a group of core-like nodes exists, which have
a high coreness, but they are not the spreading influence
nodes. Identifying these core-like nodes can help filter
the spreading influence nodes more accurately. The GM
has received increasing attention from researchers in the
identification of spreading influence nodes due to its
great potential in measuring the spreading influence of
nodes. However, the distance calculation is time consum-
ing. Thus, improving the effectiveness of gravity-model-
based algorithms is still a challenge.
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Researchers have developed spreading influence identi-
fication algorithms with high generalizability by consid-
ering the micro and macro structural attributes simulta-
neously. However, the weights assigned to each attribute
need to be predefined when using this type of algorithms,
which is time consuming. How to solve this limitation is
also important in the future.

The advantages and disadvantages of representative
MASB algorithms and the main method streams men-
tioned in this section are presented in Tables 6 and 7.

6 MLB algorithms

Driven by growing demands of using graph form datasets
to solve real-world problems (Peng et al., 2019) and the
increasing trend of interdisciplinary cooperation, the inte-
gration of machine learning and network science has
received increasing attention from researchers in the two
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fields (Belkin and Niyogi, 2003). Studies of network
science have built a solid foundation for researchers to
better use graph form datasets (Peng et al., 2019).
Machine learning models can dig out more network topo-
logical information, thereby providing strong support for
studies of network science (Silva and Zhao, 2012). In
recent years, the MLB algorithms have begun to appear
in many branches of network science, including node
classification (Hall et al., 2009), link prediction (Zhang
and Chen, 2018; Chen etal., 2021a), and network statistical
feature extraction (Sacchet et al., 2014). As one of the
core issues in the study of social networks, machine
learning models have been introduced in the research on
the identification of spreading influence nodes. A number
of the MLB algorithms that can achieve promising
performance have been developed in recent years. The
MLB algorithms can be mainly divided into two cate-
gories: The statistical machine learning-based (SMLB)
algorithms and deep learning-based (DLB) algorithms.

Table 6 Advantages and disadvantages of representative MASB algorithms

Methods Advantages Disadvantages Computational complexity
BC (Freeman, 1977) Identifies nodes that have strong control over High computational complexity; 0(n3)
the spreading process Unsuitable for large-scale networks
CC (Sabidussi, 1966) Uses the distances between nodes to measure High computational complexity; O(n3)
the spreading of nodes Unsuitable for large-scale networks
PageRank Aggregates the structure information of Difficult to converge when there are nodes O (m)
(Brin and Page, 1998) neighbor nodes iteratively; with an out-degree 0
Low computational complexity
k-shell (Kitsak et al., 2010) Considers the position of the node onthe  The spreading influence of nodes in the same O(n)
basis of the node’s degree shell layer cannot be distinguished
LeaderRank (Lii et al., 2011) Ensures a faster convergence speed than Only suitable for directed networks O (m)
PageRank by adding a ground node
Local and global node Introduces the entropy to distinguish Tuning free parameters is time consuming 0(n2 + m)
influence (LGI) differences in the spreading influence
(Ma et al., 2020) of nodes in the same shell layer
CumulativeRank The local and global spreading influence of Unsuitable for random networks 0(112 +n( k>2)
(Zhang et al., 2019a) nodes is considered simultaneously
GSM (Ullah et al., 2021) Considers the self-importance of the node and High computational complexity; O(nz)
the relationship of the node with other nodes Unsuitable for large-scale networks
simultaneously
IKs (Liu et al., 2015b) The nodes are divided into different shell layers Unsuitable for random networks O(n)
in a more granular manner
Table 7 Advantages and disadvantages of four main MASB method streams
Method streams Related works Advantages Disadvantages

EC (Bonacich, 1972); PageRank (Brin and
Page, 1998); LeaderRank (Lii et al., 2011);
WileaderRank (Li et al., 2014)

Iteration-based

k-shell-based 6 (Liu et al., 2013a); Resource Allocation
Dynamics (Ma et al., 2014); IKs (Liu et al.,
2015b); DSC (Zareie et al., 2019); Cy
(Bae and Kim, 2014); Link entropy (Liu
et al., 2015a); Influence capacity (Wang
et al., 2016); Classified neighbors (CN)
(Lietal., 2018)

NGSC (Namtirtha et al., 2021); ksd (Maji,
2020); Influence (Ma et al., 2020)

Micro-macro-based

GC (Maet al., 2016); GM (Li et al., 2019);
Yan et al. (2020); Cgrg (Shang et al., 2021);
Effective distance gravity model (EDGM)
(Chen et al., 2021b)

Gravity-model-based

Aggregates the structural information of
neighbor nodes in an iterative manner, which
is more efficient than directly exploiting the
structural information of the entire network

The position information of nodes in the
network is considered, which can avoid to
identify nodes located in peripheral regions of
the network as spreading influence nodes

Guarantees stable performance in both
sparsely and densely connected networks

Considers the position of nodes and the
effect of the distance between nodes

The contribution of neighbor nodes to
the spreading influence of the target
node is mainly measured by the
degree information

The nodes located in the core—shell
layer are not always the spreading
influence nodes

Weights assigned to each attribute
need to be predefined, which is time
consuming

The calculation of distance results in
high computational complexity
on their interaction
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Unlike the three different types of algorithms
mentioned above, the MLB algorithm aims to train a
model by a given dataset so that it can be used to predict
the spreading influence of nodes or to judge whether a
node is important in unseen networks. The statistical
machine learning models, such as the support vector
machine (SVM), decision tree, linear regression, and
logistic regression, can consider multiple structural
attributes at once when identifying spreading influence
nodes. However, the models’ accuracy will not be neces-
sarily improved as more attributes are used. Therefore,
feature selection is a key procedure to ensure stable
performance of the SMLB algorithms. Bucur (2020)
found that combining two complementary centralities to
identify spreading influence nodes can achieve higher
accuracy than using a single centrality. Hu et al. (2019)
used principal component analysis (Moore, 1981) to test
different centralities’ contributions, including DC, BC,
CC, clustering coefficient, HITS value, Laplacian central-
ity (Qi et al., 2013), and network constraint coefficient, to
the identification accuracy of spreading influence nodes
and discovered that the Laplacian centrality and network
constraint coefficient are important in all seven different
types of networks. Han et al. (2015) set the network
constraint coefficient, BC, hierarchy, efficient, the net-
work size, PageRank, and clustering coefficient as the
input of the ListNet algorithm (Cao et al., 2007) to evaluate
the spreading influence of nodes. Zhao et al. (2020a)
transformed the identification task of spreading influence
nodes into a classification problem rather than viewing it
as a regression problem and used nine centralities and the
infection rate S of the SIR model to train classification
models, including random forest, SVM, and Naive Bayes.
The simulation result of the SIR model is numerical,
which is unsuitable to be directly used as classification
labels. Therefore, labels were obtained by using the
following equation

label, = Scale; —minScale Y
range

(83)

where Scale; denotes the infected scale of node i acquired
by simulating the SIR model, minScale represents the
minimum spreading scale among all nodes, and
range = (max Scale —minScale)/N, where N is the
number of labels. Ivanov et al. (2018) directly labeled the
nodes as the seed node and the nonseed node, and
proposed a framework that can find other seed nodes
based on given seed nodes. The framework contains the
following steps: 1) Map nodes into low-dimensional
vectors on the basis of network embedding algorithms;
2) Train the classification model on the basis of positive
and negative samples; and 3) Use the trained classification
model to find / nodes with the highest probability of
being the positive sample to complete the seed set.
Specifically, positive samples refer to given seed nodes,
and negative samples are selected from nonseed nodes in

accordance with their degree. The smaller the degree of
the node is, the higher the probability that the node is a
negative sample.

Intuitively, information can be spread more easily and
efficiently between densely connected nodes (Freeman
et al., 1991). To measure the connectivity of the local
area that a node is located rather than using the length of
the shortest path between nodes, Yang and Xiong (2021)
used Euclidean distance between nodes by introducing
DeepWalk, a network embedding algorithm, to map
nodes into low-dimensional vectors. The spreading influ-
ence of node i, NCL(i), is defined as

NCL(i) = st(i) x elsl (84)
JeT:
where x; denotes the low-dimensional representation of
node i.

To enhance the robustness of interference-sensitive
algorithms, such as k-shell decomposition, Tixier et al.
(2019) was inspired by the idea of ensemble learning and
presented a strategy that will first generate multiple
perturbed networks on the basis of the original network,
then calculate the spreading influence of nodes in all
perturbed networks and the original network indepen-
dently, and rank nodes by the average spreading influence
of nodes in all networks. This strategy has effectively
increased the robustness of methods such as PageRank
and k-shell, while keeping low computational complexity.

In addition to network topology attributes, the spread-
ing influence of users in online social platforms can be
described by nontopological features, such as their occu-
pation, age, and content of their posts. Nargundkar and
Rao (2016) measured the spreading influence of Twitter
users by feeding the linear regression model with
nontopological features, such as the number of posts and
reposts of Twitter users.

As mentioned above, feature engineering is required
before training SMLB algorithms, which is extremely
time consuming. With the rapid development of deep
learning, the end-to-end deep learning model has become
a preferred tool when dealing with the identification task
of spreading influence node because DLB algorithms can
finish feature selection automatically. The graph form
data are not Euclidean data such as images and audios, to
which deep learning models, such as the convolutional
neural network (CNN) and recurrent neural network
(RNN), can be directly applied. The graph neural
networks (GNNs), which attempt to extend the use of
CNN and RNN on graph form data, were proposed to
address this challenge. Specifically, the GNNs can be
further classified as the recurrent GNNSs, the convolutional
GNNs (ConvGNNs), and the spatial-temporal GNNs
(Wu et al., 2021). In the identification of spreading influ-
ence nodes, the ConvGNNs are widely used owing to
their promising performance in processing graph form
data. From the perspective of node embedding,
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ConvGNNs can be divided into transductive learning-
based and inductive learning-based. The transductive
learning-based model learns node embeddings for a given
network, which must be retrained once the network struc-
ture changes. The inductive learning-based model can
learn embeddings of unseen nodes after the training step.
Niepert et al. (2016) proposed PATCHY-SAN, a trans-
ductive learning-based algorithm that extends the use of
the CNN to complex networks. The graph convolutional
networking (GCN) (Kipf and Welling, 2016) uses the
normalized Laplacian matrix of the network as the
parameter to aggregate the information of neighbors to
learn the low-dimensional representation of the node.
Different from the abovementioned transductive learning-
based methods, GraphSAGE (Hamilton et al., 2017) is an
inductive learning-based method that aims to learn an
aggregator that can aggregate the structure information of
neighbor nodes so that it can generate node embeddings
for unseen networks. Among the ConvGNNs, the GCN
algorithm has been used by many GNN-based identifica-
tion algorithms owing to its simplicity and effectiveness.
Wang et al. (2019) designed a DLB algorithm called
influence deep learning (IDL) for social networks, which
considers the topological and the action logs of the social
network users when evaluating their spreading influence.
Specifically, IDL samples a fixed-size subnetwork for
each node based on the action logs of users by using the
random walk method. The pretrained network embedding
method is then used to obtain the low-dimensional repre-
sentation of each node and feeds these vectors into GCN
to generate the trained embeddings for each node for
predicting the spreading influence of nodes. The instance
normalization technique is adopted to make the algorithm
focus on the relative position of the node rather than the
absolute position. The normalized representation of node
i, v;, s defined as

X,- - /l
Vo?—¢
where x; € R? denotes the low-dimensional vector of user

i, 4 and o represent the mean and variance of user repre-
sentation vectors, respectively, and £ is a small number

yi = (85)

Mini batch

Node embeddings

for numerical stability. The framework of IDL is shown
in Fig. 6.

Zhao et al. (2020b) generated the neighborhood
network for each node by using the breadth-first-search
(BFS) algorithm rather than using random walk. The
normalized Laplacian matrix of the neighborhood
network, DC, BC, CC, and clustering coefficient are the
input of GCN for learning the embeddings of nodes. The
output of GCN is used as the input of a fully connected
neural network to predict the spreading influence of
nodes. The discrimination capabilities of labels under
different infection rates S are tested by using Eq. (86) to
generate high-quality labels based on the SIR model,
because the chosen S has a significant influence on
evaluating the spreading influence of nodes.

_ XH-XL

NZZER) o

where XH and X[ represent the influence of the high
influence and low influence groups, respectively, H and
L denote the largest and smallest influence, respectively,
and p is the percentage of the high influence groups. Yu
et al. (2020) used the BFS algorithm to extract the fixed-
size neighborhood network for each node, re-encoded the
nodes of the neighborhood network in the order in which
they are selected, and transformed the adjacency matrix
of the neighborhood network in accordance with Eq. (87)
to generate the input of each node.

agk(j), i=0,j=1,2,..,L-1
apk(@, i=1,2,..,L-1,j=0
B, = ok (0) J ’ (87)
k(i), i=j=0,1,2,..,L-1
aij, other case

where [, denotes number of nodes in each neighborhood
network. When the input matrix of each node is obtained,
these transformed matrices will be fed into a CNN model
(RCNN) to train a spreading influence prediction model.
The framework of RCNN is shown in Fig. 7. Although
RCNN algorithm is applicable to large-scale networks,

Ground

> Loss [+
truth

U0

Neural network
learning

Output and loss

Fig. 6 Framework of IDL (adapted from Wang et al. (2019)).
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it uses only the degree information. Ou et al. (2022)
improved the performance of RCNN by constructing a
three-channel input for each node that preserves the
micro, community and macro attributes.

The architecture of the ConvGNN-based algorithms
can be simplified as Fig. 8. Specifically, the details of the
architecture are as follows: 1) Extract the neighborhood
network for each node from the training network by using
strategies, such as the random walk or BFS; 2) Construct
the input vector for each node based on its topological
attributes or nontopological attributes; 3) Obtain the label
of each node (if the ground truth labels are available, this
step is not required; otherwise, the labels can be obtained
by using diffusion models); 4) Generate node embeddings
via GCN layers; 5) Predict the spreading influence of
each node by using fully-connected networks; 6) Calculate
the loss by comparing the predictions with the labels;
7) Optimize the parameters of the models based on the
loss of the model; and 8) Test the performance of the
trained model on other networks. The ConvGNN-based
algorithms have shown their great potential for measuring
the spreading influence of nodes. However, existing algo-
rithms give less attention in balancing their efficiency and
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accuracy. The performance of the ConvGNN-based algo-
rithms, such as RCNN, will be influenced by the structural
difference in training and test networks.

Reinforcement learning (RL) has attracted increasing
attention. Fan et al. (2020) adopted the RL technique to
evaluate spreading influence. The objective function
considering the network connectivity is defined as

, VD)

lz": o (G/{v,, vy, ...
n o (G)

k=1

Rc(vy, vy, vy v,) = , (88

where o (G) denotes the connectivity of the network G.
Equation (88) measures the change in network connectivity
after removing selected nodes. The smaller the Rc value
is, the more important the selected node is. The basic idea
of this algorithm is to transform the node importance
identification into a Markov decision process, which lets
the agent interact with the environment based on a series
of states and actions for maximizing rewards. In the iden-
tification task of spreading influence nodes, the environ-
ment is the target network, the state is the residual
network, the actions are activating or removing the
selected node, and the reward is the decrease in Rc. The
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Fig. 8 Simplified architecture of the ConvGNN-based algorithms.
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network embedding algorithm was introduced to solve
state and action representation problems. The experi-
mental result shows that this algorithm can achieve high
accuracy in real-world networks after training on 200000
small-scale artificial random networks.

The advantage of machine learning models in processing
multiple features enables the MLB algorithms to achieve
a high identification accuracy. However, the following
challenges still need to be addressed in the future.

First, the spreading influence of nodes in social
networks depends on the topological and nontopological
attributes of nodes. However, most existing MLB algo-
rithms only consider the topological attributes of nodes.
Therefore, introducing the nontopological information
when identifying the spreading influence of nodes via
MLB algorithms can be a future development direction of
the MLB algorithms.

Second, most MLB algorithms are supervise learning-
based, which requires labels of nodes. Diffusion models,
such as SIR (Hethcote, 2000), IC (Kempe et al., 2003),
and linear threshold (LT) (Kempe et al., 2003), are
commonly used to generate the label. However, this
strategy will cost considerable time and computational
resources when dealing with large-scale networks.

Third, the performance of the MLB algorithms will be
unstable when a significant difference is found between
the structure of the training network and the test network.

541

How to use small-scale networks to train such models
that can achieve strong generalization capabilities is a key
issue that needs to be solved in the future.

Finally, the SMLB and DLB algorithms attempt to
enhance the identification accuracy of spreading influence
nodes by using a set of structural attributes, such as DC,
BC, and CC. However, the computational complexity of
calculating multiple structural attributes is high, limiting
the use of the SMLB and DLB algorithms in large-scale
networks. Thus, more attention should be paid to balanc-
ing the accuracy and efficiency when designing MLB
algorithms. The advantages and disadvantages of repre-
sentative MLB algorithms and the two main method
streams of MLB algorithms introduced in this section are
listed in Tables 8 and 9.

7 Diffusion models

We do not know which nodes are important in social
networks, otherwise, we do not need to identify the
spreading influence of nodes. Therefore, diffusion
models are used to generate approximations of nodes’
real spreading influence and to test the performance of
algorithms. Given that diffusion models are designed on
the basis of different spreading mechanisms (Cohen,
1992; Fu et al., 2020), choosing an appropriate diffusion

Table 8 Advantages and disadvantages of representative MLB algorithms

Methods Advantages

Disadvantages Machine learning

models

InfEmb (Ivanov et al., Determines other seed nodes based on the

2018) structure information of the given seed nodes
InfluenceRank Considers the topological and nontopological
(Nargundkar and Rao, features simultaneously

2016)

P&C (Tixier et al., 2019) Enhances the robustness of algorithms with

weak anti-interference ability

IDL (Wang et al., 2019) Considers the action logs of online users and

network topology

InfGCN (Zhao et al.,
2020b)

Uses the low-dimensional vector representation
and centralities of nodes as the input to predict the
spreading influence of nodes

RCNN (Yuetal., 2020)  Only uses the degree of the node to transform the
matrix representation of the node, which is more

efficient than InfGCN and IDL

Applies the reinforcement learning technique to
evaluate the spreading influence of nodes

FINDER (Fan et al.,
2020)

Unable to identify the remaining seed nodes with few
positive samples accurately; Only the degree of the
node is considered when selecting negative samples

Linear regression

Cannot ensure that the selected features accurately
reflect the node’s spreading influence

DeepWalk; SVM

Relies on the network perturbation method Bagging
Only suitable for social networks GCN
High computational complexity GCN
The performance is unstable when the structure CNN
of the training network and the test network
are different
High computational complexity RL; DeepWalk

Table 9 Advantages and disadvantages of two main MLB method streams

Method Related works Advantages Disadvantages
streams
SMLB Multicentrality predictors (Bucur, 2020); Hu ~ Weights assigned to each structural Requires the time-consuming feature engineering
et al. (2019); Han et al. (2015); Zhao et al. attribute can be obtained process; The accuracy of the model is unstable
(2020a); InfEmb (Ivanov et al., 2018); NCL  automatically by training the model; when the network structure of the training set
(Yang and Xiong, 2021); InfluenceRank Highly interpretable and the test set are different
(Nargundkar and Rao, 2016); P&C
(Tixier et al., 2019)
DLB IDL (Wang et al., 2019); InfGCN (Zhao et al., Feature engineering is not required;  Easy to overfit in the training process; The training

2020b); RCNN (Yu et al., 2020); FINDER
(Fan et al., 2020)

Learning from streaming data

process is a black box; The accuracy of the model is
unstable when the network structure of the training
set and the test set are different
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model that can best describe the spreading process of the
target task is important to ensure that test results are cred-
ible. In this section, we introduce diffusion models that
are widely used in studies of identification of spreading
influence nodes, such as the susceptible-infected (SI)
model (Barabasi and Albert, 1999), the susceptible-
infected-susceptible (SIS) model (Cohen, 1992), SIR
model (Hethcote, 2000), LT model (Kempe et al., 2003),
and IC model (Kempe et al., 2003).

7.1 SI model

As one of the classic epidemic models, the ST model sets
each node in one of the two states: The susceptible state S
and the infected state /. In the initialization phase, seed
nodes will be set as infected. When the diffusion starts,
the susceptible nodes will be infected by their infected
neighbors with an infection rate B. The propagation
process stops until no newly infected node is found, and
the number of total infected nodes is the overall influence
of seed nodes.

7.2 SIS model

The SIS model considers the possibility of infected nodes
becoming susceptible nodes again based on the SI model.
The SIS model sets each node to be in one of the two
states: The susceptible state S and the infected state 7. The
only difference between the SIS and SI models is that the
infected nodes may become susceptible nodes again.

7.3 SIR model

On the basis of the SI model, the SIR model adds the
recovered state. Specifically, the SIR model sets each
node to be in one of three states, which are the susceptible
state S, the infected state 7, and the recovered state R.
After the diffusion process starts, susceptible nodes will
be infected by their infected neighbor nodes with the
infection rate 8, and infected nodes will recover with
probability r.

7.4 LT model

The LT model was designed to simulate the diffusion
process in directed networks. Specifically, each edge of
the directed network will be assigned a weight. For
example, w(u, v) =1/k(v) is the weight of the edge
pointing from node u to node v, which represents the
spreading influence of node u to node v among all node
v’s in-neighbors. In the initialization phase, seed nodes
will be set to either activated nodes or inactivated nodes.
When the diffusion process starts, the inactivated node
will be activated if the sum of weights of edges between
the node and all its activated in-neighbors is greater than
a given threshold y. The diffusion process stops until no

newly activated node is found.
7.5 1IC model

The IC model was also designed for directed networks. In
the initialization phase, seed nodes will be set to either
activated or inactivated nodes. After the propagation
starts, inactivated nodes will be activated by their activated
in-neighbors with probability 5. If an inactive node has
multiple activated in-neighbor nodes, these in-neighbor
nodes will independently try to activate the node in
random order. The propagation process stops when no
new activated node is found.

7.6 Weighted IC model

The weighted IC model (Palla et al., 2005) is a weighted
version of the IC model. During the diffusion process,
assuming the inactive node v is the out-neighbor of the
activated node u at time ¢, node v will be activated by
node u with the probability of 1/k(v) at time ¢+ 1. If the
inactive node v has n active in-neighbors at time ¢, the
node v will be activated at time ¢+ 1 with the probability
of 1 —(1-1/k())".

7.7 Conformity-aware IC model

Conformity awareness plays a vital role in spreading
information, opinion, and beliefs in the real world. For
example, online users are more likely to repost the infor-
mation that most users believe in the social platform. On
this basis, Li et al. (2013) proposed the conformity-aware
IC model. Specifically, assuming the inactive node v is
the out-neighbor of the active node u at time ¢, node v
will be activated by node u with the probability

Prviw=1-[ [1-0@wQ)),

uel’,

(89)

where @ (u) denotes the influence of node u, and Q(v)
represents the conformity of node v.

8 Performance evaluation metrics

Evaluation metrics are needed to compare the ranking
results obtained by diffusion models and identification
algorithms. This process is required to test the accuracy
of the identification algorithms of spreading influence
nodes. This section introduces eight widely used evaluation
metrics in this research field.

8.1 Average spreading influence

Comparing the average influence of top pxn (p € [0, 1])
most influential nodes identified by different identification
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algorithms (Chen et al., 2013; Berahmand et al., 2018)
can measure algorithms’ performance to some extent.
The average spreading influence of nodes identified by a
specific algorithm, AvgS1, is defined as

(90)

where S denotes the set of seed nodes identified by using
a specific algorithm, n is the total number of nodes, and
o (v) represents the spreading influence of node v.

8.2 Influence scale

The influence scale F'(¢) can reflect the change in influ-
ence of nodes identified by a specific algorithm over
time, which is defined as

F(t)= 1)

where N, and N, denote the number of infected and
recovered nodes at time ¢, respectively.

Ny + Ny
n b

8.3 Imprecision function

The imprecision function €(p) (Kitsak et al., 2010) is
introduced to quantify the difference in the average
spreading scales between top pXn nodes identified by
the identification algorithm and the p xn most efficient
spreaders identified by diffusion models (p € [0, 1]). The
spreading efficiency M, is defined as the number of nodes
infected by node i, d.x(p) denotes the set of top pxn
nodes selected in accordance with the spreading effi-
ciency, and J, (p) represents the set of top pXn nodes
identified by the identification algorithm x of spreading
influence nodes. The imprecision value of x is defined as

_ M.(p)
M (p) ’

where M, (p) and M ;(p) denote the average influence of
0, (p) and o (p), respectively. The closer the imprecision
value &, (p) is to 0, the closer the average influence of the
node set identified by x is to the average influence of the
most influential node set identified by diffusion models.

&(p)=1 92)

8.4 Relative difference of spreading scales

The relative difference of spreading scales (Knight, 1966;
Zhao et al., 2014a) between two sets of top pXn most
important nodes identified by two different node impor-
tance identification algorithms is defined as

S-S,
S,

Ay (p) = (93)

where S, denotes the total influence of the set of seed

nodes identified by algorithm y. The total influence of
seed nodes identified by algorithm y is greater than that
by algorithm x when A, (p) > 0.

8.5 Kendalls’ T correlation coefficient

The Kendalls’ 7 correlation coefficient (Wang et al., 2016)
is used to measure the similarity of two ordered lists and
is widely utilized when testing the performance of identi-
fication algorithms. Assuming two ordered lists A and B,
each of which contains n elements. (A;, B;) denotes the
ith element pair of A and B. When any two element pairs
of A and B have the same ranking, such as A; > A; and
B;> B, or A; <A, and B, < B, the two element pairs are
a concordant pair, otherwise, they are a discordant pair.
The Kendalls’ 7 correlation coefficient is calculated in
accordance with the number of concordant pairs and
discordant pairs of two ordered lists, which is defined as

_2(C-D)

T_—k(k—l)’ %4)

where C and D denote the number of concordant pairs
and discordant pairs, respectively, and k is the total
number of elements in each order list. The closer the
Kendalls’ 7 coefficient is to 1, the more similar the two
ordered lists are. Another evaluation metric that has a
similar function as the Kendalls’ 7 coefficient is the
Jaccard correlation coefficient (Wang et al., 2018), which
is given as

_IX@nY()

L= 2O 95
IX(©)UY (ol ©2)

where X (c) and Y (c¢) represent the seed nodes selected
by the identification algorithm and the most influential
nodes acquired by stimulating the diffusion model,
respectively.

8.6 Monotonicity

The monotonicity (Wang et al., 2016) is used to measure
the uniqueness of nodes’ rank obtained by the identifi-
cation algorithms of spreading influence nodes, which is

given as
2
Z n;(n;— 1)

MX)=|1-SF—— |,

nn-1) 06)

where n; denotes the number of nodes assigned to rank i,
X represents a spreading influence nodes identification
algorithm, / contains all unique values obtained by
applying X, and # is the total number of nodes. The value
of M (X) is between 0—1. The closer the value is to 1, the
fewer nodes are assigned to the same level.
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The complementary cumulative distribution function
(CCDF) (Li et al., 2018; Zareie et al., 2019) has a similar
function as monotonicity, which describes the distribution
of nodes in different rankings. The mathematical formu-
lation is defined as

CCDF(Z)=Pr(Z>z)=1-CDF(z), (97

where the cumulative distribution function CDF (z)
denotes the probability that the node’s rank is less than
or equal to z.

9 Discussion and conclusions

In this review, we briefly summarized the recent progress
of studies on the identification of spreading influence
nodes, emphasizing the applications of the identification
algorithms of spreading influence nodes in social
networks. An increasing number of novel algorithms
based on new techniques resulting from the studies of
other research fields, especially ideas and tools from
community detection and machine learning, have
emerged in recent years due to the confluence of
improved computational capabilities, the explosive
growth of new datasets, increasing trend of interdisci-
plinary development, and fast-changing demands.

No single algorithm can achieve stable performance
in all types of networks (Lii et al., 2016; Bucur, 2020;
Namtirtha et al., 2021). An in-depth understanding of
social network structural attributes that affect algorithmic
performance can be considered the guide for the choice
of algorithms when the accuracy and complexity have to
be considered. Specifically, the MSB algorithms may be
a good choice if the social network is large and sparse
because they can achieve relatively high accuracy with
extremely low computational complexity. However, if
nodes are densely connected and the size of the social
network is small, then the MSB algorithms may perform
not as well as expected because they mainly focus on the
edge density within a local area of nodes. In such cases,
we can try to use CSB algorithms or MASB algorithms to
utilize community-level and macro-level information. For
social networks with a clear modular structure, the CSB

algorithms may provide highly accurate identification
results and an in-depth understanding of how information
is actually spread between nodes belonging to different
communities. The spreading influence of nodes in social
networks can be determined by topological and nontopo-
logical attributes, such as interaction frequency and the
number of reposts and comments, making the study of
the identification of spreading influence nodes a natural
place to apply machine learning models. Compared with
the micro-macro-based MASB algorithms, which require
weights assigned to each attribute to be predefined, the
MLB algorithms are more suitable for identifying spread-
ing influence nodes based on multiple attributes. To sum
up, the advantages and disadvantages of MSB, CSB,
MASB, and MLB algorithms are summarized in Table 10.
Although great advancement has been made in recent
years, a number of unsolved problems that can affect the
future development on the identification of spreading
influence nodes still exist.

First, as discussed previously, the performance of the
identification algorithms of spreading influence nodes is
highly correlated with the structural attributes of social
networks, making the benchmark datasets for comparing
the accuracy of different types of algorithms a prerequisite
to ensure the credibility of testing results. However, the
performance of most existing algorithms is tested on
different networks due to the lack of unifying datasets,
which may lead to an unwanted outcome that only the
good aspects of the algorithm are reported, thereby
hindering their application.

Second, another huge challenge is the identification of
spreading influence nodes in temporal networks, where
connections between nodes will change over time.
Although algorithms designed for static networks can
achieve relatively high accuracy, the temporal networks
are more in line with real-world situations. Therefore,
further improving these algorithms so that they can be
applied in temporal networks will be worth paying
attention to.

Third, the algorithms’ performance can be significantly
enhanced by considering the structural attributes and the
nonstructural attributes of nodes. In social networks, the
spreading influence of individuals can be influenced by
their occupations, social status, and online reputations.

Table 10 Advantages and disadvantages of MSB, CSB, MASB, and MLB algorithms

Algorithms Advantages Disadvantages
MSB Estimates the spreading influence of nodes via micro-level structural ~ Focuses on the edge density within a local area of the target node,
information, thereby enabling the identification of spreading influence  leading to nodes located in peripheral regions of networks to be
nodes in large-scale networks to be feasible misclassified as spreading influence nodes
CSB Accelerates the speed of seed node selection for the influence The performance of CSB algorithms depends on the community
maximization task; Community structural attributes can help to detection algorithms
improve the accuracy of centralities
MASB Helps to rectify the identification results of MSB algorithms; High computational complexity hinders the use of MASB algorithms
Performs well in densely connected networks in large-scale networks; Weights of MASB algorithms that consider
multiple structural attributes need to be predefined
MLB Automatically calculates the weights assigned to different The computational complexity of MLB algorithms did not receive

attributes of nodes; Higher accuracy of identification than
traditional algorithms

sufficient attention; The performance of MLB algorithms is
influenced by the structural difference in the training network
and the test network
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However, most of the existing algorithms mainly focused
on the network’s topological attributes and did not use
nontopological information. The machine learning model
might be an appropriate choice to consider multiple
features at once while identifying important social
network nodes.

Finally, although MLB algorithms can predict the
node’s spreading influence by simultaneously consider-
ing different features of the node, the learning strategy
of these algorithms is supervised learning, which
requires labels to be generated by information diffusion
models or disease diffusion models. Training these
models on large-scale networks with more than millions
of nodes is costly due to limited time and resources.
Therefore, unsupervised learning-based algorithms may
become new hot spot in the near future. The distribution
between the training data and test data will affect the
performance of machine learning models. However,
the influence of the structural differences in training
networks and test networks on the performance of MLB
algorithms has not been well studied.
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