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ABSTRACT

Microbial communities inhabiting river ecosystems play crucial roles in global biogeochemical
cycling and pollution attenuation. Spatial variations in local microbial assemblages are important for
detailed understanding of community assembly and developing robust biodiversity sampling
strategies. Here, we intensely analyzed twenty water samples collected from a one-meter spaced
transect from the near-shore to the near-center in the Meramec River in eastern Missouri, USA and
examined the microbial community composition with 16S rRNA gene amplicon sequencing. Riverine
microbiomes across the transect exhibited extremely high similarity, with Pearson’s correlation
coefficients above 0.9 for all pairwise community composition comparisons. However, despite the
high similarity, PERMANOVA revealed significant spatial differences between near-shore and near-
center communities (p = 0.001). Sloan’s neutral model simulations revealed that W1th1n-transect
community composition variation was largely explained by demographic stochasticity (R? = 0.89).
Despite being PE)rlmarlly explained by neutral processes, LefSe analyses also revealed taxa from ten
families of which relative abundances differed directionally from the bank to the river center,
indicating an additional role of environmental filtering. Notably, the local variations within a river
transect can have profound impacts on the documentation of alpha diversity. Taxon-accumulation
curves indicated that even twenty samples did not fully saturate the sampling effort at the genus level,
yet four, six and seven samples were able to capture 80% of the phylum-level, family-level, and
genus- level diversity, respectively. This study for the first time reveals hyperlocal variations in
riverine microbiomes and their assembly mechanisms, demanding attention to more robust sampling
strategies for documenting microbial diversity in riverine systems.
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1 Introduction

Streams and rivers provide numerous essential ecosystem
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services to human societies, including provisioning of
drinking water, irrigation, and water for industrial needs,
while also supporting biodiversity and ecological systems
(Gilvear et al., 2016). Fundamentally, rivers and streams


https://doi.org/10.1007/s11783-022-1543-6

2 Front. Environ. Sci. Eng. 2022, 16(5): 64

are now recognized for their roles in global biogeoche-
mical cycling, which involves active transformation
of organic compounds rather than passively channeling
them to the sea (Ensign and Doyle, 2006; Cole et al.,
2007; Withers and Jarvie, 2008; Battin et al., 2009). The
major drivers of nutrient cycling in rivers are
microorganisms (Falkowski, Fenchel, and Delong, 2008;
Battin et al., 2009; Fasching et al., 2020). Equally impor-
tant, streams experiencing human impacts can harbor taxa
that have been selected through water treatment systems
and runoff from the landscape, including microbes that
have evolved antibiotic resistance (McLellan et al., 2015).
In order to wunderstand the impact of rivers on
biogeochemical cycles and examine anthropogenic
impacts on natural environments, it is pertinent to develop
robust understanding of microbial diversity, distribution,
and functions in riverine systems.

Recent studies have revealed riverine microbial
communities to be diverse, dynamic, and spatially he-
terogeneous (Read et al., 2015; Savio et al., 2015; Cruaud
et al., 2020). In particular, spatial variables have emerged
as the dominant factors driving alpha and beta diversity,
more so than any physical and chemical parameters (Read
etal.,, 2015; Savioetal,2015). In terms of alpha
diversity, while the River Continuum Concept predicts
alpha diversity to increase as a river moves from the
headwaters to the river mouth (Vannote et al., 1980),
observations in riverine microbial systems have shown
various different phenomena, where alpha diversity could
positively or negatively associate with the mean dendritic

distances/lengths from headwaters (Read et al., 2015;
Savio et al., 2015),  highlighting  the need  for
understanding spatial scales at which community

assembly processes operate in river systems. In addition,
the intriguing spatial variations in riverine microbial
communities have led to a refined employment of
community assembly theories to unify the observations
about the riverine microbial systems at a catchment scale.
The community assembly processes in riverine micro-
biomes can be conceptualized as dispersals, births/deaths,
and selections. Riverine microbial communities are part
of a complex aquatic network where microorganisms can
disperse from soil and groundwater and undergo species
sorting by the local environment and ecological interactions,
while the balance between dispersal and species sorting is
regulated by hydraulic factors, relative locations in a
network, and local water residence time (Read etal.,
2015; RuizGonzlez2015; Savio et al., 2015).

Despite our increased understanding about community
assembly processes on the catchment scale, community
dynamics, spatial variation in community structure, and
underlying community assembly mechanisms at the local
scale are less understood, although with notable
exceptions (Crump et al., 2012; Gweon et al., 2021). In
terms of local variations, habitat has emerged as an

important driver of variation in community structure.
While the type of habitat studied is context dependent, in
riverine systems, “habitat” can refer to the river substrate,
water column, or at a larger scale, the average
characteristics of the river channel, or potentially other
aspects of the physical environment. Crump et al. (2012)
showed that soil water, hyporheic water, stream water,
and lake water contain shared and unique taxa (Crump
et al., 2012). Gweon et al. (2021) showed that free-living,
particle-associated biofilms on benthic stones and rocks,
and sediment type differed significantly in alpha and beta
diversity across multiple sites at different locations in the
river network (Gweon et al., 2021). While habitat type
has been addressed, the free-living communities in the
water column are usually assumed to be well-mixed, and
oftentimes, one single water sample is taken as a
representative sample of the local community (Read
etal., 2015; Ruiz-Gonzalez et al., 2015; Gweon et al.,
2021). Critical questions remain to be addressed as to
whether there are local variations in the stream microbial
communities, whether hyperlocal variations would play a
role in observed diversity and taxon abundance, and
eventually affect our ability to infer community assembly
processes from field data.

In this study, we address these challenges through an
intense hyperlocal sampling in a transect of the Meramec
River, which is located in eastern Missouri, USA. and
serves as the primary source of drinking water for more
than 200,000 people (The Missouri Department of Natural
Resources, 2015). Here, we define “hyperlocal sampling”
as sampling intensively within the geographical area that
is previously represented as one site. We investigated the
composition of riverine microbial communities along a
river transect in order to 1) reveal potential within-
transect spatial variation in riverine microbial diversity
and composition, 2) identify key microbial taxa that drive
within-transect variations, and 3) examine the role of
within-transect variation in sampling strategies to
estimate microbial diversity. Our approach was intended
to reveal the small-scale variability in riverine communi-
ties by intensely sampling and analyzing microbiomes in
I-meter intervals from near the river bank to near the
river center within a single transect. Upon spatial
structuring being detected, linear discriminant analysis
was performed to identify the microbial taxa driving the
within-transect variations. Taxon-accumulation curves
were generated to examine the effect of transect sample
size on observed diversity. Finally, in light of recent
studies exploring community assembly processes in
riverine assemblages, we discuss the importance of
considering taxon sampling efforts when investigating
community assembly patterns and processes from field
data. This study provided a unique opportunity to better
understand microbial community assembly in riverine
systems and facilitate the development of sampling
strategies to enable more robust understandings of
community assembly in rivers.
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2 Methods

2.1 Sampling and DNA extraction

Water samples were collected on December 13, 2019 from
the Meramec River in eastern Missouri (38.50194° N,
90.59150° W, Fig. 1A). The river discharge on that day
was 1,560 cubic feet per second (44.2 cubic meters per
second) recorded from a USGS stream gage located
approximately 250-meter downstream from the sample
collection site (07019000 Meramec River near Eureka,
MO). We collected twenty grab samples (250-mL each
sample) across a 20-meter transect that started 10 meters
from the river bank (Fig. 1B). Each sample was collected
at a depth of 0.1 m upstream of the person collecting the
sample to avoid contamination. Samples were returned to
shore, secured with a cap, and then filtered to collect
biomass within 1 hour of collection. Water samples were
pre-filtered using a 40-um screen (Fisherbrand, Fisher
Scientific, USA), and then biomass was retrieved by a
0.22-um cellulose esters membrane using a Millipore
Sigma Microfil V Filtration Device (Millipore Sigma, St.
Louis, MO, USA). The samples were transferred to the
laboratory over ice. Each filter was dissected using sterile
scalpels and transferred into a Lysing Matrix E tube of
Fast DNA SPIN Kit (MP Biomedicals, USA) and
preserved in —80 °C until DNA extraction.

2.2 DNA extraction

DNA was extracted from the filter in the Lysing Matrix E
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Fig. 1 Sampling location and sampling scheme. (A) Location of the
sampling transect in the Meramec River watershed. (38.502075°N,
90.591522°W). (B) Schematics of intensive transect sampling. Twenty
water microbiome samples were taken in 1-meter intervals from near-
shore to near-center in the transect.

tube using the FastDNA SPIN Kit for Soil (MP
Biomedicals, USA) within a week of sample collection.
The DNA concentrations were quantified using
AccuBlue® High Sensitivity dsDNA Quantitation Kit
with DNA Standards (Biotium, San Francisco, CA,
USA).
2.3 16S rRNA gene amplicon sequencing
Two steps of PCR were performed to prepare the 16S
rRNA library (Preheim et al., 2013). In the first step, the
extracted DNA template was amplified using a universal
primer set 515F (GTGCCAGCMGCCGCGGTAA)/806R
(GGACTACHVGGGTWTCTAAT) targeting the V4
region of the 16S rRNA gene. In the second step, unique
indexing sequences were added to each library. Every
sample was characterized in two technical replicates. The
final products were pooled at equal molarity and then
purified with Wizard SV Gel and PCR Clean-Up System
(Promega, Madison, WI, USA). Sequencing was
performed on an Illumina Miseq platform (2 % 250) at the
Edison Family Center for Genome Sciences and Systems
Biology at Washington University in St. Louis.
2.4 16S rRNA gene amplicon sequence denoising
Raw sequencing reads were demultiplexed using
Illumina’s bcltofastq2 at the sequencing facility. Upon
receiving demultiplexed raw fastq paired-end reads, we
completed quality filtering, denoising, and generated the
amplicon sequence variant (ASV) table using the QIIME
2 platform (Bolyen et al., 2019). To achieve a quality
score above 30, the forward reads were trimmed at 10 bp
and truncated at 180 bp; reverse reads were trimmed at 10
bp and truncated at 150 bp. The trimmed reads were
denoised and merged using the DADA?2 algorithm as
implemented in the q2-dada2 plugin (Callahan et al.,
2016). DADA2 implements a quality-aware model of
Illumina amplicon errors and resolves differences as little
as one nucleotide. Reads with a number of expected
errors more than 2 and detected chimeras were discarded.
ASV table was thus generated. Taxonomy classification
of the resulting ASVs was performed using a multinomial
Naive Bayes classifier which was trained on a SILVA
138 reference database (Quastetal., 2013). The
confidence threshold was set at 0.7 as default. To
construct the taxonomy classifier, QIIME 2 compatible
reference files were downloaded from GitHub, then reads
from the reference database were extracted based on
matches to our primer set using QIIME plugin feature-
classifier extract-reads. The classifier was then trained
using feature-classifier fit-classifier-naive-bayes. The
generated QIIME artifacts were imported into R using
qiime2R package for further analysis.

The ASV table was filtered to exclude ASVs with less
than three reads across the entire study and those that
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failed to be assigned to a domain (these sequences added
up to 0.14% across all samples in the study). ASVs
assigned to the Eukarya domain were excluded (these
sequences added up to 0.16% across samples in the
study). A Pearson correlation coefficient was calculated
between technical replicates of the same sample based on
relative abundance using the “cor” function in R base
functions to examine technical robustness. All technical
replicates resulted in values above 0.99 (Table SI),
indicating high technical reproducibility. Then, technical
replicates were merged by the “merge samples”
command in Phyloseq (McMurdie and Holmes, 2013).
Rarefaction curves were examined using the “rarefy”
function in Vegan (Oksanen etal., 2020). All twenty
samples reached a plateau on rarefaction curves at ASV
level (Figure S1). Following that, a single rarefaction was
performed (set.seed=1234) to subsample all samples to
the same sequencing depth, 108,899 seqs/sample, which
was the minimum read depth across all samples.

2.5 Taxonomic profiles

Pearson correlation of 190 sample pairs based on relative
abundance was computed using the R base “cor” function
to examine the correlation in taxonomic compositions of
riverine microbial communities. The agglomeration at
class level and calculation of the relative abundances for
each class in the individual sample were performed using
phyloseq functions “tax_glom” and “transform sample
counts”. All plots were created in ggplot (Wickham et al.,
2019).

2.6 Diversity analyses

The alpha diversity of ASV profiles was characterized
using the Shannon index and observed richness computed
by the “diversity” and “specnumber” functions in vegan
(Oksanen et al., 2020). Corresponding mean values of
alpha diversity were calculated. First, read counts were
converted to relative abundance after rarefying using the
rarefy _even_depth() function. Next, Bray-Curtis dissimi-
larities were computed between samples based on the
ASV relative abundances as the equation below, where x;;
and x,, are relative abundances of ASVi in samples j and
k (Eq. 1). Then, Bray-Curtis dissimilarities were examined
with the permutational multivariate analysis of variance
(PERMANOVA) using the function “adonis2” and the
analysis of multivariate homogeneity of group dispersions
(PERMDISP) using the function “betadisper” from vegan
(Oksanen et al., 2020) with set.seed=1234. Besides Bray-
Curtis distances, Jaccard distances were computed
between samples based on presence and absence of ASVs
as in Eq. (2), where 4 and B are numbers of species
present in two compared samples and J are the number of
shared species. After that, principal coordinates analysis
(PCoA) was performed on the Bray-Curtis dissimilarity

matrix and Jaccard dissimilarity matrix using the
“ordinate” function in Phyloseq based on the “vegdist”
function in vegan and the “pcoa” function in ape (Paradis
et al., 2004; Oksanen et al., 2020). Last, visualizations of
the PCoA results were generated by the “plot_ordination”
function.

.. i1 xij_xik|
Bray-Curtis distance = ———, (1)
2 |x1j +xik|
A+B-2J
J d dist = 2
accard distance A1 B_7 2)

2.7 Linear discriminant analysis (LDA)

LDA effect size measurement was performed using the
package LefseR  (Segata et al., 2011; Khleborodova,
2020) with set.seed=1234. Briefly, Lefse examined if
features from two sample groups were significantly
different in abundances by first screening for those taxa
that rejected a null hypothesis of equal average
abundance, and then screening by effect sizes. As a first
screen, differentially abundant features were screened for
by passing a Kruskal-Wallis test with an adjusted alpha
setting at 0.05 as a coarse screen. Next, a linear
discriminant analysis was performed to screen for
differentially abundant taxa by primary LDA scores. The
primary LDA score of a taxon was calculated by
averaging the differences between actual group means
with the differences between group means along the first
linear discriminant axis. LefseR would output a list of
features with log10 transformed LDA score larger than 2.
Then, a plot with cumulative LDA scores from ASVs of
the same family was generated. Last, to examine the
abundance differences at a family level, we combined
ASVs identified as differentially abundant taxa by their
family-level classification for visualization.

2.8 Taxon-accumulation curves

Taxon-accumulation curves at taxonomic units of
phylum, family, and genus were generated using the
function “specaccum” from vegan (Oksanen et al., 2020).
The confidence intervals were estimated from the mean
value and standard deviation of 10000 random
permutations with ci (the Z value) = 1.96, ci.type="bar”.

3 Results

3.1 Taxonomic compositions of the Meramec River
transect near Eureka, Missouri

Twenty water samples were taken in one-meter intervals
along a river transect in the Meramec River in eastern
Missouri, and the samples were analyzed for 16S rRNA
gene amplicons (Fig. 1). These samples resulted in a total
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of 2,700,925 reads and 2,975 ASVs. A total of 2,177,980
reads and 2,953 ASVs remained after rarefaction to
108,899 seqs/sample. Four bacterial phyla were abundant
along the transect (average relative abundance > 3%,
Fig. 2A). These were Bacteroidota (43 = 4.5%), Proteo-
bacteria (39 + 4.3%), Actinobacteriota (11 £ 0.74%), and
Cyanobacteria (3.1 + 0.42%). Several phyla were
detected at average relative abundances above or close to
0.1% across river water samples, which were Verrucomi-
crobiota (1.1 £ 0.12%), Firmicutes (0.56 £ 0.12%),
Campilobacterota (0.48 =+ 0.065%), Patescibacteria
(0.34 + 0.060%), Desulfobacterota (0.18 + 0.036%), Bde-
llovibrionota (0.14 + 0.034%), Acidobacteriota (0.11 +
0.025%), Chloroflexi (0.11+£0.023%) and Planctomycetota
(0.094 £ 0.029%).

Within Bacteroidota, the Bacteroidia class was the
most abundant (43 + 4.5% of the entire community), and
within Proteobacteria, the Gammaproteobacteria class
was the most abundant (35 + 3.7%), followed by
Alphaproteobacteria (4.1 £ 0.76%). Nine classes were
detected at average relative abundances above or close to
0.1% across river water samples, which were Verrucomi-

crobiae (0.94+0.12%), Campylobacteria (0.48 = 0.065%),
Acidimicrobiia (0.45 + 0.082%), Clostridia (0.35 +
0.077%), Parcubacteria (0.25 £ 0.062%), Bacilli (0.17 £+
0.052%), Desulfuromonadia (0.15 + 0.033%), Chlamydiae
(0.14 + 0.063%) and Bdellovibrionia (0.088 + 0.029%).
Several other bacterial classes were detected albeit at
smaller fractions (average relative abundance < 0.1%),
including Planctomycetes, Gracilibacteria, Vicinami-
bacteria, Omnitrophia and Oligoflexia (Fig. 2A). Among
the Bacteroidota phylum, the detected taxa primarily
related to Flavobacteriales, followed by Cytophagales
and Chitinophagales. Among all bacterial families
detected, Flavobacteriaceae and Comamonadaceae are
the two most abundant, taking up a total of over 50%
sequencing reads across the transect. The twenty most
abundant bacterial families are provided in Table S2.

3.2 Riverine microbiome composition across the transect
were highly similar

Strikingly, the microbial communities across the transect
were highly similar. When compared against each other
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Fig.2 High reproducibility and microbiome profiles of sites within a transect. (A) The average relative abundance of abundant
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were assigned as “NA” at phylum level were grouped into “unclassified Phyla” and the phyla with mean relative abundance less than
3% were grouped into “other phyla”. The classes from “other phyla” were not labeled and classes assigned with “NA” or with mean
relative abundance less than 0.05% were grouped into “other Class” under their own phyla. (B) The distribution of Pearson

correlation coefficients of 190 pairs from twenty sites.
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using a Pearson correlation coefficient, the 190 unique
sample pairs resulting from the 20 samples ranged from
094 to 1.00 and exhibited a unimodal distribution
peaking close to one (Fig.2B). The extremely high
similarity across a transect supports the suggestion that
rivers are open ecosystems where mixing is pervasive.

3.3 Spatial differences in microbial community composition
emerged between near-shore and near-center groups despite
overall similarities

Observing the strong correlation between samples, we
further asked: are there any fine differences between
community compositions across a transect? Using
principal coordinate analysis (PCoA) as an unsupervised
learning tool with no a priori assumptions about any
grouping, we visualized Bray-Curtis dissimilarities
between the samples. In the visualization from the first
two principal coordinates, the riverine microbiome
samples that were collected near the riverbank (samples
1-10) grouped separately from those collected near the
river center (samples 11-20, Fig. 3A). It should be noted
that the group naming was made to reflect the pattern in
Fig. 3A. The PCoA from Jaccard distances showed a
similar grouping, indicating that community composition
differences were caused by both presence and absence of
microbial taxa and their differing relative abundances
(Figure S2).

It should be noted that the within-transect community
composition differentiation emerged despite an overall
high similarity among samples. When we examined the
pairwise Bray-Curtis dissimilarities of samples within a
near-shore or near-center cluster in the PCoA space
(Fig. 3A, PERMANOVA p = 0.001 < 0.05, PERMDISP
p = 0.3 > 0.05, mean distance to centroid for riverbank
group = 0.055, mean distance to centroid for river center
group = 0.06), the average within-group Bray-Curtis
dissimilarity was as low as 0.08 (Fig. 3B, 90 unique
samples pairs). When examined between these two
groups, the average Bray-Curtis dissimilarity was as low
as 0.14 (Fig. 3C, 100 unique sample pairs). Even between
groups, community composition was extremely similar.
These results indicate fine spatial differences within an
overall very similar transect continuity. In terms of fluid
dynamics, mass and heat transfer, the riverbank can
present slower flow, higher temperature, and chemicals
from the soil, which could all potentially lead to varied
environments across a river transect.

3.4 Informative taxa were identified across a river transect

Since we detected the differentiation of microbial
communities across the river transect, we explored the
taxa driving this difference. Thus, an LDA analysis was
performed for river water samples from the two clusters
in Fig. 3A. Seven ASVs were determined to be associated
with the near-center cluster (Table S3), and these ASVs
were classified into five families: Comamonadaceae,
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Fig.3 Near-shore and near-center groups emerged in PCoA analysis
of Bray-Curtis dissimilarities. (A) The principal coordinate analysis
resulting from Bray-Curtis dissimilarities revealed a dramatic
difference in composition between near-shore and near-center samples.
Circles indicate samples; numbers indicate the distance between the
sampling site and the shore. Orange and blue polygons indicate near-
shore and near-center groups. (B) Histogram of 1-Bray-Curtis
dissimilarity values from 90 pairs of within-group comparisons in near-
shore or near-center groups. (C) Histogram of 1-Bray-Curtis
dissimilarity values from 100 pairs between-group comparisons across
near-shore or near-center groups.

Microbacteriaceae, Burkholderiaceae, Rhodobacteraceae,
and Sphingomonadaceae. Twelve ASVs were associated
with the river bank water microbiome and were classified
to five families (Table S3): Flavobacteriaceae, Crocinito-
micaceae,  Spirosomaceae,  Methylophilaceae, and
Sporichthyaceae (Fig. 4A).

It should be noted that while statistically significant
variation was detected, such variations occurred in a
gradual manner (Fig. 4B). The most enriched ASVs near
shore were Flavobacteriaceae, Crocinitomicaceae, and
Spirosomaceae; all of these were Bacteroidetes. Bacter-
oidetes are dominant phyla in soil environments due to
their traits including the ability to secrete diverse
carbohydrate-active enzymes (Larsbrink and McKee,
2020). Potentially, the taxa that were more abundant near
the bank were seeded from the soil or plant debris. While
the differentiative ASVs presented a small fraction of the
diversity, their relative abundance cannot be ignored. The
Flavobacteriaceae taxa that are also highly variable took
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up above 8% of all samples. Differentiative ASVs under
Comamonadaceae  constituted  5%—15%  relative
abundance.

3.5 Impact of hyperlocal variation on microbiome
sampling

The within-transect variation of riverine microbiomes
demands us to consider: how will the hyperlocal variation
affect our ability to document the diversity at the riverine
microbiome at one location? Therefore, we employed
taxon accumulation curves to examine the impact of
sample size on representation of diversity at a local site.
We found that even at the phylum level, the taxon
accumulation curve did not become saturated after 20
samples were collected (Fig. 5A). When within-transect
sample size reaches twenty, the estimated means of
richness at the phylum, family, and genus level were 43
phyla, 413 families, and 716 genera, respectively. The
sample size to achieve 80% of the highest richness are 4
samples, 6 samples, and 7 samples for phylum, family,
and genus levels, respectively (Fig.5). These results
support that hyperlocal variation has a profound impact
on taxon diversity sampling. The pervasive approach of
one sample per site can severely underestimate local
diversity in riverine microbial assemblages.

4 Discussion

Our results demonstrate a clear structuring of the bacterial
communities within a single transect of a stream even
though the overall community composition and alpha
diversity were quite similar among samples (Figs. 2 and
3). The community composition differences were mainly
driven by differentially abundant taxa from near-shore to
the near-center of the river (Fig. 4). Taxa of which the
abundance varied directionally were detected by LefSe
analyses. We are not certain what factor is driving
differences in community composition between near-
shore and near-center samples, which appear to occur
between samples 10 and 11. Such a distinct break was
unexpected, and we were not able to capture the source of
this variation in our sample design. However, we
hypothesize that substrate and/or hydraulic variation is
causing differentiated representation of microbes in the
water column. The taxon abundance curves were non-
saturated even with twenty samples collected across the
transect (Fig. 5), despite the ASV-level rarefaction curve
reaching a plateau in every sample in terms of sequencing
efforts (Fig. S1).

While taxon accumulation curves are classic tools in
ecology to document biodiversity and examine sampling
efforts, to our best knowledge, our study is the first to
examine microbial taxon accumulation curves along a
river transect. The finding that even at the phylum level,

twenty samples did not fully capture the riverine
microbial community diversity was surprising. Neverthe-
less, with an extensive sampling scheme and deep
sequencing depth, our taxon accumulation curves likely
captured many of the rare taxa in the system. Despite the
importance of taxon abundance curves in ecological
experimental design, the results here should not be taken
as prescriptive. Instead, we hope this study could
motivate future site-specific taxon accumulation curve
studies, the data from which will eventually drive a
consensus in sample size determination for riverine
microbial community studies.

Our findings could hold significance for many
applications comparing alpha diversity across sites in
riverine microbial assemblages, yet perhaps the most
pertinent immediate next question would be to encourage
a more deliberate sampling approach when exploring the
recruitment of taxa into aquatic systems as a river
develops. Recent studies have considered the dispersal of
microorganisms from soil, soil water, and sediment to
river water as important mechanisms in riverine
community assembly (Crump et al., 2012; Ruiz-Gonzélez
etal.,, 2015; Gweonetal.,, 2021). In particular, Ruiz-
Gonzalez et al. (2015) found that across a catchment of a
La Cote-Nord region of Quebec, there was a group of
hypothetical “seed taxa” that rose in their relative
abundance as the river Strahler order increased (Ruiz-
Gonzalez et al., 2015). The fact that some later-dominant
seed microorganisms could appear at low relative
abundance at their entry suggests that sampling efforts
would be important in capturing these taxa and infer the
order of their dispersals, which are essential to infer the
role of priority effects in shaping community assemblages
(Fukami, 2015; Svoboda et al., 2018). Thus, a more
deliberate approach in sampling microbial assemblages in
riverine systems that considers taxon abundance curves
may help us understand the role of priority effects in
shaping community assemblages estimated from field-
collected data.

We identified informative taxa characterized by large
relative abundance differences in the near-shore and near-
center groups. The taxa that were associated with the
river center, namely, Comamonadaceae, Microbacter-
iaceae, Burkholderiaceae, Rhodobacteraceae and Sphin-
gomonadaceae, are taxa that are frequently associated
with aquatic environments and even prevalent in potable
water (Newton et al., 2011; Ling et al., 2018). In contrast,
multiple ASVs associated with the near-shore group were
Flavobacteriaceae and Crocinitomicaceae. These groups
are chemoorganotrophs and previously detected in
various aquatic and soil environments. In addition,
Spirocomaceae was associated with near-shore groups.
Microorganisms under the Spirochetes phylum are known
to have a twisting mobility (Charon et al., 2012), perhaps,
the mobility of this lineage played a role in their
dispersals. The list of organisms revealed in our analysis
as near-shore associations can help form more detailed
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relative abundance of informative ASVs accumulating at the family level.

hypotheses about soil-to-water microbial dispersals.

It should be noted that multiple taxa exhibited
directional variation, as shown in Fig. 4. However, not all
taxa exhibited this variation, suggesting that stochasticity

played a role in community composition. The prevalence
of taxa is better explained by the Sloan’s version of the
neutral model than statistical null models (Supplementary
Text, Table S4), suggesting that the community
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composition variations cannot be explained solely by
variation due to sampling artefacts.

We acknowledge that, in this study, the community
composition was examined using 16S rRNA gene
amplicon sequencing, and hence limited our ability to
examine sub-species diversity and variability. Studies
characterizing microbial diversity from Vibrionaceae in
coastal environments have suggested that multiple
genotypes can co-exist within a natural aquatic
environment and exhibit different functions (Thompson
et al., 2005). While strain diversity has not been directly
characterized in lotic systems, we believe this is an
important area to explore in future research because strain
diversity has helped explain functional redundancy in
many microbial assemblages (Louca et al., 2018).
Currently, strain diversity is only starting to be integrated
into the study of community assembly processes, yet
enlightening results have been suggested to explain
alternative community types in biofilm communities
(Leventhal et al., 2018). Nevertheless, our results, which
encourage a more deliberate approach in sampling
microbial diversity from local communities, could aid the
discovery of genetic diversity in riverine microbial
communities from the same samples, and eventually
facilitate the integration of strain diversity in
disentangling community assembly processes in riverine
systems.

5 Conclusions

In this study, we examined the hyperlocal variation of
microbial communities by intensively sampling a single
transect in the Meramec River watershed. Our
PERMANOVA analysis detected significant near-bank
and near-center differences in the microbial communities
despite overall high similarity. Sloan’s neutral model
simulations revealed that within-transect community
composition variation was largely explained by
demographic stochasticity (R = 0.89). Taxa indicative of
near-bank or near-center differences were identified
through LefSE analysis. After observing the within-
transect variation, we constructed taxon-accumulation
curves at the phylum, family, and genus levels to examine
the effect of within-transect variation on documenting
alpha diversity. Sampling effort at as many as twenty
samples did not fully saturate the diversity at the genus
level, yet four, six and seven samples were able to capture
80% of the phylum-level, family-level, and genus-level
diversity, respectively. Our results are useful for
designing future field studies on community assembly, as
research comparing across sites and locations can
incorporate taxon-accumulation curves to draw more
nuanced conclusions about the dispersals of taxa. This
study for the first time reveals hyperlocal variations in
riverine microbiomes and their assembly mechanisms,
demanding attention to more robust sampling strategies
for documenting microbial diversity in riverine systems.
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