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All-polymer solar cells (all-PSCs) are prepared with a
sandwich device structure based on a binary blend of a
polymer donor and a polymer acceptor (Fig. 1), and have
attracted intensive research attention as a potential
renewable photovoltaic technology [1,2]. As compared to
the PSCs with small molecule acceptors (SMAs), all-
PSCs show pronounced advantages of superior mechan-
ical flexibility/stretchability and improved device stability
[3,4]. Thus, they are more attractive for the applications
in wearable and portable electronics. After the first report
ofthe all-PSCs in 1995 using cyano-substituted polypheny-
lenevinylene as the polymer acceptor [5,6], researchers
have focused their efforts on the design of new polymer
acceptors, such as rylenediimide [7], B«N bridged
bipyridine [8], and cyanobenzothiadiazole-based polymer
acceptors [9]. However, before 2017, the power conver-
sion efficiency (PCE) of the all-PSCs was limited by the
weak absorbance of the polymer acceptors in the near-
infrared region [10].

In 2017, Zhang et al. [11] from Institute of Chemistry,
Chinese Academy of Sciences proposed a strategy of
polymerizing small-molecule acceptors (PSMAs) to
construct new-generation polymer acceptors with narrow-
band-gap SMAs as the key building blocks
copolymerized with different aromatic linking units (Fig.
1(b)). This strategy can inherit the merits of strong
absorption from SMAs and potential advantages of good
film forming ability, mechanical flexibility and high
stability for polymers [2]. Thus, PSMAs hold tremendous
potential for all-PSCs, and most importantly, it breaks the
major bottleneck limiting all-PSCs, i.e., poor absorptivity
in the near-infrared region [1].

Inspired by the advantages of PSMAs, intensive works
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from different groups on designing new PSMAs were
carried out, and great progress has been made in the all-
PSCs. Generally, the PSMAs are designed with an A-D-A
or A-DA’D-A SMA backbone (see Figs. 1(c, d)) copoly-
merized with a suitable conjugated linking unit (see
Fig. 1(e)). For example, the extension of the conjugation
of central D-unit of the SMA from tetracyclic core to
pentacyclic core, usually results in the PSMAs with
slightly red-shifted absorption for a broad photo
responsive range [12]. Notably, the success of the A-DA’
D-A type Y6 and its derivatives as SMAs in PSCs
[13-15], also triggered their use as building blocks to
construct efficient PSMAs [16-19]. By replacing the
common used linking unit of thiophene with benzodi-
thiophene, bithiophene, selenophene [19], bridged BT
and flexible chain tethered thiophene, photophophycial
properties of the PSMAs can be tuned. It is worth noting
that the using of electron-deficient bithiophene imide,
producing PSMAs with improved n-type characteristics
and suitable low-lying frontier molecular orbital levels
[20]. Despite the remarkable progress, regioisomeric
issue of the polymer chain is a limitation for a higher
device efficiency. Regioregular PSMA can be obtained
by carefully purifying the SMAs terminal A unit,
producing improved crystallinity and electron mobility of
the polymer acceptors thus higher device efficiency
[21-23]. The photovoltaic performance of the PSMAs
can also be improved by molecular weight control of
donors, stepwise optimization strategy and ternary blend.
Notably, the ternary blend approach has resulted in the
first example of the all-PSCs with efficiency over 17%
[24]. Moreover, flexible all-PSCs are also constructed,
showing excellent morphological and mechanical
stabilities [25]. With these encouraging results, it is
believed that higher device efficiency over 18% can be
realized by constructing flexible PSMA-based all-PSCs.
Also, the followings are suggestions for realizing real
application of the PSMA-based all-PSCs.
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Fig. 1 (a) Device structure of all-PSCs; (b) schematic illustration of the strategy of PSMA along with (c—¢) the building blocks used
to construct PSMAs; (f) typical polymer donors that working well with PSMAs.

(1) The design of PSMAs with a simple structure is
greatly desirable to reduce the cost of their production.
Previous studies highlighted the important role of proper
molecular weights of PSMAs in achieving high-
efficiency all-PSCs. Thus, it is also desirable to develop
greener and more effective synthetic routes to well
control the molecular weights of PSMAs. In general, the
molecular structural diversity of polymer donors can
provide more choices for device fabrication. In the
PSMA-based all-PSCs, only a very few polymer donors
are available. Typical examples are provided in Fig. 1(f),
including benzodithiophenedione-based polymers (PM6
and PBDB-T), quinoxaline-based polymers (PTQ10 and
PBQx-H-TF) [26,27], imide based polymers (Q4 and
PTzBI-oF) [28,29] and benzothiadiazole based polymers
(D18 and JD40) [30,31]. In addition, the pairing of the
benzotriazole based polymer donors [32] with those
newly developed PSMAs is also very appealing to further
increase their photovoltaic properties. Therefore, it is
challenging and appealing to construct new polymer
donors that can work well with the PSMAs to realize
higher PCEs.

(2) Single-component organic solar cells (SCOSCs) are
under investigation with advantages of high stability and
reduced complexity in device fabrication. With a PSMA
approach, Min [33] and Ma [34] independently construct
block copolymer based SCOSCs via a stepwise stille
coupling reaction, producing high efficiency in the range
9%—11%. Higher morphological stability and lower
energy loss were also observed in the reported SMOSC
compared with the control binary blend devices.

However, the performance of the state-of-the-art SCOSC
still lags significantly behind that of binary organic solar
cells. Thus, under a PSMA approach, a lot of further
efforts are necessary to develop tailor-made block copoly-
mers with optimized donor/acceptor couples for SCOSCs.
To realize a highly ordered film, a certainly high
molecular weight of the individual blocks and a narrow
molecular weight distribution are preferred. However, it
is a great synthetic challenge using conventional synthetic
methods to control weight distribution, such as Stille
coupling reaction.

(3) Besides efficiency, mechanical robustness is crucial
for the practical applications of all-PSCs in stretchable
and wearable eclectronics. However, seldom efforts are
made on the investigation of the correlations between the
chemical structure of PSMA and the mechanical stretch-
ability in the all-PSC devices [35]. Exploration of new
chemical approach to design PSMAs that can promote a
high crack onset strain along with a suitable toughness in
flexible device are highly desired.
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