Front. Environ. Sci. Eng. 2022, 16(11): 137
https://doi.org/10.1007/s11783-022-1573-0

REVIEW ARTICLE

Recent advances in special morphologic photocatalysts

for NO, removal

Yang Yang!?, Xiuzhen Zheng?>3, Wei Ren?, Jiafang Liu?, Xianliang Fu (5<)?, Sugang Meng?,

Shifu Chen2, Chun Cai ()!

1 School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2 Key Laboratory of Green and Precise Synthetic Chemistry and Applications, College of Chemistry and Material Science,

Huaibei Normal University, Huaibei 235000, China

3 Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200433, China

HIGHLIGHTS

GRAPHIC ABSTRACT

* Systematic information of recent progress in
photocatalytic NO, removal is provided.

» The photocatalysts with special morphologies
are reviewed and discussed.

* The morphology and photocatalytic NO,
removal performance is related.

ARTICLE INFO

Article history:

Received 10 January 2022
Revised 17 February 2022
Accepted 28 February 2022
Available online 28 April 2022

Keywords:

NO, removal
Photocatalyst
Graphene

C;N,

Bi-based compounds.

Photocatalysts
for NO,
removal

ABSTRACT

The significant increase of NO, concentration causes severe damages to environment and human
health. Light-driven photocatalytlc technique affords an ideal solution for the removal of NO, at
ambient conditions. To enhance the performance of NO, removal, 1D, 2D and 3D photocatalysts have
been constructed as the light absorption and the separatlon of charge carriers can be manipulated
through controlling the morphology of the photocatalyst. Related works mainly focused on the
construction and modification of special morphologic photocatalyst, including element doping,
heterostructure constructing, crystal facet exposing, defect sites introducing and so on. Moreover, the
excellent performance of e photocatalytic NO, removal creates great awareness of the appllcatlon
which has promising practical applications in NO removal by paint (removing NO, indoor and
outdoor) and pavement (degrading vehicle exhausts) For these considerations, recent advances in
special morphologic photocatalysts for NO, removal was summarized and commented in this review.
The purpose is to provide insights into understandmg the relationship between morphology and
photocatalytic performance, meanwhile, to promote the application of photocatalytic technology in
NO, degradation.

© Higher Education Press 2022

1 Introduction
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environmental issue of general concern all over the world.
With the social development, a series of environmental
problems are brought due to the burning of fossil fuels,
such as the emission of nitrogen oxides (NO,), SO,, CO
and dust. In environmental science, NO, often refer to
NO and NO, that cause air pollution, for instance, acid
rain, ozone hole and photochemical smog (Hao et al.,
2002). Furthermore, it can also have serious impacts on
human health, irritating the eyes, nose, throat and lungs,
easily destroying the human respiratory system, and
causing diseases like bronchitis. In recent years, NO,
caused by human activities have still continued to
increase, leading to serious environmental problems and
ecological hazards. As many countries have issued the
relevant laws and regulations to limit the NO, emission,
how to efficiently control the NO, emission has also
become a hot issue in the environmental field.

At present, the commonly used methods to control the
industrial NO, emission, include lye absorption, solid
adsorption and selective oxidation reduction. However,
these technologies have high operating costs for
processing low-concentration NO, (~1073 mg/L). As an
efficient technology to remove low-concentration air
pollution, photocatalysis shows promising application
prospect in NO, removal. Under the action of catalyst and
sunlight, NO, can be oxidized to NO,;~ or reduced to N,.
Generally, there are two kinds of degradation routs in the
photocatalytic NO, removal, and one is using active
species to oxidize NO,, such as h*, «O,~, H,0, and *OH.
These radical groups can ultimately oxidize NO, to NO,,
NO,” or NO;~, remaining on the surface of the
photocatalyst. The other one is using €~ to reduce NO,,
which can be decomposed into harmless N,.

Since the researches on photocatalytic NO, removal
have been carried out for nearly 40 years (Pichat et al.,
1982), many semiconductors as catalysts have been
developed and enormous efforts on photocatalysts have
been made to improve the photocatalytic performance.
Compared with nanoparticles and bulk materials, the
photocatalysts with special morphology are paid more
attention as the reactions often occur on the surface of the
catalyst. Their size, dimensions, exposed crystal faces,
and surface structure have direct impacts on the
photocatalytic performance. Thus, controlling the
photocatalyst morphology and studying the relationship
between morphology and photocatalytic activity have
become a hot research direction in the field of
photocatalysis. To promote the application of photoca-
talytic technology in NO, degradation, the photocatalysts
with special morphologies (from dimensions) are
reviewed and discussed in this work, which may provide
important reference for the related researchers.

2 1D nanostructural materials

Compared with nanoparticles and bulk materials, 1D

nanomaterials, including nanowires, nanofibers, nanori-
bbons, nanorods and nanotubes, have a large specific
surface area, unique electronic, optical and chemical
properties. As photocatalysts, 1D structure constrains the
lateral movement of e, guides e~ to migrate along the
axis, and provides a long enough migration channel for
charge separation. These advantages make 1D materials
as a good choose to improve the photocatalytic activity of
NO, removal.

2.1 TiO,-based materials

Many semiconductors can be used as photocatalysts, such
as TiO,, ZnO, Fe,0, and Bi,0,, etc. Among them, TiO,
has attracted enormous attention due to its stable
property, non-toxicity and high photocatalytic-efficiency.
Many researchers improve the photocatalytic activity of
NO, removal by controlling TiO, morphology to form 1D
nanostructures, like nanorods (Fig. 1(a)) (Habran et al.,
2018), nanotubes (Figs.1(b) and 1(c)) (Li et al., 2015;
Martin et al., 2017) and nanowires (Lee et al., 2020).
Moreover, TiO, nanoparticles are deposited and coated
on the supporter with 1D nanostructures, i.e., C nanotubes
(Fig. 1(d)) (Xiao et al., 2019), C fiber (Kusiak-Nejman
et al., 2020) and polymeric nanofibers (polyamide 6,
polystyrene and polyurethane) (Szatmary et al., 2014). To
improve the efficiency, some of these materials can also
be used in photoelectrocatalytic NO, removal (Xiao et al.,
2019; Dai et al., 2020).

However, TiO, as a wide-bandgap semiconductor, can
only absorb the UV light. To increase its utilization of
solar energy, element doping and semiconductor
composite are important methods for 1D TiO, materials
to obtain high photocatalytic activity in NO, removal.
One or two element doping is commonly observed, like
N-doped carbon quantum dots decorated on the surface of
coral-like TiO, s microstructures (Fig. 1(e)) (Ou et al,,
2021), which could extend light absorption to longer
wavelengths. To strengthen the effect of element doping,
three elements are added to improve the NO, removal, for
instance, TiO, nanotubes doped with Cu, Ce and B (Li
et al., 2015). Compared with a single semiconductor,
semiconductor composite is another important method to
obtain better photocatalytic activity. TiO, can compound
with many materials, such as SnO, (Huy et al., 2019),
WO, (Liu et al., 2021) and C;N, (Hossain et al., 2020).
As the valence band, conduction band and band gap
energies of two semiconductors are inconsistent, their
band position will overlap. This behavior can not only
facilitate the transfer and separation of photogenerated e~
and h*, but also expand the spectral response range of
TiO,.

2.2 Non-TiO, metal oxides and metal sulfides

ZnO, another widely used photocatalytic nanomaterial,
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1D TiO, material on photocatalytic NO degradation: nanorod (a, (Habran et al., 2018)), nanotube (b, (Martin et al., 2017),

c, (Li et al., 2015)), nanoparticles on C nanotubes (d, (Xiao et al., 2019)) and coral (e, (Ou et al., 2021)). The figures are copyrighted
from Taylor & Francis Publishing Group (a), Elsevier Publishing Group (b), Royal Society of Chemistry Publishing Group (c) and

American Chemical Society Publishing Group (d, e).

has been studied to remove NO,. To enhance the
photocatalytic activity, some other semiconductors are
compounding with its nanorod material, like g-
C;N,/Zn,SnO,N (Fig. 2(a), (Wang et al., 2019a)). Besides,
other binary metal oxides with 1D nanostructure are
investigated, such as C;N,/Bi,O; (Fig. 2(b), (Hoang et al.,
2020)) and BiVO,/Bi,0, (Fig. 2(c), (Huang et al., 2021)).
For the ternary metal oxides, ZnWO, is widely investi-
gated in the NO, removing, like Pd/ZnWO, (Fig. 2(d),
(Chang et al., 2019)). Other multi-component metal oxides
with 1D nanostructure are also studied, for instance,
Auw/BiOCI/BiOl (Wang et al., 2021c) and Ag/Ag,0/SrSn
(OH), (Yang et al., 2021a). Moreover, some substrates
with 1D fiber have been utilized to load active
components, such as Bi,0,CO;/MoS, on carbon nanofibers
(Fig. 2(e), (Hu et al., 2017)). Recently, metal sulfides are
also applied in the NO removal, such as Bi/CdS (Li et al.,
2021) and Ag/Bi,S, (Pham et al., 2021a).

3 2D nanostructural materials

Recently, 2D layered nanomaterials, as an important
category of materials, have attracted intensive attention.
They possess a series of excellent properties, such as
good electrical and thermal conductivity, high electron
mobility and excellent mechanical properties. According
to the shape and thickness, they can be divided into
nanosheets, nanoplates, nanowalls, nanoflakes and so on.
Besides layered double hydroxides (Nehdi et al., 2022)
and MXene (Wang et al., 2021d), the 2D nanomaterials
commonly applied in photocatalytic NO, removal are
mainly including graphene, g-C;N, and Bi-based
compounds.

3.1 Graphene and graphene oxide

Graphene is a single carbon atom layer, performing a 2D
honeycomb lattice structure closely packed by a ring
structure. Due to its special structure, graphene shows
excellent electrical transport, mechanical and surface
chemical properties. Especially, its 2D film-like structure
and oxygen-containing functional groups on the surface
(e.g., graphene oxide and reduced graphene oxide: GO
and rGO) are conducive to embedding or loading other
functional materials. Besides the elements doping (N and
Bi (Feng et al., 2020)) on graphene (Fig. 3(a)), GO and
rGO can bond with other materials to enhance the
photocatalytic performance. For instance, GO can
coupled with C;N,/InVO, cubes (Fig. 3(b), (Hu et al,
2018)), and ZnCo,0, with rhombic dodecahedron are
loaded on rGO (Fig. 3(c), (Xiao et al., 2018)).

32 CN,

In recent decades, many scholars have shown an intense
interest in photocatalytic technology and have made
several important breakthroughs. In 2009, Wang et al.
synthesized g-C;N, by thermal polymerization (Wang
et al.,, 2009). As a metal-free semiconductor photocata-
lyst, it shows promising prospects in photocatalytic field.
However, from the perspective of application, the
photocatalytic activity of pure C;N, is not too high in
NO, removal under visible light irradiation. To meet this
challenge, many researchers have carried out a series of
research work to regulate the internal electronic structure
and increase the number of active sites, such as element
dopant (Xia et al., 2022), heterojunction construction (Xie
et al.,, 2022) and defect design (carbon vacancies (Gu
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Fig.2 1D non-TiO, metal oxide materials on photocatalytic NO degradation: ZnO nanorod (a, (Wang et al., 2019a)), Bi,O5
microrods (b, (Hoang et al., 2020)), mulberry-like Bi,O; (¢, (Huang et al., 2021)), ZnWO, nanorod (d, (Chang et al., 2019)) and
Bi,0,C0O;/MoS, on carbon nanofibers (e, (Hu et al., 2017)). The figures are copyrighted from Elsevier Publishing Group (a, b and e),
Wiley Publishing Group (c) and American Chemical Society Publishing Group (d).

Fig.3 2D GO-based materials loaded with different shapes on photocatalytic NO degradation: nanoparticles (a, (Feng et al.,
2020)), cubes (b, (Hu et al., 2018)) and rhombic dodecahedron (c, (Xiao et al., 2018)). The figures are copyrighted from Royal
Society of Chemistry Publishing Group (a) and Elsevier Publishing Group (b, c).
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et al., 2020) and nitrogen vacancies (Duan et al., 2021)).

As C;N, performs layer or sheet structure (Fig. 4(a))
(Han et al., 2019), the elements and semiconductors
embedded on C;N, are mainly nanoparticles, like Fig.
4(b) (Li et al.,, 2020a). Besides, some materials with
special structure can also loaded on C;N, surface, such as
plate (Figs. 4(c) and 4(d)) (Wang et al., 2016; Geng et al.,
2021b), cube (Fig. 4(e)) (Wang et al., 2021a), octahedra
(Fig. 4(f)) (Ren et al., 2021) and sphere (Figs. 4(g) and
4(h)) (Dong et al., 2015; Wang et al., 2021b). Taking dual
defects mediated W, 40,/g-C;N, . heterojunction as an
example (Fig. 4(h)), the Z-scheme heterojunction was
achieved due to the formation of build-in electric field
from g-C;N,,_ to W,,0,, (Wang et al., 2021b). Combined
with the promoted excision dissociation induced by N
vacancies, the enhanced light absorption and accelerated
carriers’ separation induced by near-field enhancement
effect in visible-NIR range of oxygen vacancies (Oys).
The NO removal rate of the composite could reach
83.55%, which was 1.41 and 6.15 times higher than that
of C;N, (59.14%) and W 40,4 (13.59%).

3.3 Bi-based compounds

The development of new materials is the key to obtain the
pioneering progress in many fields, and photocatalysis is
no exception. Besides carbonaceous materials (Nikoka-
voura and Trapalis, 2018), many researchers explore and
discover Bi-based photocatalysts, such as BiOX (X = Cl,
Br and 1), Bi,0,CO,, BiIMO, (M = W, Mo and Ge) and
other 2D materials that absorb sunlight better. Due to its
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exposed surface, vacancy design and surface modification
are easily performed, which is promising in material
innovation and solving environmental problems (Zhao
et al., 2021).

(1) BiOX (X=Cl, Br, I)

Bismuth oxyhalides (BiOX) are the semiconductor
materials composed of three elements of Bi, O, and
halogen atoms, in which X atoms are sandwiched by
Bi,0, atoms, and alternated to form the [X-Bi-O-Bi-X]
structure. The built-in electric field formed by the
negatively charged X layer and positively charged
[Bi,0,]?" layer, which can effectively separate h* and €.
This unique layered structure exhibits high stability and
suitable band gap, consequently widely used in the field
of photocatalysis, especially in environmental and energy
fields.

BiOX are mainly including BiOCI (Figs. 5(a) and 5(b))
(Li et al., 2019a; Xie et al., 2020), BiOBr (Geng et al.,
2021a; Hermawan et al., 2021) and BiOI (Zheng et al.,
2021), which are performed sheet or plate structure.
Additionally, other BiOX (Bi,0;Br, (Zhang et al., 2017),
Bi,;,0,,Cl,, Bi;O,Br and Bi,,05,Br,,) are also applied in
photocatalytic NO oxidation. In the work of Zhu et al.,
the subnanometer Ag/AgCl clusters were incorporated on
atomically thin defective Bi,0,;Cl, nanosheets via
rebinding with unsaturated Cl atoms, resulting in an
enhancement of photocatalytic activity for NO removal
(Zhu et al., 2021). Moreover, the 2D BiOCI/Bi;,0,,Cl,
composite were deeply studied by Zhang et al. (Zhang
et al., 2018a), and it can couple with MoS, (Zhang et al.,

Fig.4 2D C;N, (a, (Han et al, 2019)) and its loaded materials with different shapes on photocatalytic NO degradation:
nanoparticles (b, (Li et al., 2020a)), plates (c, (Wang et al., 2016)), hexagonal nanoplates (d, (Geng et al., 2021b)), hollow cubes
(e, (Wang et al., 2021a)), octahedra (f, (Ren et al., 2021)), nanospheres (g, (Dong et al., 2015)) and spheres (h, (Wang et al., 2021b)).
The figures are copyrighted from Elsevier Publishing Group (a, b, ¢, d, e, f and h) and American Chemical Society Publishing Group

(g)-
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Fig. 5 2D Bi-based materials with plate shapes on photocatalytic NO degradation: BiOCl (a, (Xie et al., 2020), b, (Li et al.,
2019a)), Bi,,05,Br,,/Bi;0,Br (c, (Li et al., 2020b) ) and Bi/Bi,0,SiO; (d, (Li et al., 2019d)). The figures are all copyrighted from

Elsevier Publishing Group.

2019b), g-C;N, (Zhang and Liang, 2019) and Ag/AgCl
(Zhang et al., 2018Db) to enhance the visible-light photoca-
talytic activity of NO removal. Furthermore, novel
Bi,,05,Br,/Bi;O,Br heterojunctions with a “nanosheet-
on-ribbon” hierarchical structure was fabricated by Li
etal. (Fig. 5(c), (Lietal.,2020b)). The special structure and
interface interaction between Bi,O,Br and Bi,,OBr,,
enhanced surface-active sites, prolonged light absorption,
and promoted charge separation capability during the
photocatalytic reaction.

(2) Bi,0,CO;

Bi,0,CO; (BOC) is a sillen layered structure formed
alternately by [Bi,0,]*" layer and CO,>" layer. As the
plane of the CO;>" layer and (Bi,0,)*" layer is perpen-
dicular to each other, its morphologies are performed
nanosheets. In recent years, many researchers have
studied BOC to remove NO by regulating defect sites (Lu
et al.,, 2019b). Moreover, many materials are developed
by compositing with it to improve the NO removal, such
as graphene (Liu et al., 2020a), CdSe (Liu et al., 2019)
and ZnFe,0, (Huang et al., 2018).

(3) BiMO, (M = W, Mo and Ge)

Recently, BIMO, have been widely used in the field of
photocatalysis due to their low toxicity, wide distribution
of constituent elements, stable chemical properties, and
easy adjustment of band structure. BiMO, have a unique
anisotropic layered structure, and are easy to form a two-
dimensional nanosheet structure with a high exposed
surface during crystal growth. Bi,WO, as an important
bismuth oxide, is widely studied to remove NO,, for
example, CI/BiWO, (Yang et al, 2021b) and black

P/Bi,WO, (Hu et al., 2019). Other bismuth oxides are
also prepared to remove the NO pollutant, such as
Bi,MoO, (Ding et al., 2016; Wang et al., 2020) and
Bi/Bi,GeOs (Li et al., 2019c¢).

(4) Other bismuth materials

A model Bi@Bi,0,Si0; catalyst is described by Li
et al,, and this work has significant implications for
modification of the abundant Bi-containing semicondu-
ctors (Fig. 5(d), (Li et al., 2019d)). The co-existed Oy, and
Bi metal were demonstrated to have synergy effect on the
reactant activation and catalyst surface. Moreover,
I-doped BiOCOOH nanosheets was prepared via the
replacement of COOH™ ions with 1™ ions (Feng et al.,
2018), which exhibited highly enhanced photocatalytic
removal of NO in air by increasing visible light
absorption and promoting charge separation.

4 3D nanostructural materials

3D structures are composed of low-dimensional materials
(i.e., nanoparticles, nanoplates, nanowires, nanorods and
nanosheets) as structural units to form spherical, flower,
and dendritic structures. Due to the large surface energy
of low-dimensional materials, the composition of
hierarchical structure can effectively prevent the agglo-
meration of these low-dimensional materials, thereby
facilitating the progress of the photocatalytic reaction. As
2D layers structure easily agglomerate to 3D structures,
the C;N, and Bi-based compounds as the research
focuses are discussed in this section.
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4.1 Metal oxides

There are many metal oxides with unique shape are
constructed to remove NO,. Spherical shape as a widely
research focus is investigated by many scientific research
workers, such as Bi,O, (Figs. 6(a) and 6(d)) (Hojamber-
diev et al., 2018; Rao et al., 2020), ZnO (Fig. 6(b)) (Chen
et al., 2018), TiO, (Fig. 6(c)) (Sofianou et al., 2012) and
other semiconductors. Besides spherical shape, some
other special morphologies are also studied, for example,
cubes (Pham et al., 2021b), rose (Fig. 6(e)) (Kowsari and
Bazri, 2014), nanorod bundles (Fig. 6(f)) (Zhang et al.,
2014), twin-brush (Fig. 6(g)) (Wu et al., 2021), decahedra
(Xiao et al., 2016) and hexagonal (Fig. 6(h), (Kowsari
and Abdpour, 2017) ) structure.

42 CyN,

As an important metal-free semiconductor, C;N, with
flower (Fig. 6(¢e), (Duan et al., 2019)) and sphere (Wang
et al., 2022) can be fabricated by reunions of nanosheets.
Besides Bi metal modified C;N, to form a pomegranate-
like structure (Li et al., 2017), a novel ball-in-ball
structured g-C;N,@SiO, composite was constructed by

200 nm

Lin et al. (2017), which performs an excellent photocata-
lytic activity of NO removal as nano-photoreactor.
Moreover, 3D foams consisted of g-C;N, and TiO,
quantum dots were prepared (Xiong et al., 2021), which
provided abundant adsorption and activation sites for
oxidizing NO flow gas under light irradiation.

4.3 Bi-based compounds

BiOX with the layer structure, can easily form flower and
sphere shape assembled by nanoplates, such as BiOCl
(Shen et al., 2021), BiOBr (Montoya-Zamora et al., 2020),
BiOI (Fig. 7(a)) (Rao et al., 2019), Bi,OsBr, (Chang
etal.,2021),Bi,,0,,Br, (Lietal.,2019b) and Bi;O,I (Zhang
et al., 2019a). For BOC, many elements can be added into
its flowers to improve the selectivity and efficiency of
photocatalytic NO oxidation (Fig. 7(b)) (Yuan et al.,
2020). Moreover, it can couple with many semiconductor
to form flower-like microspheres, for instance, (BiO),CO,/
BiO, /graphene (Jia et al., 2019). Its NO removal
efficiency was reached to 61%, and no obvious
deactivation of the photocatalyst was caused by the
photocatalytic process. Z-scheme charge transfer was

Fig. 6 3D metal oxides with different shapes on photocatalytic NO degradation, such as microspheres (a, (Hojamberdiev et al.,
2018), b, (Chen et al., 2018), c, (Sofianou et al., 2012) and d, (Rao et al., 2020)), flower (e, (Kowsari and Bazri, 2014)), nanorod
bundle (f, (Zhang et al., 2014)), twin-brush (g, (Wu et al., 2021)) and hexagon (h, (Kowsari and Abdpour, 2017)), and C;N, materials
with flower structure (i, (Duan et al., 2019)). The figures are copyrighted from Springer Publishing Group (a, c) Elsevier Publishing

Group (b, ¢, f, g, h and i) and Wiley Publishing Group (d).
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proposed to explain the observed high photocatalytic
efficiency. The introduction of graphene is important
because its high conductivity can promote the migration
of e” and its 2D morphology can provide large surface
area.

Bi,WO, and BiVO, as the important ternary bismuth
oxygen compound, are widely studied to remove NO,.
For Bi, WOy, some 3D hierarchical structured morphology
composed of nanoplates are constructed, such as
mesoporous flowers (Fig. 7(c)) (Lu et al., 2019a), rose-
like (Wang et al., 2019b), microspheres (Fig. 7(d)) (Li
et al., 2010) and octahedral cubic morphology (Liu et al.,
2020b). Moreover, there are many beautiful shape of
BiVO, are controllably synthesized by adjusting reaction
condition, for example, hollow double-layer nanospheres
(Fig. 7(e)) (Zha et al., 2021), microboats (Fig. 7(f)) (Ai
and Lee, 2013) and eight-pot flower-like BiVO, (Fig.
7(g)) (Ou et al., 2015). To obtain high separation of
photoinduced electron-hole pairs, Ou et al. designed a
hierarchical g-C;N,@Ag/BiVO, hybrid photocatalyst, in
which Ag was photodeposited on the preferred exposure
(040) facets of BiVO, and subsequently g-C;N, was
covered on the surface of Ag/BiVO, (Fig. 7(h), (Ou et al.,
2018)). Besides, other BiMO, samples with multi-level
structure  were also synthesized, like Bi,MoO,
microspheres (Huo et al., 2019), Bi,Sn,O, . hollow
nanocubes (Lu et al., 2021) and Bi/BiPO, nanosphere
(Chen et al., 2020).

5 Conclusions

NO, from the burning of fossil fuels not only directly

7,

7z

- g 2 um
1030

Fig. 7 3D Bi-based materials with different morphologies on photocatalytic NO degradation: flower (a, (Rao et al., 2019b), b,
(Yuan et al., 2020)), hierarchical structure (c, (Lu et al., 2019a), d, (Li et al., 2010)), sphere (e, (Zha et al., 2021)), boat (f, (Ai and
Lee, 2013)), eight-pot shape (g, (Ou et al., 2015)) and decagon shape (h, (Ou et al., 2018)). The figures are copyrighted from
American Chemical Society Publishing Group (a, d), Elsevier Publishing Group (b, e, f and h), Springer Publishing Group (c) and
Royal Society of Chemistry Publishing Group (g).

cause a series of environmental problems, but also bring
harm to human life and health. Photocatalysis is currently
considered as one of the most environmentally friendly
technology in low-concentration NO, removal. In this
review, we have investigated and classified the
photocatalysts with special morphology for NO, removal,
which are summarized in Tables 1, 2 and 3. This
morphology research is beneficial for us to study the
relationship between morphology and photocatalytic
activity, and important for the development of “green
environmental processes”. Although many advanced
materials with unique structure and high photocatalytic
performance under visible light region have been
reported, there is still a long way from academic research
to practical application.

Nowadays, the photocatalyst practically applied in NO,
removal are paint and pavement, which guide the
direction of our researches. Photocatalytic paint is used in
mechanically ventilated buildings to oxidize NO.
Moreover, TiO, and C;N, are applied in road
construction to remove NO, from automobile exhaust
gas. These preliminary study establishes the potential for
heterogeneous photochemistry to occur on real
application and opens the way for further research under
realistic conditions. It is believed that photocatalytic NO,
removal will be enriched to begin a revolution of
renewable energy for practical benefits and future
commercialization.
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Table 1 Summary of 1D photocatalysts for the NO, removal

Photocatalysts Light source Pzg;gi;%%i%al Products ;}ggzg@; Ref.

TiO, nanorods uv NO (134) - 100% Habran et al., 2018
TiO, nanotubes uv NO, (1.34) NO;~ 60% Martin et al., 2017
Cu, Ce and B/TiO, nanotubes uv NO (201) HNO;, 80% Lietal., 2015
Mn-graphene/TiO, nanowires Fluorescent lamp NO, (1.34) NO,, NO;~ 25.4% Lee et al., 2020
TiO,/C nanotubes uv NO (0.74) NO;~ 31.5% Xiao et al., 2019
Ag/TiO, on C fibers uv NO (2.68) NO, niric 95%  Kusiak-Nejman et al., 2020
TiO,/polymeric nanofibers uv NO (1.34) NO,, HNO, 16.2% Szatmary et al., 2014
TiO, nanorods uv NO (0.67) NO;~ 58% Dai et al., 2020
TiO, y/CNTs/N-CQDs corals Visible light NO (0.58) NO;~ 60.2% Oucetal., 2021
Sn0O,/TiO, nanotubes Visible light NO (0.60) NO;~ 59.49% Huy etal., 2019
WO,/TiO, nanorods/PDMS Visible light NO (26.8) - 61.41% Liu et al., 2021
2-C;N,/TiO, nanotubes Visible light NO (1.34) NO,, NO;™ 19.62% Hossain et al., 2020
g-C;N,/Zn,SnO,N/ZnO nanorods Visible light NO (0.80) - 45.51% Wang et al., 2019a
C;N,/Bi,0; microrods Visible light NO (134) NO,, NO;~ 39.1% Hoang et al., 2020
Mulberry-like BiVO,/Bi,0, Visible light NO (0.80) - 58.7% Huang et al., 2021
Pd/ZnWO, nanorods Simulated sunlight NO (0.58) NO, /NO;~ 52.69% Chang et al., 2019
Au/BiOCI/BiOI rods visible light NO (0.74) NO;/NO,” 65.4% Wang et al., 2021a
Ag/Ag,0/SrSn(OH), nanowires Visible light NO (0.74) NO;~ 45.1% Yang et al., 2021a
Bi,0,C0O;/MoS, on carbon nanofibers Visible light NO (0.8) NO;~ 68% Hu et al., 2017
Bi/CdS nanorods Visible light NO (1.34) HNO, 58% Lietal., 2021
Ag/Bi,S, nanorods Solar light NO (0.67) NO;~ 31.12% Pham et al., 2021a
Table 2 Summary of 2D photocatalysts for the NO, removal

Photocatalyst Light source Pg;%z;iag}rg%al Products el}g;gg; Ref.
MgAIl-COj, layered double hydroxides UV-Vis light NO (0.67) NO;~ 60% Nehdi et al., 2022
Nb,0,/Nb,C MXene Simulated sunlight NO (0.67) HNO, 80% Wang et al., 2021d
N, Bi/graphene nanosheets uv NO (0.67) NO;~ 49.5% Feng et al., 2020
g-C;N,/GO-InVO, layers Visible light NO (0.80) NO;~ 65% Huetal., 2018
ZnCo,0,/rGO nanosheets Visible light NO (0.67) NO;~ 83.8% Xiao et al., 2018
B/C;N, nanosheets Visible light NO (0.80) NO;~ 54% Xia et al., 2022
FAPbBr;/g-C;N, nanosheets Visible light NO (0.80) NO;~ 58% Xie et al., 2022
C;N, lamellar structure Visible light NO (2.68) HNO,/HNO; 33% Gu et al., 2020
C;N, network structure Visible light NO (0.24) NO;™ 57.1% Duan et al., 2021
C;N, nanosheets Visible light NO (20.1) 12‘35’]?& 2 66.7% Han et al., 2019
Pd/g-C;N, nanosheets Visible light NO (0.67) NO;~ 44.9% Lietal., 2020a
Bi,0,C0,/g-C,N, layers Visible light NO (0.54) NO;~ 34.8% Wang et al., 2016
Fe,0,/g-C;N, nanosheets Visible light NO (0.80) NO;~ 60.8% Geng et al., 2021b
NiCoO,/g-C;N, nanosheets Visible light NO (0.80) NO;~ 59.1% Wang et al., 2021a
Sb,WO/g-C;N, nanoflakes Visible light NO (0.80) NO,”, NO;~ 68% Ren et al., 2021
Bi/g-C;N, nanosheets Visible light NO (0.80) HNO,, HNO, 59.7% Dong et al., 2015
W 50,9/g-C3N,,_ nanosheets Simulated sunlight NO (0.80) - 83.55% Wang et al., 2021b
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(Continued)

Pollutants (initial Removal

Photocatalyst Light source c:){lggngag/ﬁﬁr;, Products efficiency Ref.
BiOCl nanosheets Simulated sunlight NO (0.54) - 23.7% Xie et al., 2020
BiOCl nanosheets Uv360 NO (0.67) NO,™, NO;~ 41% Liectal, 2019a
Ba/BiOBr nanosheets Visible light NO (0.67) NO;~ 53% Geng et al., 2021a
(Ti, C)-BiOBr/Ti;C,T, MXene layers Simulated sunlight NO (1.34) HNO,, NO;~ 61% Hermawan et al., 2021
BiOI/BN nanosheets Visible light NO (0.67x1079) NO, 44.2% Zheng et al., 2021
Bi,04Br, and Bi,0,Br, nanosheets Visible light NO (0.80) NO;~ 41.8% Zhang et al., 2017
Ag/AgCl/Bi,0,,Cl, nanosheets Visible light NO NO, 25% Zhu et al., 2021
BiOCV/ Bi ,0,,Cl, nanoplates Visible light NO NO;~ 37.2% Zhang et al., 2018a
MoS,/BiOCl/Bi;,0,,Cl, nanosheets Visible light NO (0.67) NO;~ 51.1% Zhang et al., 2019b
g-C,N,/BiOCI/Bi,,0,,Cl, nanosheets Visible light NO (0.67) NO;™ 46.8% Zhang and Liang, 2019
Ag/AgCl/BiOCl/Bi,,0,Cl, nanosheets Visible light NO (0.67) NO;~ 49.5% Zhang et al., 2018b
Bi;0,B1/Bi,,05,Br,, ribbon Visible light NO (0.54) - 32.5% Li et al., 2020b
Bi/Bi,0,_,CO; nanosheets Visible light NO (67) NO;~ 50.5% Luetal., 2019b
graphene/N-(Bi0),CO; nanosheets Visible light NO (0.74) NO;~ 53% Liu et al., 2020a
CdSe/N-(Bi0),CO; nanosheets Visible light NO (0.74) NO;~ 35% Liuetal., 2019
ZnFe,0,/Bi,0,CO, nanoplates Visible light NO (0.54) NO;~ 35% Huang et al., 2018
CI/BiWO, nanosheets Visible light NO (0.80) NO;~ 64% Yang et al., 2021b
Black P/BiWO, nanosheets Visible light NO (0.80) NO;~ 67% Hu et al., 2019
Bi/Bi,M0O, nanoplates Visible light NO (0.80) NO;~ 41.4% Ding et al., 2016
Br/Bi,MoO, microplates Visible light NO (0.83) NO;~ 62.9% Wang et al., 2020
Bi/Bi,GeO; nanosheets Visible light NO (0.60) NO,", NO;~ 56.2% Lietal., 2019¢
Bi@Bi,0,Si0; nanosheets Visible light NO (0.60) NO,™, NO;y~ 50.2% Lietal., 2019d
1/BiOCOOH nanoplates Visible light NO (0.74) - 49.7% Feng et al., 2018
Table 3 Summary of 3D photocatalysts for the NO, removal
) Pollutants (initial Removal
Photocatalyst Light source CS?Sf?trrnagt}%)l’ Products efficiency Ref.
MoS,/Bi,0; microspheres Visible light NO (0.58) NO,, NO,~ 41.4% Hojamberdiev et al., 2018
or NO;~
Pd/PdO/Bi,0; microspheres Visible light NO (0.58) NO, ", NO;~ 47.6% Rao et al., 2020
ZnO microspheres UV365 NO (0.54) NO;~ 71.3% Chen et al., 2018
TiO, nanospheres uv NO (1.34) NO,, NOy~ 7% Sofianou et al., 2012
ZnSn(OH), cubes Solar light NO (0.67) NO,, NO;~ 74.5% Pham et al., 2021b
Mg/ZnO rosette uv SO,, NO,, and HNO,/HNO, 23% Kowsari and Bazri, 2014
CO (1.34)
Au/TiO, nanorod bundles Visible light NO (0.54) NO,, NO;~ 31% Zhang et al., 2014
Ag/ZnO twin-brush Simulated sunlight NO (0.67) NO;~ 1% Wu et al., 2021
CNT/TiO, decahedron Uv365 NO (0.67) NO,, NO;~ 76.8% Xiao et al., 2016
ZnO hexagon uv NO (2.68) HNO,/HNO, 56% Kowsari and Abdpour, 2017
C3N, flower Visible light NO (0.80) - 59.7% Duan et al., 2019
BiOCl/g-C;N, spheres Visible light NO (0.80) NO;~ 56.1% Wang et al., 2022
Bi/C;N, pomegranate Visible light NO (0.80) - 70.4% Lietal., 2017
¢-C;N,@SiO, microsphere Visible light NO (0.80) NO,”, NO;~ 29.6% Linetal, 2017
C;N,/TiO, foam Visible light NO (0.74) NO,, NO;~ 65% Xiong et al., 2021
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(Continued)

Pollutants (initial

Removal

Photocatalyst Light source Cxo?ggltrﬁlgti/ir)l’ Products efficiency Ref.
Mn;0,/BiOCI microflowers Simulated solar light NO (0.13) HNO,, NO;~ 75% Shen et al., 2021
BiOBr microspheres UV-visible light NO (1.34) NO;~ 95% Montoya-Zamora et al., 2020
Zn/BiOl microspheres Visible light NO (0.58) NO;~ 53.6% Rao et al., 2019
Bi,0,Br,-GO clusters Visible light NO (0.74) NO;~ 53% Chang et al., 2021
BiOBr/Bi,,0,,Br, flowers Simulated solar light NO (0.54) - 57.3% Lietal., 2019b
Au, La/BisO,I microspheres Visible light NO (0.54) NO,”, NO;~ 54.5% Zhang et al., 2019a
La/Bi,0,CO, microspheres Visible light NO (0.67) NO,/NO;~ 49.8% Yuan et al., 2020
(Bi0),CO4/Bi0,_ /graphene microspheres Simulated solar light NO (0.58) NO;~ 61% Jiaetal., 2019
1/Bi, WO, microflowers Simulated solar light NO (0.58) NO;~ 50% Luetal., 2019a
Bi, WO, rosette Visible light NO (670) NO;™ 54% Wang et al., 2019b
Bi,WO, microsphere Visible light NO (0.54) NO;™ 52% Lietal, 2010
Bi,WO/NH,-UiO-66 octahedral cubes Visible light NO (0.67) NO;/NO,” 79% Liu et al., 2020b
BiVO,/Bi,S; spheres Visible light NO (402) NO;™ 37.7% Zha et al., 2021
BiVO, boats Visible light NO (0.54) HNO,, HNO; 35.4% Aiand Lee, 2013
BiVO, flowers Visible light NO (536) NO;~ 48.5% Ou etal., 2015
g-C;N,@Ag/BiVO, decagon Visible light NO (536) NO;~ 83% Ouetal., 2018
CO;-Bi,MoO, micro/nanospheres Visible light NO (0.74) NO;~ 34% Huo et al., 2019
Bi,Sn,0,_, hollow nanocubes Visible light NO (0.54) NO,", NO;~ 32% Lu et al., 2021
Bi/BiPO, nanospheres Visible light NO (0.54) NO;~ 32.8% Chen et al., 2020

and some Foundation of Anhui Province in China: Natural Science
Foundation (Nos. 1808085J24 and 2108085MB43), the University Natural
Science Research Project (No. KJ2020A0126), and the Cultivating
Outstanding Talents (No. gxbjZD2020066).
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