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ABSTRACT The inspection of water conveyance tunnels plays an important role in water diversion projects. Siltation
is an essential factor threatening the safety of water conveyance tunnels. Accurate and efficient identification of such
siltation can reduce risks and enhance safety and reliability of these projects. The remotely operated vehicle (ROV) can
detect such siltation. However, it needs to improve its intelligent recognition of image data it obtains. This paper
introduces the idea of ensemble deep learning. Based on the VGG16 network, a compact convolutional neural network
(CNN) is designed as a primary learner, called Silt-net, which is used to identify the siltation images. At the same time,
the fully-connected network is applied as the meta-learner, and stacking ensemble learning is combined with the outputs
of the primary classifiers to obtain satisfactory classification results. Finally, several evaluation metrics are used to
measure the performance of the proposed method. The experimental results on the siltation dataset show that the
classification accuracy of the proposed method reaches 97.2%, which is far better than the accuracy of other classifiers.
Furthermore, the proposed method can weigh the accuracy and model complexity on a platform with limited computing
resources.
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1 Introduction

Water conveyance tunnels play a significant role in long-
distance water diversion projects. During long-term water
delivery, the material carried by water is prone to deposit
sediment. Further, with tunnels’ service life increasing,
defects and aging affect water quality and water delivery
safety. If damage is not detected and repaired in time,
serious accidents may occur, such as rupture, collapse and
settlement of the pipeline. This threatens urban stability
and development and presents a serious social hazard [1].
However, water conveyance tunnels are usually deeply
buried and undulate, resulting in complicated hydraulic
conditions and increasing the difficulty of route
inspection.

In the past, the main detection methods for water
conveyance tunnels were as follows.
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1) Pre-installed monitoring facilities. However, the
location of the pre-installed detection facilities under-
water is fixed, and the detection range is limited. In
addition, with the increase of service life, the damage to
monitoring facilities also affects the detection accuracy.

2) Emptying detection. Emptying detection is restricted
by many complicated conditions. It not only requires
huge manpower, material and financial resources, but
also may lead to sudden changes in working conditions
and cause engineering problems.

3) Diver entry inspection. However, there is a high risk
for divers due to long periods of time that may be
required, high water pressure and fast water flow speed.

In recent years, the use of remotely operated vehicles
(ROVs) has gained traction in inspection of water
conveyance tunnels. Moughamian and McLeod [2]
inspected and evaluated Pardee Tunnels with Falcon
ROV equipped with 3D multi-beam sonar, 2D multi-
beam imaging sonar and standard definition camera at a
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water flow rate of one foot per second. Jorge et al. [3]
designed a compact unmanned underwater robotic system
equipped with forward-looking sonar, echosounders, and
low-light cameras to effectively complete the inspection
of high turbidity underwater tunnels. Lai [4] carried out
research on ROV underwater inspection and adopted the
method of combining real-time three-dimensional ima-
ging sonar scanning survey and local detailed inspection
by optical camera to complete a comprehensive under-
water inspection with high precision and apparent full
coverage of large diameter and long water tunnels.
However, the optical images collected by the above
methods need to be assessed by human experts. Addi-
tionally, the images may have different degrees of
degradation, such as uneven illumination, low contrast,
color distortion, image blur, etc., due to the complicated
underwater conditions. These problems make subsequent
classification tasks error-prone, inefficient and time-
consuming. To address these problems, efficient data
processing is needed.

With the continuing development of artificial intelli-
gence, researchers have begun to apply machine learning
methods to deal with engineering damage recognition. In
the last two decades, researchers have applied many
different traditional feature-based methods to structural
health monitoring (SHM), including support vector
machine (SVM) [5-8], k-nearest neighbor [9], decision
trees [10], as well as Bayesian method [11]. However,
these traditional approaches all rely on hand-designed
features customized for specific tasks. In addition, the
trained model may no longer be suitable for vision-based
SHM applications [12].

Since deep learning methods have shown their advan-
tages in many fields [13—19], there is a growing interest
in using deep learning in civil engineering [20]. Deep
learning models develop an end-to-end structure that can
automatically and efficiently extract complex features
from the original image, and build nonlinear mappings
through stacked deep neural network layers, so that deep
learning-based SHM is applicable to a wide range of
problems without human intervention [12]. Inspired by
the great success of deep learning in the field of computer
vision, researchers have recently attempted to apply
vision-based deep learning methods to civil engineering
problems. Luo et al. [21] proposed a pothole detector
based on deep learning that can automatically detect
potholes and prevent repeated detection. Cha et al. [22]
proposed a Faster R-CNN-based structural vision detec-
tion method for real-time and accurate detection of
multiple types of damage. Shi et al. [23] proposed a novel
underwater dam crack detection and classification
approach. Liang [24] presented a three-level image-based
method for post-disaster detection of reinforced concrete
bridges based on deep learning and new training
strategies. Savino and Tondolo [25] proposed a
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convolutional neural network (CNN) based classification
method for concrete damage classification of bridges,
tunnels and pavements.

Although deep learning methods can improve the
performance of damage recognition, some challenges
remain in the application of ROVs. On the one hand,
ROVs are limited by volume and energy, and generally
adopt embedded computer systems with limited hardware
capabilities. Therefore, the large-scale deep neural
network is not applicable for embedded systems of
ROVs. On the other hand, the limited number of
underwater training samples will lead to the overfitting
problem of the deep learning model, which means the
model learns specific features without abstracting general
features.

To achieve the trade-off between recognition accuracy
and complexity of the CNN-based method, ensemble
learning combined with the deep CNN model is introdu-
ced in this study. Ensemble learning is a model
integration algorithm that generates a set of weak
classifiers and integrates their predicted results according
to a certain strategy [26]. Several ensemble learning
methods have been proposed, including bagging [27],
boosting [28], Adaboost [28-30] and random forest [9].
Compared with the single training method, the ensemble
method demonstrates better prediction performance in
practice and has attracted attention in various fields.

In this study, an ensemble deep learning method is
proposed for siltation recognition by ROVs to balance the
computational cost and classification accuracy of the
embedded system. In fact, we construct a deep learning
model called Silt-net with good feature extraction and
classification ability. During training, we adopt Bootstrap
to ensure the diversity of these homogeneous classifiers.
Finally, a fully-connected neural network is used as a
meta-learner to combine the predictions of Silt-nets.

The main contributions of this paper are summarized as
follows.

1) To the best of our knowledge, the idea of combining
ROVs with ensemble deep learning methods for under-
water siltation recognition is proposed for the first time in
this paper.

2) An ensemble learning method based on deep
learning is proposed for siltation recognition. In the
proposed method, several convolutional neural networks
called Silt-net are constructed and trained as base
learners. Bootstrap is used to generate the diversity of the
ensemble system. A fully-connected network is used as a
meta-learner to combine the outputs of the base learners
to obtain the final results.

3) With the proposed ensemble deep learning method,
we conduct a siltation recognition framework that is more
suitable for the embedded system of ROVs. The recog-
nition framework not only achieves 97.2% accuracy, but
also has low complexity. The floating point operations
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(FLOPs) are 1.2 G, and the number of parameters is 75.1 M.

The remainder of this paper is organized as follows:
Section 2 describes the acquisition and preprocessing of
images. Section 3 introduces the proposed ensemble deep
learning siltation recognition model. Experimental design
and experimental results on underwater siltation dataset
are presented in Section 4. Section 5 provides concluding
remarks and directions for future research.

2 Data collection

2.1 ROV system

An underwater vehicle is a complex multi-functional
system, with different equipment to solve challenging
tasks in specific fields [31,32]. Underwater vehicles are
divided into manned underwater vehicles and unmanned
underwater vehicles (UUVs). UUVs can be further
divided into two categories: ROVs and Autonomous
Underwater Vehicles (AUVs).

A hydraulic water conveyance tunnel is a tubular
underground structure with flowing water and no light
inside the pipe. To obtain images of siltation at the
bottom of the tunnel, an observation class ROV equipped
with various extensions and components is used in this
study to obtain the underwater siltation data. Figures 1(a)
and 1(b) show the underwater inspection system and the
real-time ground control system, respectively.

A typical ROV system consists of an underwater
system (including submersible body and a variety of
expansion modules) and a ground system (such as an
industrial personal computer (IPC), control system,
underwater communication interface). Figure 2 shows a
complete ROV system. The main body of the submersible
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has four cameras facing in different directions, various
sensors, and optional tools. In order to solve the problem
of illumination in the tunnel, we have installed several
high-brightness LED lights. The submersible is equipped
with six large thrusters, two thrusters facing in the
horizontal direction and four thrusters in the vertical
direction, ensuring precise motion control in the
underwater space. In addition, the ROV main body adopts
a combined navigation mode of inertial navigation and
Doppler Velocimeter (DVL). The ROV body is also
equipped with various sensors, which can obtain its
position, speed, and attitude at any time, making it highly
adaptable to the complex environment, such as high
velocity water and confined spaces.

The entire system is controlled by the ground IPC unit
and the switch unit. These units use the TCP/IP
communication protocol to collect, organize and transmit
control information through a zero-buoyancy umbilical
cable, providing the connection between underwater and
terrestrial systems. The zero-buoyancy umbilical cable is
composed of communication unshielded twisted pair
(UTP) cable and video cable. The operator controls the
ROV using a control handle.

Fig. 1

Image acquisition system: (a) underwater inspection
system; (b) ground control system.
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Fig.2 An overview of ROV system.
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2.2 Image acquisition of siltation

All images used in this work are collected by ROV from
different water conveyance tunnels with different siltation
characteristics. In order to obtain high-quality underwater
siltation data, we first use ROV to obtain video data from
different angles of view, altitudes and velocities of
mechine, then extract images from the video frame by
frame at a 60-frame interval, and finally refine the
extracted images manually. In the refining process, we
consider rich siltation characteristics, different image
degradation characteristics, and extensive siltation con-
tent, and finally four typical types of underwater siltation
are selected to train the model. Figure 3 illustrates
different types of samples from different perspectives.
The first category is severe siltation, in which a large
proportion of the tunnel’s diameter is filled with material,
which then requires specialized technology and equip-
ment to remove. The second category is general siltation.
This type of siltation has a small thickness and easily
becomes suspended in the water when disturbed. It can be
removed by the disturbance of the ROV’s propeller. No
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siltation is the third category, which means healthy
engineering status. In underwater inspection, sometimes
no useful information can be collected because of a
variety of complex situations, so we set an additional
category of no targets as the fourth category.

The obtained underwater siltation data set contains
6000 images, of which 5000 are used for training and
1000 are used for testing. Table 1 summarizes the number
of various types of samples in the dataset.

2.3 Image preprocessing

5000 samples are randomly selected from the dataset as a
set in the subspace of the dataset by the bootstrap method.
Multiple different training sets are generated using the
bootstrap method multiple times. Due to limited memory,
we adjust the pixel size of training data from 1920 x 1080
to 224 x 224. In order to improve the generalization
performance of the model and make the model more
robust to complex and different underwater siltation
images, this paper applies real-time data augmentation
processing to maximize the effect of a small sample

(d

Fig. 3 Different types of samples from different perspectives: (a) severe siltation; (b) general siltation; (c) no siltation and (d) no targets.
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Table 1 Dataset for training and testing
dataset category number
train severe siltation 1250
5000
general siltation 1250
no siltation 1250
no targets 1250
test severe siltation 250
1000
general siltation 250
no siltation 250
no targets 250

training set. The data augmentation methods used are as
follows. 1) The image is randomly rotated by 90°; 2) the
image is randomly shifted horizontally and vertically,
with a translation ratio of 0.1; 3) the image is cropped
randomly with a cropping ratio of 0.2; 4) the image is
randomly scaled with a scaling ratio of 0.2; 5) the image
flips horizontally at random; 6) image brightness, contrast
and saturation are adjusted randomly.

3 Deep CNN-based ensemble method for
siltation recognition

In this section, the deep learning ensemble framework is
discussed. The workflow of the proposed method is
shown in Fig. 4. The proposed method utilizes Silt-nets as
base classifiers and then integrates the predictions from
Silt-nets using a meta classifier. Furthermore, the use of
Bootstrap ensures the diversity of homogeneous learners.
In the following, we will explain the stacking method in
more detail as well as the base and meta learners in the
stacking method.

3.1 Deep learning and convolutional neural network
Deep learning methods are representation-learning
____________ ] [ 1=> e
O ! i e fe
' raw data E E 1 ‘ |:> Cx
E bootstrap Silt-nets
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methods composed of several simple representations,
which are converted into multi-level representations
through simple but nonlinear modules, and the level of
representations is gradually higher and slightly more
abstract relative to the original input [33]. Several
effective deep learning architectures have been proposed
for various tasks including CNN [34], RNN [35],
Autoencoder [36,37], GAN [38] and deep belief network
[39]. In recent years, CNN has achieved promising
success in classification problems [40]. In this study,
well-designed CNNSs are used as base learners.

There are four key ideas in CNN’s architecture design:
local receptive fields, shared weights, pooling and the use
of stacked layers [33]. In a complete CNN, feature
extraction and aggregation operations are performed by
stacking multiple convolutional layers, non-linear and
pooling layers. At this time, the mapping from original
data to feature space is realized. In order to map the
learned feature representation to the sample label space,
the fully-connected layers are used. Through the mini-
batch-based back propagation algorithm, all the learnable
parameters in the CNN can be trained.

3.2 Stacking ensemble method

In order to obtain an accurate classifier for siltation,
stacking ensemble learning with deep CNNs is
investigated in this paper. Stacking is a strategy that
combines the results of individual base classifiers using
another machine learning algorithm. It can be regarded as
a meta learning approach in which the base classifiers are
called first-level classifiers and a second-level classifier
learns to combine the first-level classifiers [41]. The steps
of the stacking ensemble algorithm are as follows.

1) Learn base classifier based on the subspace of the
original training set. For a given dataset D =
{(x;,y)]1 <i< M}, which is composed of M training
samples, where (x;,y;) is the ith training sample with the
corresponding category label y; € Y ={1,2,...,C}, and Y is

meta

=

predictions

Fig. 4 An overview of proposed Silt-nets stacking framework.
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the set of all the labels, C is the total number of
categories. During the learning process, each base
classifier is trained in a random data subspace sampled by
bootstrap method individually, in which the number of
samples m is equal to M. After repeated T times, random
data subspace D = {E ,B;,...,B;} and corresponding
homogeneous base classifiers H ={h,h,,...,h;} are
obtained, where T is the number of the base classifiers.

2) Construct new data space based on the predictions of
base classifiers. The prediction results of first-level
classifier P ={P,,P,,...,P;} are used as the new input,
and the original category labels remain as the labels of the
new data space. The newly created data space is as
follows: D’ ={(x';,y)|l <i< M}, where x;/={h (x;),
hy (%), ... by (X))},

3) The second-level classifier is learned using the
newly constructed training set. Any machine learning
method, such as decision tree, SVM, Bayesian classifier,
neural network, can be used for second-level classifier
learning.

Once we have generated the first-level and second-level
classifiers, we can use stacking for high-precision
classification tasks. For a test sample x (not seen by the
classifiers), the predicted category result for stacking is
W (h(x),h,(x;),...,hr (x;)), where {h,,h,,...,h;} are first-
level classifiers and /' is the second-level classifier.

3.3 Silt-net stacking framework

Under the influence of many factors such as reservoir
scheduling, rainfall and temperature, the water and sand
transfer process in long distance water conveyance
tunnels is very complicated. When the sand-bearing water
flows through the tunnel, the water flow conditions
change due to various uncertainties such as bottom
friction, the water flow path and the shape of the tunnel
cross-section. If the water flow velocity is less than the
sediment-moving incipient velocity, siltation is generated.
In particular, cumulative siltation may occur in local
sections. Using ROVs for long-distance water conve-
yance tunnel inspection is currently an effective non-
destructive inspection method, but the large amount of
data collected by ROVs cannot be processed
automatically. In addition, the embedded platform with
extremely limited computational resources cannot support
the deployment of large-scale neural networks. We
propose the Silt-net stacking framework to provide a
trade-off between the accuracy of automated silt
identification and model complexity.

We design an extremely compact and effective CNN
based on VGG16 as the base learner called Silt-net. The
Silt-net is designed to reduce the complexity of the
model. Since there are fewer types of siltation in long
water conveyance tunnels and the features of each
category are relatively simple and spread over the whole
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image, the redundancy of the network can be reduced by
simplifying VGG16. We reduce the number of network
layers as well as the number of channels per layer. Tables
2 and 3 show the network structure and some parameter
settings of VGG16 and Silt-net respectively. In Silt-net,
we used stacked convolutional layers, where we use
filters with a spatial resolution of 3 x 3. The convolution
stride and padding are fixed at 1 pixel. To reduce the
dimensionality of each feature map but to retain the most
important information, three max-pooling layers are
applied, which follow some of the convolutional layers.
Max-pooling is performed over a 2 x 2 pixel window,
with stride 2. There are three stages of convolution layers
and pooling layers. Each convolutional layer uses a ReLU
activation function, o (x) = max (0, x).

After the stacked convolutional layers, we add the
flatten operation to convert the multi-dimensional feature
map matrixes to vectors. This is followed by two fully-
connected layers: the first has 512 channels, using ReLU
as the activation function, and the second performs the
classification of siltation and thus contains four channels
with softmax as the classifier.

Table 2 VGGI16 architecture

layer size stride operator output shape  parameters
224% %3 sl 2%conv2d,3x3)  224°x64 38720
224 x 64 s2 max pooling2d 1127 x 64 -
112° x 64 s1 2%conv2d,3x3)  112°x128 221440
1127 x 128 s2 max pooling2d 56° % 128 -

56> x 128 sl 3fcomv2d,3x3)  56°x256 1475328
567 x 256 s2 max pooling2d 287 x 256 -

28% x 256 sl 3*comv2d,3x3)  28°x512 5899776
28% % 512 s2 max pooling2d 147 x 512 -

14% x 512 sl 3*conv2d,3x3)  14°x512 7079424
147 x 512 s2 max pooling2d 7* %512 -

7* %512 - flatten 25088 -
25088 - 2*dense 4096 119545856
4096 - dense 4 16388
Table 3 Silt-net architecture

layer size stride operator output shape  parameters
224% x 3 sl conv2d, 3 x 3 224 x 16 512
224° < 16 ) max pooling2d 1127 x 16 -
112 x 16 sl 2%comv2d,3x3)  112°x32 14144
1127 x 32 s2 max pooling2d 567 x 32 -
56°x 32 sl 2%conv2d,3x3) 56" x64 55936
56° x 64 s2 max pooling2d 28 x 64 -

287 x 64 - flatten 43264 -
43264 - dense 512 22151680
512 - dense 4 2052




570

In order to improve the performance of the Silt-net,
Batch Normalization (BN) is adopted in the convolutional
layer before the ReLU activation function. BN has the
following advantages. First, it can adjust the data
distribution of output activation values in the network and
accelerate the learning speed of the model. Second, BN
makes the model less sensitive to the parameters in the
network, simplifies the parameter adjustment process, and
makes the network learning more stable. Third, BN can
effectively suppress overfitting. Simultaneously, we use a
dropout layer with 50% drop rate to prevent overfitting.
The input given to the CNN is an image with a pixel size
of 224 x 224 and 3 channels. The output of the last layer
of the network is the probability that an image belongs to
each class.

Another key factor that restricts the application of ROV
in water conveyance tunnel inspection is the impact of the
complex underwater environment on the image. On the
one hand, due to the high velocity of water flow, the
water body carries a large amount of sand, debris-like
material and other fine particles. And disturbed by the
ROV thrusters, the ground silt will be raised rapidly,
resulting in high turbidity of the water body, which
seriously affects the quality of optical vision imaging. In
addition, there is a lack of natural light in the
hydrographic tunnel, and the illumination depends
entirely on the LED lighting system equipped with the
ROV. The LED light intensity is high, and the color
distortion is less compared to the situation in the ocean.
However, there is a phenomenon of uneven illumination,
with directly lit foreground areas appearing completely
white, while the area away from the source of light
appears darker.

Combining the above problems, we hope to mitigate
the impact of the complex underwater environment on the
image quality by joint decision making of multiple
classifiers, thus improving the accuracy of the whole
model. Specifically, we use a fully-connected network
with 3 hidden layers as a meta-learner. The fully
connected neural network takes the output of our multiple
base learners as input and returns the final prediction.
Similarly, the output of the network is the probability that
an image belongs to each class. Moreover, compared with
a single deep learning model, although the proposed
classification method requires several separate training of
the base classifier as well as the meta-classifier, the
introduction of the ensemble strategy allows several
sufficiently simple classifiers with limited classification
power to maximize their potential. Especially in the
inference stage, the model complexity of the method
using the integration of multiple simple classifiers is
much less than that of large deep neural network models.
In summary, our model can obtain comparable or even
better accuracy than a single powerful classifier with
reduced model parameters and computational effort.

Front. Struct. Civ. Eng. 2022, 16(5): 564-575

4 Experimental results

In this section, we introduce the datasets used in this
work, and the experimental results are analyzed according
to the evaluation criteria. All the experiments are carried
out on a PC with NVIDIA RTX 2080Ti GPU, using
Keras with TensorFlow (version 1.14.0) as the backend.
The details of the experimental process are introduced as
follows.

4.1 Model training and validation

The proposed model is trained in two stages. Table 4
details the hyperparameters used at each stage. During
first-level classifier training, the training is carried out by
optimizing the cross entropy loss function using
RMSprop with rho = 0.9 and decay = 10", The batch size
is set to 32. The learning rate is initially set to 107, and
then adjusted by the cosine annealing method. The filter
weights of each layer are initialized by He initialization.
Bias is initialized as a constant. Finally, we use 100
epochs to train a base classifier. During second-level
classifier training, we use the Adam to optimize the loss
function. To prevent overfitting, L2 regularization is
adopted for the weight of the fully-connected layer, and
the regularization parameter is set to 0.0001. The dropout
layers with a dropout ratio of 0.5 are used after each
hidden layer. In addition, the early stopping strategy is
also introduced, and the training is stopped after 40
epochs.

We use the total loss to evaluate the convergence and
fit level of the training and validation processes to follow
up whether the model is overfitting. Figure 5 shows the
loss curves of the three different base classifiers as well
as the meta-classifier. As can be seen from
Figs. 5(a)-5(c), the training and validation processes of
all three base classifiers converge. Besides, Fig. 5(d) also
gives the loss curve of the meta-classifier at 100 epochs.
Obviously, the loss curve on the validation dataset
increases in the 20th epoch, which further proves that it is
very necessary to use the early stopping strategy.

In order to evaluate the performance of the proposed
ensemble deep learning method, three individual

Table 4 Experimental hyper-parameter setting

stage variable hyper-parameters

stage 1 RMSprop Lr=0.001
epoch 100
batch size 32

stage 2 Adam Lr=0.001

L2 regularization 0.0001
early stopping patience =20
dropout ratio = 0.5
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Fig.5 Loss curves of base classifiers and meta-classifier in training and validation process: (a) base classifier 1; (b) base classifier 2;

(c) base classifier 3; (d) meta-classifier.

classifiers include SVM, Silt-net and VGG16, and three
ensemble learning methods include bagging (using major
voting), bagging (using weighted average) and Adaboost
are used for comparison.

4.2 Compare with individual classifiers

In the quantitative comparison with single classifiers,
overall accuracy (OA), the number of parameters
(Params), and FLOPs are used as the evaluation criteria.
Specifically, OA is used to evaluate the model accuracy,
and Params and FLOPs are used to evaluate the
complexity of the model in terms of model size and
computational cost, respectively.

OA is the most common metric used to evaluate
classification problems. It refers to the ratio of the
samples with correct prediction to the total samples. OA
is defined as follows:

TS +TG+TNS +TNT
N

Overall accuracy = , (D
where TS, TG, TNS, TNT are number of true severe
siltation, true general siltation, true no siltation and true
no targets, respectively. N is the total number of test
images.

In the embedded system of ROV, Params and FLOPS
are the key evaluation metrics to be considered
emphatically. Params determines the memory space
occupation of the model, and FLOPS is used to measure
the computational consumption of the model. It is worth
noting that this paper considers the impact of convolu-
tional layers as well as fully-connected layers on the
model complexity.

The parameters of the convolutional layer and fully-
connected layer are calculated respectively as follows:

@)

Paramconv = (kw * kh * Cin) * Cout T Couts

3)

To calculate the number of FLOPs, it is assumed that
the convolution is implemented as a sliding window, and
the non-linear function is calculated for free. Different
layers require different computational consumption due to
the size and number of input-output feature maps and the
number of convolution kernels [42]. The FLOPs of the

Paramfc = (nin * nout) + Ny

convolutional layer and fully-connected layer are

calculated as follows:
FLOPScunv = 2HW (kw * kh * Cin + 1) * Couts (4)
FLOPSfc = (2nin - 1) * Nouts (5)
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where k,, k, are the width and height of the kernel,
respectively. W, H are width and height of input feature
map, ¢j,, Coy are the number of channels of the input
feature map and output feature map, respectively, and n;,
and n,, are the input and output dimensions of the fully-
connected layer, respectively.

Since it is not reliable to perform the training and
testing phases on the model only once, we separately train
and test each model five times, and the results are shown
in Fig. 6. The results show that the classification accuracy
of the deep learning method is much higher than that of
traditional RBF-SVM method. It can be seen that the
classification accuracy of the deep learning method is at
least 4% higher than that of the SVM method. Among the
deep learning methods, the classification accuracy of Silt-
net with a simple network structure is lower than that of
VGG16. Moreover, the feature extraction ability of Silt-
net is relatively poor due to the lack of network depth,
which leads to its large fluctuation of accuracy in the
testset and poor robustness to data. But with an effective
ensemble method, the classification accuracy of the
model exceeds that of VGG16, and is also more robust in
complex siltation situations.

Then, we show the classification performance of the
classifier using a model with median classification
accuracy obtained in five training sessions for each
algorithm. Table 5 shows the classification performance
of each classifier in various categories. The best accuracy
is highlighted in bold. It can be seen that the accuracy of
our proposed method is as high as 98% and 99.2% for
severe siltation and general siltation, respectively.

In addition, the Params and FLOPs of the model are
shown in Table 6. As shown in Table 6, the proposed
method is significantly superior to VGG16 in terms of the
number of parameters and FLOPs, which are reduced by
44.1% and 92.3%, respectively. So ensemble deep
learning has a better balance between model complexity
and model accuracy. Under the premise of ensuring

classification accuracy, ensemble deep learning
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Fig. 6 Classification results of different classifiers.
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significanty reduces the complexity of the model, making
it more conducive to its application in ROVs systems.

4.3 Compare with ensemble learning methods

In the comparison of ensemble learning methods, in
addition to using accuracy as an evaluation criterion,
diversity is also introduced to evaluate the performance of
ensemble learning [43]. In this paper, the disagreement
measure is used as the diversity criterion. The diversity of
the two classifiers (A, ;) is defined as follows:

N disagreement

DIV(h”hj) = N 5

(6)
where Nyggreemen: 1S the number of samples in which the
two classifiers classify the same sample in the test
samples with different results, and the denominator N is
the total number of test samples. The diversity of the
entire ensemble learning method is the average of the
diversity of all pairwise base learners, and the calculation
formula is as follows:

X X DIV (hihy)

DIV (Ensemble) = K L# ],

™)

where K is the number of base classifiers.

Table 7 shows the diversity and classification results of
ensemble deep learning with different base learners.
Since the base learner has good generalization perfor-
mance and the diversity fluctuates in a small range, the

Table 5 Classification performance of each classifier in various
categories

method RBF-SVM Silt-net VGG16 our proposed
heavy silt 94.8% 97.2% 94.0% 98.0%
general silt 96.0% 96.8% 98.8% 99.2%
no silt 84.4% 96.0% 96.4% 95.6%
no targets 84.0% 90.4% 96.8% 94.8%
OA 89.8% 95.1% 96.5% 96.9%

Table 6 Comparison of model complexity between different models

method Silt-net VGG16 our proposed
params (M) 22.22 134.28 75.1
FLOPs (G) 0.4 15.5 1.2

Table 7 Ensemble results of different base learner combinations

item Dbase learner 1 base learner 2 base learner 3 DIV ensemble results

1 94.3% 94.6% 95.1% 0.042 96.4%
2 95.1% 95.8% 96.0% 0.030 96.8%
3 94.3% 94.6% 96.3% 0.043 96.9%
4 94.3% 95.1% 96.3% 0.040 96.9%
5 95.8% 96.0% 96.3% 0.032 97.2%
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effect of diversity on the total accuracy in this experiment
is less than the effect of the accuracy of the base classifier
on the total accuracy. Through the experimental results,
we can see that the combination of higher classification
accuracy and greater diversity base classifiers will obtain
more accurate classification results.

The ensemble learning method based on deep learning
has been proved to be an effective classification method.
To verify the superiority of the proposed model in
classification, we compare the classification accuracy of
the proposed model with that of the state-of-the-art
ensemble learning method using different numbers of
base learners. The comparison results are shown in Fig. 7.
As a result of relearning what was learned at an earlier
stage, the proposed model is superior to other
comparative ensemble learning methods based on overall
classification accuracy.
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Fig. 7 Results of different ensemble methods under different
numbers of base learners.

5 Conclusions and future work

In recent years, the use of ROVs for long-distance water
conveyance tunnels has received extensive attention from
researchers, and they have gradually become an important
means for detection of underwater damage in enginee-
ring.

Correctly identifying damage can effectively reduce
engineering risks and ensure engineering safety and
reliability. Emerging ROVs need more effective damage
detection techniques, and the development of artificial
intelligence provides favorable conditions for improving
the performance of damage detection models.

In this paper, for the first time, the combination of
ROVs and ensemble deep learning method is applied to
the siltation recognition problem of water conveyance
tunnels. A deep learning-based stacking ensemble lear-
ning framework for siltation images acquired by ROVs is
proposed. In the proposed ensemble deep learning, Silt-
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nets are used as individual base classifiers, and bootstrap
is used to ensure the diversity of ensemble methods.
Finally, a fully-connected network is used to combine the
predictions of the base classifiers to obtain the final
result. The experimental results demonstrate that under
the simple and efficient framework, the stacking ensem-
ble deep learning method achieves better classification
performance than traditional SVM, single CNN and some
other state-of-the-art ensemble learning methods.
Furthermore, the ensemble approach significanty reduces
the complexity of the model, which makes it more
suitable for the embedded system of ROVs.

The aforementioned ensemble deep learning method
presents a promising prospect for the intelligent
identification of siltation by ROVs. Although this study
involves some new aspects, there are still some
explorations to be done in future work. 1) Some advanced
lightweight deep learning models such as MobileNet and
ShuffleNet have been developed. These methods will be
used to attempt to further compress the size of the model.
2) Transfer learning can accelerate the model training
process and improve the classification accuracy at the
same time. However, transfer learning is not used in the
model training process in this study. Therefore, transfer
learning of underwater data sets will be introduced. 3) To
further improve the performance of ensemble deep
learning, the ensemble between high-performance hetero-
geneous base learners can be explored.
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