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ABSTRACT Axial piston pumps have wide applications in hydraulic systems for power transmission. Their condition
monitoring and fault diagnosis are essential in ensuring the safety and reliability of the entire hydraulic system. Vibration
and discharge pressure signals are two common signals used for the fault diagnosis of axial piston pumps because of their
sensitivity to pump health conditions. However, most of the previous fault diagnosis methods only used vibration or
pressure signal, and literatures related to multi-sensor data fusion for the pump fault diagnosis are limited. This paper
presents an end-to-end multi-sensor data fusion method for the fault diagnosis of axial piston pumps. The vibration and
pressure signals under different pump health conditions are fused into RGB images and then recognized by a
convolutional neural network. Experiments were performed on an axial piston pump to confirm the effectiveness of the
proposed method. Results show that the proposed multi-sensor data fusion method greatly improves the fault diagnosis of
axial piston pumps in terms of accuracy and robustness and has better diagnostic performance than other existing
diagnosis methods.
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1 Introduction vector machine [4], extreme learning machine [5],

XGBoost [6], and k-nearest neighbor, and decision trees,

Axial piston pumps play the role of “heart” in hydraulic
systems with a wide variety of applications in the fields
of construction, agriculture, aerospace, and robotics. The
pump delivers pressurized fluid to other hydraulic
components by converting rotating mechanical energy
into fluid power. Axial piston pumps often need to
operate under harsh working conditions, such as high
pressure, high speed, and high temperature [1,2]. The
pump failure will cause the breakdown of hydraulic
systems, increase in maintenance time and cost, and even
catastrophic accidents. Therefore, monitoring and
recognizing the pump health conditions in real time are
necessary and urgent.

Over the last several decades, various machine learning
methods, including artificial neural network [3], support
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have been applied for the fault diagnosis of axial piston
pumps [7]. A common drawback of these traditional
machine learning methods lies in the manual feature
extraction. Therefore, in recent years, deep learning has
become popular in the field of fault diagnosis of rotating
machinery because of its powerful end-to-end ability.
Many researchers have also found applications of deep
learning methods in the fault diagnosis of axial piston
pumps, such as deep belief network [8] and one-
dimensional (1D) and two-dimensional (2D) convolu-
tional neural networks (CNNs) [9-15]. Among these
previous studies, the vibration signal is most frequently
selected to monitor pump health conditions [4—14]
because it contain abundant fault information. Mean-
while, the discharge pressure signal appears to be suitable
for monitoring the performance of axial piston pumps
[3,16-18].
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Machine learning, especially recent deep learning, has
great potential for the fault diagnosis of axial piston
pumps. Most previous studies used single-sensor data for
the fault diagnosis of axial piston pumps. However, an
axial piston pump is a complicated fluid—solid—thermal
coupling system and single-sensor data are insufficient
for the accurate and reliable fault diagnosis in noisy
environment [19,20]. For example, even though an
accelerometer is installed at the same location of the
pump housing, the vibration signals differ significantly
from each other in three orthogonal directions [9,10].

By contrast, multi-sensor data contain redundant and
complementary information for an accurate and reliable
fault diagnosis. Multi-sensor data fusion can be fulfilled
at three levels, namely, data, feature, and decision levels
[21]. Among the three fusion levels, the most popular
data-level fusion requires less expert knowledge and loses
less information than the two other fusion levels [22].
Therefore, data-level fusion is attracting increasing
attention in the field of fault diagnosis. Recently, data-
level fusion and machine learning have been combined
for the fault diagnosis of rotating machinery, such as
bearing [23,24], electric motor [25], and gearbox
[22,26,27]. The common signals to be fused include
vibration signal, current signal, and acoustic signal,
among which multiple vibration signals are typically
fused for the fault diagnosis of rotating machinery
[23,24,26,28,29].

Although deep learning-based intelligent methods have
achieved state-of-the-art performance in the fault
diagnosis of rotating machinery, some limitations are still
observed in previous studies:

(1) Most CNN-based studies on the fault diagnosis of
axial piston pumps focus on single-sensor data, especially
vibration signal. Only few studies have used discharge
pressure and vibration signals simultaneously for the fault
diagnosis of axial piston pumps.

(2) Although data fusion has been used in the fault
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diagnosis of bearing, electric motor, and gearbox, only
few research reported the application of data fusion to the
fault diagnosis of axial piston pumps.

Therefore, the main contributions of this work are
presented as follows:

(1) Vibration and discharge pressure signals are used
simultaneously for the fault diagnosis of axial piston
pumps to obtain a diagnostic performance that is better
than that of single-sensor data.

(2) The proposed method, which can accurately
recognize the four different degradation states of an axial
piston pump in noisy environment, realizes multi-sensor
data fusion at the data and feature levels.

The remainder of this paper is structured as follows.
Section 2 describes the experimental setup and data
acquisition for an axial piston pump. Section 3 outlines
the theoretical basis of CNN and short-time Fourier
transform (STFT). Section 4 details the proposed multi-
sensor data fusion method based on CNN. Section 5
presents and discusses the comparative results to validate
the proposed method. Finally, Section 6 provides the
concluding remarks.

2 Experiments on an axial piston pump

2.1 Machine description

Figure 1 schematically shows a typical construction of the
swash-plate type axial piston pump. Two bearings at the
shaft ends support the whole rotating group, including a
driving shaft, a cylinder block, and piston—slipper
assemblies. Each pair of piston and slipper is connected
by a ball-and-socket joint that allows rotation motions of
the slipper around the piston ball. The cylinder block
accommodates an odd number of pistons at equal angular
intervals and has a slight contact with the stationary valve
plate via a built-in compressed spring. The valve plate
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[llustration of an axial piston pump and worn slippers.
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communicates with the pump inlet and outlet ports
through two kidney-shaped slots. Once the shaft drives
the cylinder block to rotate, the pistons reciprocate within
the cylinder bores because of the action of the sliding
slippers on the swash plate. As a result, low-pressure
fluid enters the cylinder block through the pump inlet port
and then high-pressure fluid discharges from the cylinder
block to the pump outlet port. The above motions repeat
themselves to generate a continuous delivery flow for
each shaft revolution.

A large number of pump maintenance cases suggest
that the slipper is a common failure part in axial piston
machines [30]. The sliding slippers are subjected to heavy
loads from the pistons, thereby leading to contact wear at
their bottom faces [1,31] (Fig. 1). The slipper wear
increases the clearance between the slippers and the
swash plate and hence causes severe high-frequency
impact between them. The metal-to-metal impact is
transmitted to the pump housing and end cover, which
will generate abnormal vibration. In addition, large
clearance between the slippers and the swash plate
enhances the discharge pressure fluctuation because of
increased leakage flow from the slipper pairs [32]. The
transient and periodic vibration and discharge pressure
signals contain rich information about the health state of
axial piston pumps and thus can be used for the condition
monitoring of axial piston pumps.

2.2 Experimental setup and data acquisition

A test rig was constructed to collect the vibration and
discharge pressure signals from a swash-plate type axial
piston pump under healthy and faulty conditions.
Figure 2(a) [2] depicts the hydraulic circuit diagram of
the test rig. The electric motor (M1) provided power for
the test pump (Fig. 2(b) [33]) that operated at a discharge
pressure of 21 MPa, a rotational speed of 10000 r/min,
and a full displacement of 1.3 mL/r. The test pump
received low-pressure hydraulic oil at its inlet port and
discharged high-pressure hydraulic oil at its outlet port.
The test pump communicated with the pressurized
reservoir (PR1) through the inlet port when the ball valve
(B1) opened. The proportional relief valve (R1) downs-
tream the test pump served as an adjustable load on the
test pump. During the pump operation, the oil tempera-
ture at the inlet port of the test pump was maintained at
(60 = 2) °C to avoid temperature effects on the pump
performance.

Several transducers were used to monitor the perfor-
mance of the test pump. A tri-axial accelerometer was
fixed to the pump end cover to record the vibration
signals in three orthogonal directions. A high-frequency
dynamic pressure transducer (P2) was installed near the
outlet port of the test pump to measure the dynamic
discharge pressure. The vibration and discharge pressure
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Fig. 2 (a) Hydraulic circuit diagram of the test rig [2] and (b) the test pump [33]. Reproduced with permission from Springer Nature,

copyright 2021.
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signals were acquired synchronously at a sampling
frequency of 10240 Hz by a data acquisition card from
National Instruments (NI). In addition, a flow meter (F2)
was located downstream the drain port of the test pump to
record the case drain flow rate (also called external
leakage flow rate), which was a good indicator of the
pump health conditions.

The experiments were carried out on the test pump
under healthy and faulty conditions. To reflect the
degradation process of worn friction pairs, four different
degradation states were simulated by adjusting the
clearance between the slippers and the swash plate.
Table 1 lists four different levels of leakage flow rates to
represent four pump degradation states, where the case
drain flow increased with the clearance to simulate the
gradual wear process of the friction pairs in actual
applications.

Figure 3 shows the vibration signals under different
degradation states. The vibration in each direction
becomes increasingly intense with the increasing
clearance and leakage flow rate of the slipper pairs. Each
health condition exhibits different vibration behaviors for

Table 1 Different degradation states of the axial piston pump

Degradation state  Increased clearance/mm Leakage flow rate/(L-min™")

Normal 0.00 0.40
Slight leakage 0.05 0.57
Medium leakage 0.15 0.65
Severe leakage 0.20 1.10
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three vibration signal channels because the periodic shock
and vibration have exclusive transmission paths from the
slipper pairs to the pump housing and end cover in
different directions [20]. One can hardly distinguish the
waveform signals between two neighboring pump health
conditions. Moreover, it is difficult to identify the most
sensitive channel of the vibration signals to the pump
health conditions.

Figure 4 presents the dynamic discharge pressure of the
test pump, where the pressure ripples at individual
degradation states differ from one another under the same
working conditions. The difference in pressure ripples
arises from the different contributions of the leakage flow
to the displacement chamber pressure of the axial piston
pumps [32,34].

3 Theoretical basis
3.1 Convolutional neural network

As a popular deep learning architecture, the CNN is a
multi-layer feed-forward neural network. CNN has a
strong ability in automatic feature extraction and nonlin-
ear mapping from 2D data because of its characteristics of
local connection, weight sharing, and sub-sampling. A
typical CNN mainly contains an input layer, a convolu-
tional layer, a pooling layer, and a full-connected layer.
The convolutional layer plays an important role in
automatic feature extraction. It applies a group of
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Fig. 3 Raw vibration signals for four different pump degradation states: (a) normal; (b) slight leakage; (c) medium leakage; and

(d) severe leakage.
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Fig. 4 Raw discharge pressure signals for four different pump
degradation states.

convolution kernels (also known as filters) to extract
features from the input image separately. The filter size
determines the local receptive field to be convolved. The
feature maps are generated by the following convolution
and nonlinear mapping operations [22].

C
X, =f[z (wzk*le)w,i], (1>
c=1

where symbol * represents a 2D convolution operation,
superscript / denotes the index of network layers,
subscript £ denotes the index of group filters or output
feature maps, subscript ¢ denotes the index of channels
for input feature maps or the group filters, C is the total
number of filter channels, X, is the kth output feature map
at layer I, X' is the cth-channel component of the input
feature map at layer (! — 1), W, is the cth-channel
component of the kth group filter weight at layer /, and B}
is the bias of the kth group filter at layer /. f{*) is an
activation function applied to each output feature map.
The rectified linear unit f{x) = max(0, x) is often selected
as the activation function due to its superiority to other
activation functions in terms of over-fitting avoidance
and training process acceleration [35].

The pooling layer (also called subsampling layer)
usually follows the convolutional layer to reduce the
dimension of feature maps and the number of trainable
parameters. Max-pooling and average-pooling are two
common pooling operations for the pooling layer, and
they output the maximum and average values from the
windowed elements, respectively. Max-pooling is often
adopted at the pooling layer in the image recognition task
because of its advantageous texture feature extraction.
The max-pooling operation is expressed as

p;' = max{a,, €A}|(' - 1DH+1<h<iH,
(G-DW+1<w< jW), 2)
where Al is the kth feature map at layer / and ay, is its
element at pixel (4, w) within the pooling window with
height A and width W, i’ and j are the height and width
indices of element pixels, respectively, and pi' is the
maximum element within the pooling window.

After a group of convolutional and pooling layers, the
input image is flattened into a 1D array. The fully
connected layer receives the 1D array to further reduce
the array dimension. Finally, a softmax classifier is used
to calculate the multi-class probability as follows:

p(y(‘) - 1|x(”;0L)

@ = 2| x: -
p{y(x) — q|x(“);0L} _ p(y 2|x )

p(y = 0lxv;6")
exp {(0?) . x“)}
1 exp {(0; ) . x(”}

i , 3)
2 exp{(O;) -xm}

exp(8)- )

where x® is the sth sample, y®) is the predicted label,
0-=16; 6. 0,1 represents the trainable parame-
ters including weight and bias at the last layer L, and
lowercase letter ¢ and uppercase letter Q denote the gth
class and total classification number, respectively. The

sum term 1 / {ZQ: exp{(@;)-x“)}} aims to normalize the

g=1
probability distribution so that the probability summation
of all classes is equal to unity.

The classification task usually adopts cross-entropy to
be a loss function in machine learning models. The cross-
entropy function measures the “distance” between real
and predicted probability distributions. For a multi-
classification task, the loss function J based on cross-
entropy is defined as

s 0 0) - x®
J:_%Zzl{y“):q}log Qexp{( )] . @

2,oxp{(6]) )

g=1
where S denotes the total number of samples, and the
indicator function 1{-} outputs 1 for true condition and 0
for false condition.

The training process minimizes the loss function by
optimizing the trainable parameters. The gradient descent
method updates the trainable parameters of CNN models
by back-propagation algorithm.

oJ
aeold ’ (5)

where 7 is the learning rate, and 6”¢ and ™" are the
trainable parameters before and after update, respectively.

onew — oold -

3.2 Short-time Fourier transform

STFT is a common and simple signal processing method
that can transform 1D time-series data into 2D
spectrogram images. To take advantage of CNNs in the
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task of image recognition, STFT is used to transform the
collected raw signals into images.

The continuous-time form of the STFT for the vibration
signal x(7) is expressed as [36]

STFT (t,0) = r X(t+ 0w (D)exp(—jor)dr,  (6)

where # is time, 7 is the time variable of integration, e is
the angular frequency, j is the imaginary unit, and w*(t) is
the conjugated form of window function w(t). Equation
(6) suggests that the STFT actually represents a Fourier
transform of the signal x(7) truncated by the window
function at instant 7.

Numerical calculation needs a discretized STFT instead
of a continuous-time one. The discretized form of STFT
is given by

STFT{x[n]} = )" x[nlwln—mlexp(jon),

—00

(M

where m and n are the indices of discrete sampling points.
In this work, Hanning window is chosen to be the
window function, which is expressed as

2
0.5(1—005 “"), 0<n<N-1,

wln] = N-1 3
0, otherwise,
where N is the size of Hanning window.
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4 Proposed method

The axial piston pump is a typical fluid—solid—thermal
coupling system, and its comprehensive degradation state
is difficult to capture using single-sensor signals. Multi-
sensor data fusion can provide abundant and comple-
mentary information and avoid possible measurement
errors from single sensor. Vibration and discharge
pressure are two common signals for axial piston pumps.
They are suitable to be used for monitoring the pump
performance.

Figure 5 illustrates the process of multi-sensor data
fusion for the fault diagnosis of axial piston pumps.
Taking two vibration signals and one discharge pressure
signal for example, the multi-sensor data fusion includes
three main steps. First, the raw data of each signal are
divided into equal data segments, of which each data
segment contains 256 sampling points. These data
segments are transformed into grayscale spectrograms
with a size of 128 x 128 pixels by STFT. Second, the
grayscale spectrograms of each signal are discretized to
become temporary matrices, and the magnitude of matrix
elements are normalized to 0-255. The temporary
matrices of individual signals act as elements of R, G, and
B channels. A group of three temporary matrices at the
same period of time are composited into an RGB image.

(Vii Vig = Vi)
Discretize Var Vaa T Vi R channel
V1281 Vizga ... Vi28128]
Viin V2 Vy128]
Discretize Var Vaa T Vi G channel :Z:
V1281 Vizga ... Vi2g,128)
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[llustration of the proposed multi-sensor data fusion for the fault diagnosis of axial piston pumps.
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Finally, a 2D CNN model accomplishes the fault
diagnosis task of axial piston pumps by recognizing the
RGB images that represent corresponding pump health
conditions. The proposed method actually integrates
information fusion at the data and feature levels to realize
an end-to-end multi-sensor data fusion.

The first stage fulfills data-level fusion by compositing
an RGB image from a group of three grayscale spectro-
grams. The grayscale spectrograms are converted from
the raw data segments of two vibration signals and one
pressure signal by STFT. The grayscale spectrograms
contain information in time and frequency domains and
can reflect the pump health state better than the raw time-
series data. In fact, the time—frequency representations
can be obtained by other time—frequency analysis approa-
ches, such as continuous wave transform [14,15]. In
addition, the multi-sensor data can either be from
heterogeneous or homogeneous signals. For example, the
RGB images are composited from a group of three
vibration signals instead of two vibration signals and one
pressure signal. Notably, the first stage can fuse more
input signals. For example, if four signals are to be fused,
the corresponding grayscale spectrograms will be
composited into a four-dimensional tensor rather than a
three-dimensional RGB image. In this case, the magni-
tude of each discretized grayscale spectrogram can be
normalized to other uniform ranges, not just between 0
and 255.

The second stage of the proposed multi-sensor data
fusion fulfills feature-level fusion by a CNN model. The
previous stage only extends the raw data from different
sensors to 2D representations and fuses them at data
level. However, unlike conventional feature engineering
methods, it has not extracted features from the extended
data. The second stage uses a CNN model to receive the
RGB images of the previous stage and automatically
extracts features from the RGB images further layer by
layer. The feature extraction by the CNN model is
actually a feature fusion process.

The CNN model in this work is a modified version of
the famous LeNet-5 developed by LeCun et al. [37].
Figure 5 illustrates the architecture of the CNN model
used in this work, where the network contains one input
layer, two convolutional layers, two max-pooling layers,
two full-connected layers, and one output layer in
sequence. The input layer receives 128 x 128 x 3-pixel
RGB images, where the first two numbers represent the
image height and weight and the last number represents
the image channels. The first convolutional layer applies
32 filters with a size of 3 x 3 pixels to extract features
from the input image separately at a stride of 1 pixel,
generating 32 feature maps with a size of 126 x 126
pixels. The first max-pooling layer has a 5 X 5 pooling
window to slide across each feature map at a stride of 5
pixels. This means that the output feature maps are scaled
down by five times in the height and width dimensions.

Consequently, 32 feature maps have a size of 25 x 25
pixels after the max-pooling operation.

Similarly, another group of convolutional and max-
pooling layers is stacked behind the previous one. The
second convolutional layer has 16 filters with the same
size as the first convolutional layer. It slides across the
input feature maps at a stride of 1 pixel to generate 16
new feature maps with a size of 23 x 23 pixels. The
second max-pooling layer has a pooling window with a
size of 2 x 2 pixels, and the new feature maps are further
reduced by half in height and width after max-pooling at
a stride of 2 pixels.

After two alternating convolutional and pooling layers,
each input image is flattened into a 1936 x 1 vector and
then fed into the first full-connected layer with 32 hidden
neurons. The feature maps are further reduced to a 32 x 1
vector. The second full-connected layer contains four
hidden neuron nodes and a soft-max activation function
to accomplish the classification task (i.e., the
classification of four different pump degradation states,
including normal state, mild leakage, medium leakage,
and severe leakage).

5 Results and discussion

Figure 6 shows examples of the composited RGB images
under different pump degradation states. The top row of
the RGB images is converted from three vibration
signals, whereas the three other rows are converted from
two vibration signals and one discharge pressure signal.
The energy of all RGB images is dominated at 1500,
3000, and 4500 Hz, which actually represent the piston
pass frequency and its second-order and third-order
harmonic frequencies. The comparison of RGB images at
the same row shows that the image fusion makes it
possible to classify the pump degradation states
intuitively. By contrast, the grayscale images converted
from a single signal offer less discriminative information
to distinguish them (Fig. 7).

Figure 8 compares the diagnostic performance of the
CNN model with different input signals. For the single-
sensor signals, the pressure signal achieves the highest
average accuracy rate of 99.9% and the lowest standard
deviation of 0.2% over five trials. By contrast, the same
CNN model has lower accuracy rates of 96.5%, 93.4%,
and 95.6% when it receives a vibration signal. The
various accuracy rates among the vibration signals in
different directions mainly result from the sensitivity of
vibration signal to the transmission paths. That is,
obtaining an accurate fault diagnosis using single-sensor
data is difficult due to limited information.

Multi-sensor data fusion can capture comprehensive
fault information effectively to improve the diagnostic
performance. This work investigates two types of multi-
sensor data fusion: homogeneous data fusion and
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Fig. 6 RGB images under different pump degradation states: (a) three vibration signals; (b) vibration signals 2 and 3, and pressure signal;
(c) vibration signals 1 and 3, and pressure signal; and (d) vibration signals 1 and 2, and pressure signal.

heterogeneous data fusion. The former integrates three
vibration signals, while the latter integrates two vibration
signals and one pressure signal. Figure 8 further
compares the average accuracy rate and standard
deviation before and after multi-sensor data fusion. The
average accuracy rate can be increased up to 100% when
the CNN model receives multi-sensor data in spite of
being homogeneous or heterogeneous data. The multi-
sensor data fusion has a higher average accuracy rate of
4%—6% than a single vibration signal. These comparison
results confirm the advantages of multi-sensor data fusion
in the fault diagnosis of axial piston pumps.

In industrial applications, the collected vibration and
pressure signals often contain background noise, and it is
difficult to extract weak fault features from the

contaminated signals. In the meantime, the entrained
noise may have negative effects on the overall diagnostic
performance of the multi-sensor data fusion. To evaluate
the anti-noise ability of the fusion algorithm, white
Gaussian noise is added intentionally to the original 1D
time-series testing dataset [38,39]. Figure 9 shows
examples of RGB images converted from contaminated
signals under different pump degradation states.
Compared with the “clean” RGB images in Fig. 6, the
contaminated RGB images in Fig. 9 seem to be less
intuitively identifiable among different pump degradation
states.

Figure 10 compares the diagnostic accuracy between
single-sensor data and multi-sensor data at different
signal-to-noise  ratio (SNR) levels. Among the
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Fig. 7 Grayscale images under different pump degradation states: (a) vibration signal 1; (b) vibration signal 2; (c) vibration signal 3; and

(d) pressure signal.

single-sensor data, the pressure signal and the second
vibration signal have the worst robustness against noise,
whereas the third vibration signal has the best robustness
against noise. The CNN model with an input of single-
sensor data has relatively low diagnostic accuracy in a
noisy environment. For the first or second vibration
signal, the classification accuracy drops below 90% at
SNRs below 10 dB. The classification accuracy with only
pressure signals even remains below 50%. Although the
classification accuracy with the third vibration signal
achieves an acceptable classification accuracy above 90%
at high SNRs, it will drop dramatically below 80% at
SNRs below 6 dB.

The multi-sensor data fusion improves the anti-noise

ability of the CNN model significantly in spite of being
homogeneous or heterogeneous data. For example, the
classification accuracy is only 56.4%, 76.3%, and 50.0%
for the first vibration signal, the third vibration signal,
and the pressure signal, respectively, at an SNR of 4 dB,
while it can achieve up to 96.7% when these signals are
fused at the same SNR.

The improvement of diagnostic performance depends
on the type of fused signals. For the axial piston pump in
this work, the optimal multi-sensor data fusion strategy,
which outperforms other types of fused signals by a large
margin, especially at low SNRs, is to combine the
pressure signal and the first and third vibration signals.
For instance, the optimal multi-sensor data fusion can
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Fig. 8 Comparison of classification accuracy between single-sensor data and multi-sensor data.

achieve a classification accuracy of 99.9% at an SNR of
6 dB, which is higher than the three other types of data
fusion by 6.7%, 2.7%, and 3.4% (Fig. 10). This finding
provides guidelines to select the most suitable single-
sensor data to be fused.

Figure 11 further compares the confusion matrices of
diagnostic accuracy for one trial with and without multi-
sensor data fusion. The confusion matrices reflect the
contribution of each signal to the classification results and
how the multi-sensor data fusion improves the diagnostic
performance. The horizontal and vertical coordinates of
each confusion matrix represent the predicted and real
labels, respectively. The confusion matrix presents the
accuracy rates on the diagonal elements and error rates on
the other elements. Figures 11(a)-11(d) indicate that the
single-sensor signal leads to unsatisfactory classification
results in noisy environment. The third vibration signal
appears to have stronger anti-noise ability than other
signals and hence should be involved during data fusion.

As expected, the CNN model has better robustness
against noise when multiple sensor signals are integrated.
The class accuracy of each degradation state becomes
more than 95% after multi-sensor data fusion, except for
two cases: the first case is three vibration signals (Fig.
11(e)); and the second case is one pressure signal plus the
first two vibration signals (Fig. 11(h)). The inferior anti-
noise ability of the above two cases may arise from the
following factors. First, the homogeneous data fusion is
inferior to the heterogeneous one for the fault diagnosis
of the investigated axial piston pump. Second, the first
two vibration signals are less sensitive to pump health

conditions but more sensitive to noise than the third
vibration signal.

Table 2 [5,15,19,40,41] compares the diagnostic
performance of the slipper faults in axial piston pumps
among different methods and input signals. The first three
diagnosis methods all adopt CNN, but they only use
single-sensor data (i.e., acoustic or vibration signal). The
methods of CNN-Bayesian optimization (BO) [15] and
2D CNN [40] also recognize 2D spectrogram images
converted from 1D time-series data by continuous
wavelet transform, whereas the method of 1D CNN [41]
directly handles 1D time-series data. The comparison of
diagnostic performance among the first three methods
and the proposed method suggests that the multi-sensor
data fusion is helpful in improving the diagnostic
performance of the CNN model. The last three diagnosis
methods all integrates multi-sensor data fusion, but they
use different types of input signals. The extreme learning
machine method [5] uses nine vibration signals and one
discharge flow signal, whereas the empirical wavelet
transform (EWT) and variance contribution rate method
[19] uses three vibration signals. Compared with the
proposed method, these two methods adopt conventional
machine learning rather than deep learning, and their
multi-sensor data fusion only occurs at the feature level.
The multi-sensor data fusion method proposed in this
work exhibits superior diagnostic performance to the ones
in previous studies [5,19]. This may be explained by two
reasons. First, the proposed method integrates data-level
multi-sensor data fusion in addition to feature-level
multi-sensor data fusion. Second, heterogeneous signals
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Fig. 9 Comparison of contaminated spectrograms among different pump degradation states at an SNR of 6 dB: (a) three vibration
signals; (b) vibration signals 2 and 3, and pressure signal; (c) vibration signals 1 and 3, and pressure signal; and (d) vibration signals 1 and

2, and pressure signal.

(especially including discharge pressure signal) are more
sensitive to the performance degradation of axial piston
pumps than homogeneous signals.

6 Conclusions

This paper proposes an end-to-end multi-sensor data
fusion method for the fault diagnosis of axial piston
pump. The proposed method integrates two stages of
multi-sensor data fusion at data and feature levels through
composited RGB image and CNN. The vibration signals
and discharge pressure signal are fused to recognize the
four different degradation states of an axial piston pump.

The following conclusions can be drawn from the results
and discussion:

(1) The diagnostic performance of the CNN model
depends on the monitoring signals of axial piston pumps.
Compared with the vibration signal, the CNN model with
discharge pressure signal has a higher recognition
accuracy of 3.4%—6.5%.

(2) The multi-sensor data fusion significantly improves
the diagnostic accuracy and reliability. Compared with
each single vibration signal, the data fusion of the three
vibration signals increases the recognition accuracy from
96.5%, 93.4%, and 95.6% to 100.0%.

(3) The diagnostic performance the CNN model
becomes unsatisfactory in noisy environment when only a
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Fig. 11 Comparison of confusion matrix before and after multi-sensor data fusion at an SNR of 6 dB: (a) vibration signal 1; (b) vibration
signal 2; (c) vibration signal 3; (d) pressure signal; (e) three vibration signals; (f) vibration signals 2 and 3, and pressure signal;
(g) vibration signals 1 and 3, and pressure signal; and (h) vibration signals 1 and 2 and pressure signal.

single-sensor signal is available. The multi-sensor data
fusion, especially heterogeneous data fusion, can improve
the diagnostic accuracy and reliability in noisy
environment significantly. For example, the recognition
accuracy of the pump degradation states at an SNR of 6
dB is increased by 9.9%—54.1% when two vibration

signals and one pressure signal are fused and by
3.2%—47.4% when three vibration signals are fused.

(4) For the slipper fault diagnosis of axial piston
pumps, the proposed method has a better diagnostic
performance than other existing methods because of two
reasons. First, the proposed method integrates data-level
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Table 2 Classification accuracy of slipper faults in axial piston pumps for different methods and input signals

Method Input signal Classification accuracy/%
CNN-BO [15] One acoustic signal 97.8
2D CNN [40] One vibration signal 96.1
1D CNN [41] One vibration signal 98.7
Extreme learning machine [5] Nine vibration signals + one discharge flow signal 84.1
EWT and variance contribution rate [19] Three vibration signals 66.5
Proposed method Two vibration signals + one discharge pressure signal 100.0
and feature-level multi-sensor data fusion. Second, the € Total classification number
multi-sensor data fusion integrates heterogeneous data, s Index of samples
including vibration and pressure signals. s Total number of samples
The present method only considers vibration and Time
discharge pressure si gngls .and treats each mgnal equally. X0 Vibration signal
The future research will improve the multi-sensor data
fusion further by integrating other types of available *" The sth sample
signals and emphasizing the data Weights of different Xfl The cth-channel component of the input feature map at layer
signals. -1
Xﬁ{ The kth output feature map at layer /
) Predicted label
Nomenclature w(t), w*(r) Window function and its conjugated form
w Pooling window width
Abbreviations W’M The cth-channel component of the kth group filter weight at
layer /
1D One-dimensional n Learning rate
2D Two-dimensional 6" Trainable parameters at the last layer L
CNN Convolutional neural network gnew gold  Trainable parameters after and before update, respectively
SNR Signal-to-noise ratio T Time variable of integration
STFT Short-time Fourier transform 2] Angular frequency
Variables Acknowledgements This study was supported by the National Key R&D
Program of China (Grant No. 2018YFB1702503), the Open Foundation of
Ay Feature map element at pixel (4, w) in the pooling window the State Key Laboratory of Fluid Power and Mechatronic Systems, China
(Grant No. GZKF-202108), the National Postdoctoral Program for
Ai The kth feature map at layer / Innovative Talents, China (Grant No. BX20200210), the China Postdoctoral
BL Bias of the kth group filter at layer / Sc%ence Foundation (Grant No. 201.9M6600§6), and Shanghai Municipal
c Index of channels for input feature maps or the group filters Sslzeln SC:IZDaZn)iO | O"I;;chnology Major  Project,  China  (Grant  No.
C Total number of filter channels
SO Activation function
H Pooling window height References
|4 Height index of element pixels
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