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ABSTRACT As a wearable and intelligent system, a lower limb exoskeleton rehabilitation robot can provide auxiliary
rehabilitation training for patients with lower limb walking impairment/loss and address the existing problem of
insufficient medical resources. One of the main elements of such a human—robot coupling system is a control system to
ensure human-robot coordination. This review aims to summarise the development of human—robot coordination control
and the associated research achievements and provide insight into the research challenges in promoting innovative design
in such control systems. The patients’ functional disorders and clinical rehabilitation needs regarding lower limbs are
analysed in detail, forming the basis for the human-robot coordination of lower limb rehabilitation robots. Then,
human-robot coordination is discussed in terms of three aspects: modelling, perception and control. Based on the
reviewed research, the demand for robotic rehabilitation, modelling for human-robot coupling systems with new
structures and assessment methods with different etiologies based on multi-mode sensors are discussed in detail,
suggesting development directions of human—robot coordination and providing a reference for relevant research.
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1 Introduction

As a wearable robot, a lower limb rehabilitation
exoskeleton can provide limb support to restore human
locomotion [1] and address the current shortage of
medical resources. Therefore, research on this topic has
gradually gained importance [2]. In the 21st century, with
rapid developments in wearable exoskeleton robots for
power and rehabilitation, commercial applications have
begun [3]. Several theories and techniques have been
formulated for lower limb rehabilitation exoskeleton
robots for various types of patients [4-10].

The typical feature of a lower limb exoskeleton
rehabilitation robot is that it is worn by a patient; thus,
human-robot coordination control is extremely important.
To this end, scholars have proposed human-in-loop
systems [11,12] that aim to solve the tri-co (coexisting—
cooperative—cognitive) problem [13]. Reviews on robot-
assisted lower limb rehabilitation have also been
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published. A review by Meng et al. [14] focused on the
progress of mechanisms, training modes and control
strategies for lower limb rehabilitation robots. Lower
limb orthoses and exoskeleton devices are broadly
reviewed according to joint types, actuation modes and
control strategies [15]. Shi et al. [2] reviewed and
critically evaluated the research progress in human gait
analysis and systematically summarised developments in
the mechanical design and control of lower limb
rehabilitation exoskeleton robots. The advantages and
disadvantages of the theory and technology used in
prototypes and products have also been compared and
summarised [16]. These reviews focused on the design
and control of the systems; however, they did not provide
much detail on human-robot coordinate control. A
systematic overview by Yan et al. [17] outlined the
assistive strategies utilised by active locomotion—
augmentation orthoses and exoskeletons. Control strate-
gies have been reviewed and classified to determine how
these devices interact with users [18]. These reviews have
mainly been carried out from an engineering perspective
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without an in-depth analysis of the clinical rehabilitation
needs of lower limbs or patient movement disorders,
without considering the relationship with clinical rehabi-
litation in the analysis of modelling, perception and
control nor the effect of the different etiologies of lower
limb motor dysfunction on the robotic rehabilitation. In
addition, these reviews do not provide much detail
regarding the modelling of the human-robot coupling
system, which is an important component of human—
robot coordination.

Different fields such as robotics, biomechanics and
human motor control must converge for the development
of lower limb rehabilitation exoskeleton robots [19].
Therefore, patients’ functional disorders and clinical
rehabilitation needs of the lower limb must be analysed,
forming the basis for human-robot coordinate control of
lower limb rehabilitation robots. When coupling the robot
and the human body, the system must be analysed and
modelled, also forming the basis of human—robot coordi-
nated control. Accordingly, a perception system is
designed to process multi-fusion information and provide
the necessary feedback for the control of the robot. In the
cases of demand, model and feedback, a control strategy
is designed to achieve human-robot coordinated control.
Therefore, to provide a reference for related research, this
paper reviews human-robot coordination control of
lower-limb rehabilitation robots from four aspects,
including demand analysis, system modelling, sensing
and control strategies. Based on the reviewed research,
the demand for robotic rehabilitation, modelling for
human-robot coupling systems with new structures and
assessment methods with different etiologies based on
multi-mode sensors mechanism of rehabilitation and the
needs of patients in rehabilitation are discussed in detail,
suggesting development directions of human—robot coordi-
nation and providing a reference for relevant research.

2 Motor function assessment for
rehabilitation

Motor function assessments are essential during rehabi-
litation, which can help us understand the functional state
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of patients. Many different methods and tools are used to
evaluate motor functions, including traditional tools and
objective-evaluation-based and biological-signal-based
methods (Fig. 1).

2.1 Traditional tools

Traditional tools (such as scales) can evaluate many
motor functions, including walking ability, balance,
endurance, strength, and gait. The roles of different tools
overlap. For example, the timed up and go (TUG) test is
widely used to evaluate balance and walking ability
[20,21], while the Berg balance scale and the short
physical performance battery are also used for balance
assessment [22,23]. In another study, TUG was used to
predict the risk of falls in the elderly [24]. The 6-min
walk test (6 MWT) is a submaximal exercise test that
measures the distance in meter (m) traversed over 6 min
and provides cardiopulmonary and musculoskeletal
functional capacity information. Therefore, different tools
have been used for the same motor function in different
studies. Conversely, the same tools may be used for
different motor functions. The interpretation of each tool
may vary from one study to another. Traditional tools can
provide a global description of the functional state but
cannot quantify real-time movement information in motor
function assessment.

2.2 Objective-evaluation-based method

The progress of new technologies has given rise to
devices including inertial measurement units (IMUs),
motion capture systems, force plates, and foot pressure
sensors. These devices allow an objective evaluation of
human movements, providing us with the movement
information of patients. This information provides a
better understanding of how humans control their
movements. Motor control strategies are essential for
understanding the patient’s motor dysfunction and finding
new rehabilitation techniques. Human movements include
static and dynamic characteristics. Static characteristics
are also referred to as spatiotemporal parameters, and

3. Biological signals
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Fig. 1 Simplified diagram for motor function assessments in rehabilitation. TUG: timed up and go, BBS: Berg balance scale,
SPPB: short physical performance battery, 6MWT: 6-min walk test, IMU: inertia measurement unit, EMG: electromyography,

EEG: electroencephalogram.
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they include step length, step width, distance, and time
[25]. Stroke patients have an asymmetric gait pattern with
a large difference in step length [26] or swing time on
both sides [27]. Moreover, dynamic characteristics are
time series parameters [25], which commonly include
kinematic and kinetic parameters. Kinematic parameters
include joint trajectories, joint angles, joint velocities,
joint accelerations, joint range of motion, and trajectory
of centre of mass (COM). Pickle et al. [28] evaluated the
balance ability of patients with Parkinson’s using angular
momentum calculated by the angular acceleration and
velocity of segments. The sway distance between the
COM and centre of pressure (COP) and the sway speed of
COP are also used to assess balance ability [29]. A
previous study used the correlation coefficient of the left
and right joint angle curves to evaluate the asymmetry of
hemiplegic gait [26]. The maximum stretching speed of
the elbow joint was found to be related to the modified
Ashworth scale used to assess spasticity [30]. A syste-
matic review showed that almost half of the current
exoskeleton performance evaluation studies used kinema-
tic parameters [31]. Kinematic parameters can be
obtained using tools such as inertial measurement units,
infrared motion capture systems and image processing
systems (Figs. 2(a) and 2(b)).

Kinetic parameters include torque, force, power,
ground reaction force (GRF), and heel-contact force. The
GRF and heel-contact force can be used to identify the
gait events of heel strike and toe-off in patients with
hemiplegia and spinal cord injury [32,33]. The maximum
joint resistance can be used to evaluate muscle tension in
patients with spasms [30]. Kinetic parameters can be used
to quantify weakness in patients. For example, Neckel
et al. [34] compared active joint torques between patients
with chronic stroke and a control group and found that
patients who suffered from a stroke were significantly
weaker in six of the eight measures tested. Another study
by this team comparing gait patterns of subjects wearing
Lokomat showed that the kinematic patterns of the
chronic stroke and control groups were similar. However,
the kinetic parameters were different, with the hip
extension torque and knee flexion torque of the uninjured
side being significantly greater in patients with stroke
than in the control group [35]. This suggests that although
Lokomat uses symmetrical kinematic features to guide
walking, the torque pattern remains asymmetric. Thus,
further investigating ways to appropriately combine
kinematic and kinetic parameters is necessary to better
represent patients’ needs. The GRF and heel contact force
can be obtained through measurements using a
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Fig. 2 Partial objective evaluation for motor function assessment: (a) infrared motion capture (Motion Analysis, USA); (b) inertial
measurement units (Noraxon, USA); (c) insole plantar pressure and measurement device (Novel, German); (d) force plate (AMTI, USA);

and (e) electromyography sensor (Noraxon, USA).
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three-dimensional force plate system or a plantar pressure
system. The pressure sensor in the insole can be placed in
the shoe to measure the vertical force. A series of kinetic
parameters, such as joint torque, can be calculated using
the inverse dynamics method (Figs. 2(c) and 2(d)).

2.3 Biological-signal-based method

Surface electromyography (EMG) records muscle activity
(Fig. 2(e)). The biological signals of the brain can also be
recorded using electroencephalography (EEG). Muscle
activity can be used to evaluate the effort required by
patients to complete motor tasks [36] as well as abnormal
muscle coactivation patterns [37]. A previous study has
shown that the contraction of antagonistic muscles in
stroke patients is very strong during ankle flexion and
extension and knee extension [34]. Shestakov [38] used
EMG to evaluate astronauts’ ability to maintain body
balance in the presence of external disturbances. At
present, EMG is being used to identify motor intentions
of healthy people [39]. However, as mentioned, patients
with disorders, such as strokes or spasms, may induce
abnormal muscle contractions, which also produce EMG
signals. Therefore, identifying a patient’s motor intention
through EMG signals directly has limitations. EMG
varies greatly among individuals when evaluating human
movements as the muscle activity of maximum voluntary
contraction is used for standardised processing. In addi-
tion, EMG is also affected by fatigue. These problems
may limit the use of EMG in rehabilitation robots.

3 Modelling and perception of
human-robot-coupled system
3.1 System modelling for three levels

Humans wear lower limb exoskeleton rehabilitation
robots for rehabilitation training, forming a human-robot
coupling system. Models of the coupling system can

provide a basis for the design and control of the system.
The modelling of such a system can be divided into three

levels based on its characteristics, including robot, human
and human-robot interaction, as shown in Fig. 3.

The first level involves modelling the actuators. Lower
limb rehabilitation robots often use electric motors and
hydraulics. For the motor drive, the servo system is a
three-closed-loop control including a position control
loop, speed control loop and current control loop, which
is generally simplified to a second-order differential link
[40]. For hydraulic systems, the corresponding drive
system model is usually set up according to the hydraulic
components adopted, such as the general valve-controlled
asymmetrical cylinder system [41]. Both these drives are
rigid drives. To improve human-robot collaboration,
studies have been conducted on the design of the drive
system. On the one hand, pneumatic [42] drives with
stronger flexibility are adopted, and on the other hand,
serial elastic actuators (SEAs) [43] and cable-driven
actuators [12] are adopted. At the level of the drive
system, the elastic actuator is modelled. The drive is
connected to the load via a compliant element. The drive
dynamics are represented by the inertia and motor torque.
According to the structure designed by SEA, the
corresponding actuator modelling can be obtained by
considering friction and other links [44]. The distribution
of driven cables is various, potentially satisfying different
requirements of the robot and obtaining better perfor-
mance. More emphasis should be put on the unidirec-
tional characteristics and the coupling relationship of
cables [5]. In the process of driving modelling, the most
important problem is the identification of system
parameters and the accuracy of the model that affects the
control effect. Another aspect is the modelling of the
robot system level. Lower limb exoskeleton rehabilitation
robots generally adopt serial structures after simplifying
the joints of the human lower limbs [2]. In recent years,
parallel structures have also been reported based on
further studies of real human movement [8,45,46]. The
series and parallel structures are rigid structures. The
Lagrange method [47] and Newton—Euler method [48]
can be used to establish dynamic models for rigid-body
dynamics modelling, which is widely used in industrial
robots. For the lower limb exoskeleton robot in a series

HRI Human

Rigid actuator Compliant actuator

Planar model Rigid model

1-DOF impedance
model

Multi-bar dynamical model

Muscle and compliant model

Spatial model Reflex-based musculoskeletal model

3-DOF impedance
model

Hill-based muscle model

Impedance model

Fig. 3 Modelling of robot, human, and human—robot interaction. HRI: human-robot interaction, DOF: degree of freedom, SEA: serial
elastic actuator.
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configuration, the robot is simplified into a multi-link
model, and dynamic modelling of the lower limb
exoskeleton robot is carried out [49]. For robots with
parallel configurations, similar ideas as in industrial
robots can be used for dynamic modelling [9].

In a lower limb exoskeleton rehabilitation robot, the
process of modelling is insufficient to consider the robot
itself, but it also needs to include the human body to
realise the modelling of the human—robot coupling
system. The human lower limb was simplified into a
multi-link model based on the simplification of its each
joint [50]. Existing multi-link models are mainly derived
by simplifying the sagittal plane movement of the human
body. Generally simplified to two- [51] and three-DOF
link models [49], the five- [52] and seven-bar human
dynamics models [53] without and with consideration of
the ankle joint, respectively, are established. Different
dynamic models have been established according to the
difference between the support and swing phases [54].
The main function of establishing these models is to
calculate the corresponding joint torques of the human
body. However, due to the existence of the musculoske-
letal system of the human body, a rigid body cannot be
simply used to represent the dynamic model of the human
body. Therefore, the muscle model is also used to
conduct dynamic modelling of human lower limbs
[55,56] and the human reflex-based musculoskeletal
model [57,58] is used to obtain the driving torque.
However, from the perspective of control, as the human
body is equivalent to an impedance model including
stiffness and dumping for processing, the dynamics
modelling of lower limbs is not performed [59] to form a
human-robot coupling system together with the robot
model. All of the above models cannot accurately
describe the rigid-flexible coupling characteristics of
human lower limbs caused by the musculoskeletal
system. The model is not accurate due to the large
difference in inertia parameters of the human body which
are difficult to accurately measure. Such a mapping
relation is different from person to person, and individual
differences are large, making application difficult.
Concurrently, for patients who need to carry out passive
movements, their ability for performing activities is
weak, they cannot generate a torque that is calculated
according to the musculoskeletal model and their EMG
signals are difficult to collect.

The human body and the robot are not rigidly connec-
ted but are usually connected through flexible links such
as straps [9] via which human-robot interaction (HRI)
forces act. The existence of interaction forces realises
force and energy transfer between the robot and the
human body. For such an interaction force model, a K-B
model with a single degree of freedom (DOF) was
proposed [60]. To expand the model, a K model with
three DOFs was proposed [9]. The main problems of
these models are as follows: The parameters of the

impedance model are inaccurate. These models also
assume that the joint centre of the human body and the
joint centre of the robot coincide, but the influence caused
by the joint centre mismatch is not considered. Further-
more, when using the multi-link model for human-robot
coupling dynamic modelling, we tend to assume no
deviation occurs in the movement between the human and
robot, thus assuming a rigid connection between the
human and robot. However, particularly in the early stage
of the rehabilitation, for the patient, the interaction force
owing to the motion deviation between the human and
robot drives the human body to move. If no deviation
occurs, no interaction force occurs, creating contradic-
tions in the multi-link model.

3.2 Perception for rehabilitation

As a human-centred intelligent system [61], the lower
limb exoskeleton rehabilitation robot needs to fully
perceive the information of the human-robot coupling
system through a sensing system and identify the motion
state and intended motion of the patient to realise
effective human-robot coordination, ensure a smooth and
effective control strategy and achieve the effect of
rehabilitation. Thus, a perception system is a key com-
ponent of the system to realise human—robot coordination
control. Two types of information are obtained by the
perception system. One is the information from physical
and biological sensors, which reflects the motion and
state of the human-robot coupling system. The other is
HRI information, which accurately predicts the intended
movements of patients (Fig. 4).

For robot systems, perception can be achieved using
physical sensors. Linear and rotary potentiometers and
force sensors can be set at the joint to measure the output
angle and torque of the joint [5]. The plantar pressure
information can be detected using plantar pressure
sensors and ground reaction force sensors [62]. The
collection of this physical information and input into the
control system can serve as a feedback link and provide a
basis for the design of the controller.

A lower limb exoskeleton rehabilitation robot is a
typical human-robot coupling intelligent system, which
also needs to perceive the relevant information of the
human body. However, biological signals are collected to
identify the intended human movement. The sensor mode
based on EMG serves as the input signal of the controller
[63] to identify muscle strength or gait for corresponding
control or the method of electromyographic fusion [64].
Through mechanism analysis of brain signals [65] and
intention recognition [66], great progress has been made
in the research on intention perception of exoskeletons
based on EEG signals [67,68]. Bioelectric sensing
information can directly reflect the movement intention of
the wearer, due to its advantages of strong global
stability, fast response and being the most natural HRI.
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Fig. 4 Perception of robot, human, and human—robot interaction.

However, individual differences exist in bioelectrical
signals, and the mapping mechanism between bioelec-
trical signals and human motion intention needs to be
further studied. By contrast, physical sensors can be used
to detect the movement information of the human body,
and the IMU can be used to detect the movement
information of the body for the identification of the
movement intention [69] and gait phase estimation [70].
The IMU can also be used to detect the joint angles of the
lower limbs [55,71]. For such an attitude detection
algorithm, a precision problem arises [72,73]. A vision
sensor can also be used to detect the posture of the human
body [11].

Detection of HRI forces is also an important method to
realise human-robot coordinated control. Such forces are
mainly measured in the following ways: The force/torque
sensor is installed between the robot and the binding joint
is used to detect the interaction forces [74,75]. The
direction and magnitude of the multiple interaction forces
were used to comprehensively determine the motion
intention. Force information is collected using two-
dimensional interaction force sensors installed between
the robot and the cuff, and the interaction torque is
determined using the product relationship and the
installation position. A uniform sensor is used to measure
the interaction force information and identify the motion
intention of the human body [76]. Series elastic actuators
[44] are used to detect and identify interaction forces to
realise human—robot coordinated control. This approach
increases the complexity of the structure. The measure-
ment of interaction forces is also affected by the number
and arrangement of the sensors.

4 Human-robot coordinate control
strategies

The recovery cycle is divided into three stages. Phase I is
considered an inpatient program, with an average
duration of 7 to 10 days with the objective to maintain the
patient’s muscular tone by performing passive move-
ments, low-intensity exercise and education to reduce
risks. Phase II is a twice-weekly outpatient program, with
an average duration of three months that consists of a
combination of physical exercise on a treadmill, an
education program oriented to the prevention of risk
factors and adoption of healthy habits (e.g., controlling

blood pressure, cholesterol, weight and stress manage-
ment). Finally, Phase IIl is defined as a long-term
maintenance period, with the objective to provide
reinforcement to the already-acquired routines in previous
phases and to provide advice concerning secondary
prevention [77]. Therefore, for the initial stages of I and
11, the robot can be used to fully drive the affected limb to
move to achieve passive rehabilitation training. In the
middle and late stages of 11, the patient’s motor ability is
recovered, so the robot cannot be simply controlled
passively. Evaluating the patient’s motor ability and state
and adopting different rehabilitation training methods are
necessary to realise active rehabilitation training. In Phase
III, after a period of training, the patient recovers their
motor ability. At this time, the robot is needed to assist
the patient in daily life to perform routine exercises. At
present, lower limb rehabilitation robots pay more
attention to Phases I and II, whereas Phase III is classified
as assistance. Starting from the entire cycle of I-III, this
study considers that part of III also belongs to lower limb
rehabilitation robots. Rehabilitation goals may vary at
different stages of a disease. A physical activity and
exercise plan must be formulated according to the patient’s
tolerance, recovery stage, environment, social support,
physical activity preference, and activity, and participa-
tion restrictions. According to the American Heart
Association and Stroke Association, bed rest needs to be
minimised and a patient must sit or stand intermittently to
maintain endurance during acute recovery. When the
patient is stable, physical and occupational therapy are
used to promote motor recovery, such as gait, muscle
strength or balance. The goal of the third phase of stroke
rehabilitation is to promote the completion of
recommended physical activities and exercise to prevent
cardiac problems and recurrent strokes [78].

According to the patient’s condition and different
rehabilitation training stages, different rehabilitation
training modes need to be adopted, and corresponding
control methods should also be used (Table 1 [5,51,57,
62,79-85]). Robot-assisted rehabilitation training can be
divided into passive and active training. Generally, lower
limb rehabilitation robots adopt the method of active and
passive mixed control [86,87]. In early stages of
rehabilitation training, due to the reduced strength of
patients’ limbs, passive control is needed; that is, robots
drive the patient’s limbs to carry out continuous passive
training to achieve continuous passive movement. The
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Table 1 Overview of control methods

Control strategies Methods

Features

Passive control

Proportional—derivative (PD) control [79], computational torque

After a walk mode based on the sensors was selected, the

control [62], variable structure control [80], impedance control participant initiated and propagated the programmed motions.
[81], multiple input multiple output (MIMO) decoupling control The torque that the robot needs to apply to the human body is
[51]

Assist-as-needed control

Neuromuscular control [57]

Force control Finite state machine [84]

EMG-based control [85]

Force-field control (FFC) [5], moment-field control (MFC)
[82], three-dimensional-force-field control (3D-FFC) [83]

generally put into the dynamics equation as a disturbance term

Using physical sensors for measurement and evaluation; that is,

the actual position or attitude deviation measured by the sensor

can obtain the corresponding adjustment force/torque to achieve
impedance control based on the attitude deviation

Capturing EMG signals to generate a synchronised and natural
gait and achieve human-robot coordinated control

A finite state machine is used to indicate the intended option of
a series of manoeuvres. The intended manoeuvre of the user
based on the provided inputs is determined. Each state is
defined by a set of joint angle trajectories, which are enforced
by position control loops

Human joint torque is estimated based on EMG signals to
generate virtual torque for the control of the motors

passive control mode is aimed at patients with severe
diseases and weak muscle strength; here, the affected
limbs are driven by the robot to move along a predeter-
mined trajectory. From the perspective of robot control,
robots perform trajectory tracking tasks in passive
training, which can be achieved through trajectory
tracking control methods, such as proportional—derivative
(PD) control [79], computational torque control [62],
variable structure control [80] and impedance control
[81]. The controller mentioned above does not take
humans into account; that is, the trajectory tracking
control realised focuses on the movement of the robot and
the tracking of expected motion. In the design of the
controller, the torque that the robot needs to apply to the
human body is generally put into the dynamics equation
as a disturbance term [88,89]. Then, the dynamic control
of the robot is carried out. A structured or unstructured
reach exists in the robot system, and the uncertainty of
the non-structure, multiple input multiple output (MIMO)
decoupling control method is used for compensation
control [51].

For patients who can actively exert force in the middle
and later stages of rehabilitation, the robot will provide
the necessary assistance according to the patient’s motion
intention. Owing to the high degree of active participation
of patients in active training and good stimulation of the
nervous system, the clinical rehabilitation effect at this
stage is better than that of passive training [90]. In active
training, the robot needs to provide corresponding
assistance according to the motion intention and state of
the patient [91]. By using a method based on impedance
control, an environment with different impedance
characteristics is simulated to ensure compliance with the
interaction process; thus, an assisted procedure is
proposed [92]. As on-demand auxiliary control, an
important problem is how to assess the patient’s motion
intention and state and then give the corresponding
auxiliary force. One way is to use physical sensors for
measurement and evaluation; that is, the actual position or
attitude deviation measured by the sensor can obtain the

corresponding adjustment force/torque through the
corresponding force-field control (FFC) [5], moment-
field control (MFC) [82] and three-dimensional-force-
field control (3D-FFC) [83] to achieve impedance control
based on the attitude deviation. To increase the flexibility
of the system, the term to the adaptive control law is
reduced by adding a novel force, decaying the force
output from the robot when errors in task execution are
small [93]. This type of controller has two drawbacks that
limit its application. First, the motion intentions and
status of the patients are evaluated based on the position
and attitude information of the robots. However, as
discussed, deviation occurs in the motion between the
patients and the robots, implying that the feedback
information in the controllers cannot accurately reflect the
motion of the patients. Second, the parameters in the
controllers are fixed but cannot be changed according to
different patients, indicating that the controllers have
inadequate adaptability. Another approach is to capture
EMG signals, and neuromuscular control reacts to the
movements of the thighs, resulting in a synchronised and
natural gait [57]. The motion intention of the human body
is detected through the neuromuscular model to achieve
human-robot coordinated control.

When rehabilitation training reaches a certain stage, the
lower limb exoskeletons can provide assistance to the
patients for their daily life. At this stage, lower limb
exoskeletons tend to be over ground. In this case, the
preprogrammed method can still be used to drive the
human body to move [94], but this control mode is
difficult to adapt to complex and changing situations of
the actual walking process. In this process, more attention
is paid to HRI and human-robot coordinated control. On
the one hand, the interactive force is used to identify the
motion intention of the human body to achieve assistance
of the lower limbs in the walking process [54,95]. On the
other hand, it is different from the rehabilitation training
stage [96]. At this time, the trajectory is no longer pre-set,
but can be obtained by real-time reference changes
[97,98]. A finite-state machine defines different motion
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scenarios and logic to provide the desired assistance for
patients [84]. However, biological signals can be used to
identify the motion intention of the human body to assist
in the walking process, and the EMG model can be used
to calculate the driving torque in real time [55] or the
mapping relationship between the EMG signal and joint
torque [85] can be used to realise human-robot coordi-
nated control.

The robot system can detect robot motion information,
human motion information and HRI information for
human motion perception and state evaluation. The
information of joint angle, torque and plantar pressure
can only reflect the motion state of the robot. Individual
differences exist in surface EMG, EEG and other
biological signals, and the mapping mechanism between
them and human motor intention is insufficient. Interac-
tive force information can be detected by force/moment
sensors and distributed sensors between the human and
robot; however, this increases the complexity of the
structure, and the measurement results are affected by the
number of sensors and layout. Biological signal informa-
tion and interaction force information are mainly used to
perceive the intention of human movement and are
generally used as a trigger quantity in the process of use.
Therefore, achieving accurate perception of human
movement is difficult. Physical sensors are used for
measurement and evaluation, that is, the actual position or
attitude deviation measured by sensors can be adjusted by
force/torque controllers such as force field, screw field
and torque field controllers to achieve impedance control
based on position and attitude deviation. These methods
are position deviations of the robot for evaluation basis.
However, the flexible connection between human
movement deviation and the resulting position deviation
may not accurately reflect the state of patients with
intention, and the controller parameters are usually fixed
and cannot adapt to the needs of different patients with
different stages of illness, leading to insufficient human—
robot coordination. The control method of biological
signals such as EMG and EEG, although directly
measuring human signals, is insufficiently accurate, also
leading to the lack of human—robot coordination.

5 Discussion

Recovery from disease is a complex process, possibly
done through a combination of spontaneous and depen-
dent learning [99]. Task-specific and context-specific
training are widely accepted principles in motor learning,
indicating that rehabilitation training should be targeted at
goals related to patients’ needs [100]. The results of a
systematic review showed that at present, almost half of
the studies on the evaluation of lower limb exoskeleton
performance are focused on flat ground or treadmill,
indicating that the exoskeleton field mainly focuses on

basic motor skills, while other motor tasks, such as
standing, balance, walking on irregular terrain, turning
and lateral movement, have been largely ignored [31].
The simultaneous solution of several other important
functional tasks may also be a problem for rehabilitation
robots.

5.1 Demand for robotic rehabilitation

Dysfunction is a major disease-related problem.
Rehabilitation should focus mainly on improving activity
and functional limitations; thus, exercise and functional
recovery play an important role in modern rehabilitation
[101]. Different diseases may lead to different dysfunc-
tions. Decreased muscle strength is the most significant
injury after stroke, further reducing walking speed and
endurance [102]. Incomplete spinal cord injury (SCI) can
cause motor dysfunction below the injury level, and
walking is one of the most desired goals for many
patients with SCI [103]. Dysfunction with different
causes may share the same mechanism and consequences,
leading to the same clinical syndrome, and responding to
the same interventions [104]. For example, walking
disorders may be caused by decreased muscle strength or
balance, which may result from stroke, SCI or other
diseases. Therefore, the focus must be on dysfunction and
not only the disease causing the disorder in the
rehabilitation process. At present, rehabilitation robots
mainly focus on training different types of patients to
walk, mainly because walking is one of the main goals of
patients with motor dysfunctions. Walking is also one of
the main methods via which patients can perform and
participate in other activities. Fewer rehabilitation robots
focus on other functional disorders, such as balance,
muscle weakness, and body transfer.

Therefore, to adapt to different conditions and func-
tional disorders, lower limb exoskeleton rehabilitation
robots need to have personalised characteristics and be
able to fulfil new requirements for human-robot coordina-
tion and control. Many studies on human-robot coordina-
tion in different stages of robot-assisted rehabilitation
training have been published, but research on different
conditions is insufficient. The pathological characteristics
of different diseases are not the same. Even if the
rehabilitation robot is also used for rehabilitation training,
the way of rehabilitation training is not the same.
Therefore, developing a program suitable for robot-
assisted rehabilitation training for different conditions is
necessary to show different human-robot coordination
problems. At present, some studies combine a certain
index that can be measured by robots with dysfunction,
and human-robot coordination methods can be designed
by sensing these kinematic or dynamic indicators of
patients. However, no comprehensive evaluation model
has been developed for a disease or dysfunction, which is
also urgently needed in the future.



Di SHI et al. Review of human—robot coordination control for rehabilitation 9

5.2 Modelling for human-robot coupling system with new
structures

To adapt to different tasks, environments and rehabili-
tation needs, prototypes need to be lightweight and
miniaturised. The presently used drive and transmission
mechanisms occupy a large proportion of overall
prototypes, resulting in a heavy system. At the same time,
the flat joint, small volume and high energy density have
important significance for realising the strong quantifi-
cation and comfort design of the lower limb exoskeleton
rehabilitation robot. To obtain a high power/thrust density
[105], an innovative design of the drive system is
available; its corresponding exokinematic modelling is
required to achieve accurate control, thereby placing new
requirements on the construction of the drive model. In
addition, the idea of modularisation is to select corres-
ponding modules according to different stages of illness
to achieve structural restructuring [43,45]. Lightweight
and miniaturised drive and transmission mechanisms can
also make modular design easier to achieve. The human-
in-the-loop design is an important method for modular
design, based on the human-robot coupling dynamical
model. The lower limbs were simplified into a multi-link
model, and the rigid body dynamics modelling method
was used to model the human-robot coupling system.
However, accurately describing the rigid—flexible
coupling characteristics of human lower limbs caused by
the musculoskeletal system, and the inertia parameters of
the human body vary greatly, making it difficult to
accurately measure, resulting in uncertainty. Human—
robot energy transfer is realised by the interaction force
generated by flexible links, such as binding. The
interaction force modelling method based on the spring
damping model has model parameter uncertainty, and the
model does not consider the effect of human—robot joint
centre not coinciding, thereby influencing the accuracy of
the model. Therefore, a research hotspot in realising the
control mode of human in the loop is the establishment of
a rigid—flexible coupling model in line with the
characteristics of the human musculoskeletal system and
a human-robot coupling dynamics model in conjunction
with the robot dynamics model. The rigid—soft coupling
structure is closer to the actual musculoskeletal structure
of the human body [106]. How to carry out structural
modelling in this aspect and realise the modelling of a
human-robot coupling dynamics system is also an
important problem.

5.3 Assessment methods with different etiologies based on
multi-mode sensors

Traditional assessment methods can be wused to
comprehensively assess human locomotion ability, but
these methods are mostly qualitative or post-qualitative
and cannot meet the real-time assessment needs of lower

limb exoskeleton rehabilitation robots. A perception
system, used for real-time perception and evaluation of
human motor functions, and the adaptive adjustment of
the corresponding rehabilitation training, are also
required. Contemporary research on flexible sensors and
electronic skin [107] will facilitate the design of percep-
tion systems. First, designing comprehensive models
based on the mapping relationship between motor
functions and multi-sensor information is necessary, and
the redundancy of information should be considered to
simplify the systems. Perception systems should also be
designed to dynamically sense humans’ motion, accu-
rately understand their intentions and evaluate their motor
functions in real time. Compared with single-sensor data,
processing multi-modal information through multi-source
fusion can ensure the speed and accuracy of perception.
Such processing can combine the advantages and
disadvantages of the various sensors mentioned in this
paper to construct the perception mode of bio-machine
mixed signal and design data fusion algorithm, which is
also a research hotspot. For example, IMU and EMG
were used for hybrid detection, and a neural network was
used to perceive and predict the motion of the knee joint
[108]. By making full use of the learning algorithm, the
multi-mode multi-sensor information analysis and proces-
sing and data fusion algorithm are constructed. Thus, the
perception system can sense more complete information
and higher-level features of the robot and human body
according to the multi-mode information acquired and
realise adaptive sensing. At the same time, through the in-
depth combination of machine learning [109] and other
technologies, the customisation and parameterisation of
data diagnosis and treatment are realised, and the
integration of autonomous learning and people is better
realised [77]. The combination of virtual reality and
augmented reality technology [110] enables a real scene
to stimulate the brain and significantly stimulate motor
function [111]. Using visual interaction and virtual reality
technology is necessary [112]. At the same time, the
current perception system is more used to sense the
motion intention of the human body and then adjust the
output force/moment of the robot accordingly to achieve
human-robot coordinated motion. However, the compre-
hensive evaluation of the human motion ability is not
considered in the perception system, which are basis for
the diagnosis and evaluation to realise human-robot
coordination between the movement according to
different conditions and phases.

6 Conclusions

Human-robot coordination, which is crucial to lower
limb exoskeleton rehabilitation robots used as human—
robot coupling systems, is reviewed in this paper. First,
patients’ functional disorders and clinical rehabilitation
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needs regarding lower limbs are analysed, forming the
basis for the human-robot coordination of lower limb
rehabilitation robots. Then, human-—robot coordination is
discussed in three aspects: modelling, perception, and
control. The modelling of such a human—robot coupling
system is described at three levels: robots, humans, and
HRI. Two types of information, namely, information
from physical and biological sensors and HRI informa-
tion, are discussed, and the design method for the
perception system is analysed. Control strategies for
different stages throughout the recovery cycle are
illustrated and analysed. The demand for robotic rehabi-
litation, modelling for human-robot coupling systems
with new structures and assessment methods with
different etiologies based on multi-mode sensors are
discussed in detail, suggesting development directions of
human-robot coordination and providing a reference for
relevant research.

Nomenclature

COM Centre of mass

COP Centre of pressure

DOF Degree of freedom

EEG Electroencephalography
EMG Electromyography

FFC Force-field control

GRF Ground reaction force

HRI Human-robot interaction
MU Inertial measurement unit
MFC Moment-field control

MIMO Multiple input multiple output
PD Proportional—derivative

SCI Spinal cord injury

SEA Serial elastic actuator

TUG Timed up and go
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