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ABSTRACT The inverse kinematics problems of robots are usually decomposed into several Paden—Kahan
subproblems based on the product of exponential model. However, the simple combination of subproblems cannot solve
all the inverse kinematics problems, and there is no common approach to solve arbitrary three-joint subproblems in an
arbitrary postural relationship. The novel algebraic geometric (NAG) methods that obtain the general closed-form inverse
kinematics for all types of three-joint subproblems are presented in this paper. The geometric and algebraic constraints
are used as the conditions precedent to solve the inverse kinematics of three-joint subproblems. The NAG methods can
be applied in the inverse kinematics of three-joint subproblems in an arbitrary postural relationship. The inverse
kinematics simulations of all three-joint subproblems are implemented, and simulation results indicating that the inverse
solutions are consistent with the given joint angles validate the general closed-form inverse kinematics. Huaque III
minimally invasive surgical robot is used as the experimental platform for the simulation, and a master—slave tracking
experiment is conducted to verify the NAG methods. The simulation result shows the inverse solutions and six sets given
joint angles are consistent. Additionally, the mean and maximum of the master—slave tracking experiment for the closed-
form solution are 0.1486 and 0.4777 mm, respectively, while the mean and maximum of the master—slave tracking
experiment for the compensation method are 0.3188 and 0.6394 mm, respectively. The experiments results demonstrate
that the closed-form solution is superior to the compensation method. The results verify the proposed general closed-form
inverse kinematics based on the NAG methods.

KEYWORDS inverse kinematics, Paden—Kahan subproblems, three-joint subproblems, product of exponential,
closed-form solution

the Pieper criterion that three adjacent joint axes intersect
at a single point. When it does not meet the Pieper

1 Introduction

The inverse kinematics problem of a robot manipulator is
one of the most fundamental steps to obtain the mapping
relationship between the end-effector and the joint angles
in real-time control and trajectory planning [1,2]. This
problem has been widely studied in various fields, such as
medical robotics [3-5], bionic robotics [6,7], reconfig-
urable robotics [8,9], and redundant manipulator [10].
There are multiple methods derived based on the
Denavit—-Harbenterg (D-H) model and the product of
exponential (POE) model to solve the inverse kinematics
problem. For the D—H model, the robot needs to satisfy
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criterion, there are other methods that can be applied,
such as iterative methods [11,12], genetic methods
[13,14], and neural network [15,16]. Tang [5] adopted the
two-step approximate and compensation solution method
to solve the inverse solution of the surgical instrument
that did not meet the Pieper criterion. The wrist length of
the surgical instrument was ignored in the solution
process, and the relative motion error of the surgical
instrument was compensated. However, the relative
motion error of the surgical instrument increased when
instrument pose was close to the singularity. Xu et al.
[12] presented the hierarchical iterative inverse kinema-
tics algorithm, which consisted of two-level iterations.
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The first-level iteration achieved accurate initial estimates
through an extended heuristic iterative method. On this
basis, the second-level iteration calculated all the joint
angles. The proposed algorithm was applied to a six-
degree-of-freedom (6-DOF) manipulator with a 2-DOF
reduced wrist. Zhou et al. [14] took the motion
constraints into account to design the fitness function and
utilized the cosine adaptive genetic algorithm to complete
the time-optimal trajectory planning. Tian and Xu [15]
designed the convolutional neural network and the
effective neural network visual layer pre-training method
to control the robot arm end-to-end. The simulation result
validated the efficiency of the proposed convolutional
neural network. Although these methods can obtain the
feasible inverse kinematics solution when the robot does
not meet the Pieper criterion, they are time-consuming,
and the completeness, convergence, and robustness of the
inverse solution cannot be guaranteed. In addition, these
methods based on the D-H model are complex to
establish the local coordinate system between the adjacent
joints, and plenty of specific analyses are required for
each manipulator. Therefore, the requirement for the
closed-form inverse solution is necessary because of its
accuracy and real-time capability. If the trajectory of the
end-effector is continuous, then the closed-form solutions
of the joints are continuous. In theory, the closed-form
solution based on the POE model is error-free, so the
robot is not affected by the cumulative error.

The expression of joint axis in the POE model is
different from that in the D-H model. In the POE model,
the transform of an arbitrary rigid body with respect to
the inertial coordinate system can be expressed by a
screw displacement [17]. Hence, the singularity problem
that happens when adjacent joints are parallel in the D-H
model does not occur in the POE model [18,19]. Screw
theory and POE formula are used to provide a simplified
symbolic representation that can obtain definite geometric
significance. Furthermore, the inverse kinematics solution
based on the POE model is closed-form, which is the
most desired form of the inverse solution. Paden—Kahan
method [20] decomposed the integrated manipulator into
three classes of subproblems that can be easily solved.
However, the simple combination of subproblems cannot
solve all inverse solutions. Chen and Gao [21] introduced
11 types of subproblems for different configurations,
including revolute and prismatic joints, and presented the
solutions of some subproblems. By contrast, the case
where the axes of the first two joints do not intersect
cannot be solved. Zhao et al. [22] expanded the three
classes to 28 detailed types of subproblems, consequently
enabling the inverse solution to be easily obtained by
assembling several subproblems according to the config-
uration. The subproblem RRT (R: revolute, T:
translational) case where two adjacent axes intersect was
solved, but other complex cases were not mentioned. Tan
et al. [23] extended the second subproblem by two axes,

and the exact solution was obtained. The extended case is
where the rotation to a point at a fixed distance from a
given point was solved in a constructed manipulator. Leoro
et al. [24] presented a new subproblem where the adjacent
joints are parallel and both perpendicular to the third axis,
and the solving method was applied to the 6-DOF
EverRobot RH12. Chen et al. [25] improved an existing
subproblem where adjacent axes were parallel and
applied to the 6-DOF Qianjiang-I robot. Li et al. [26]
proposed a new subproblem where three adjacent axes
intersect at one point, and a humanoid arm with the
configuration of generalized SRU was taken as the
paradigm to validate the correctness of the analytical
formula. Wang et al. [27,28] proposed the general frame
for arbitrary 3R subproblems based on the POE model,
and special cases such as perpendicular and parallel
between multiple axes were taken into account. Simula-
tion and experiment were likewise carried out to verify
the availability of the proposed method. Wang et al. [29]
presented a novel analytical inverse kinematics method
for the 7-DOF space station remote manipulator system,
and the simulation results showed improved calculation
accuracy.

As discussed in the literature, the aforementioned
methods focus on three revolute joint subproblems.
However, the mixture of prismatic and revolute joints is
frequently used in practical working environments, and
there is no general approach to solve arbitrary three-joint
subproblems in arbitrary posture. As a consequence,
novel algebraic geometric (NAG) methods are presented
to obtain the general closed-form inverse kinematics of
all types of three-joint subproblems in this paper. The
geometric and algebraic constraints are used as the
conditions precedent to solve the inverse kinematics of
three-joint subproblems. The NAG methods can solve
inverse kinematics of three-joint subproblems in an
arbitrary postural relationship.

The content of the paper is organized as follows.
Section 2 introduces some fundamental properties of the
POE formula and screw theory. The NAG methods for all
types of three-joint subproblems in arbitrary postural
relationship are described in detail in Section 3. In
Section 4, the inverse kinematics simulations of all three-
joint subproblems are implemented, and simulation and
the master—slave tracking experiment based on the
Huaque III minimally invasive surgical robot are carried
out to verify the effectiveness of proposed NAG methods.
The paper is concluded in the final section.

2 Preliminary knowledge
2.1 Mathematical description of the POE formula

The POE formula of the kinematics of a 3-DOF serial
robot has the following form:
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where &, (i = 1,2,3) represents the twist coordinate of the
ith joint axis, 6; (i =1,2,3) represents the generalized

angle of the ith joint, & =

] represents the revolute
rxw

joint twist, & = [ i}“ ] represents the prismatic joint twist,

o represents the unit directional vector of the revolute
joint axis, r is the position vector of the reference point »
of the revolute joint axis, v represents the unit directional
vector of the translational joint axis, gi (i=1,2,3)
represents the instantaneous joint twist of the ith joint
axis, and § and p represent the homogeneous coordinate
of points ¢ and p, respectively. In addition, e represents
the rigid motion. For the revolute and translational joints,
e’ is expressed respectively as

&0 _

e’ =
L.; v _
[01x3 1 }’ ©=0,
e (I —e”) (0 X (rxw))+0wo’ (rxw)
[01x3 1 ;0 #0,
2)

where & represents the skew-symmetric matrices of . e’
is a rotation matrix and is equivalent to the rotation
matrix R € SO(3) according to Euler’s theorem. e® can
be expressed via Rodrigues’ formula as

e = I+ @sinf+ &’ (1 —cosh).

A3)
2.2 Mathematical description of the POE formula

The Paden—Kahan subproblem 1 is § = ¢#p and can be
transformed as

g=e¢"(p-r)+r, C
where ¢ and p represent the position vectors of points ¢
and p, respectively. Substituting Rodrigues’ formula for
e® into the above equation yields

xsinf+ycosf+z =0,

(5)
y= - (p—r)eR¥™, and

2=& (p—r)+p—qeR>. Since x"y =0 and x"x = y"y,
T yTZ

0 can be solved by sinf = _rz and cosf = ——,
xTx yTy

where x=a(p-r)eR>,

respectively.

The distance preservation principle is applied to the
solution of subproblems with a revolute joint, which is
often accompanied by squaring both sides of the
equation. For instance, there is a distance J between two
vectors s and ¢ as J = ||s — ¢||. Squaring both sides yields
IsII® + ||¢]]” +2¢"s = &~

3 NAG method for arbitrary three-joint
subproblems

Three-joint subproblems are extensions of several base
subproblems, with R for revolute joint and T for
translational joint. In total, there are many types of three-
joint subproblems, namely, RRR, RRT, RTR, TRR, RTT,
TRT, TTR, and TTT. Equation (1) is transformed as
follows
p=ettebtgliog (6)

Combining Egs. (1) and (6) easily derives the
equivalence of RRT and RTT to TRR and TTR [21].
Hence, the general closed-form solutions of RRR, RRT,
RTR, TRR, TRT, and TTT types of three-joint subprob-
lems are derived, and the special postures of those three-
joint subproblems are discussed in this paper.
3.1 NAG method realization for the RRR subproblem
For the RRR three-joint subproblem, point p is rotated
around &, &,, and £, respectively by 6;, 6,, and 6, to point
g. Point p rotates around &, at 6; to point ¢ and point ¢
rotates around &, at —6, to point &, as shown in Fig. 1. The
vectors ¢, d, p, p1, P2, p3, and ¢ represent the position
vectors of points ¢, d, p, p1, p2, p3, and g, respectively.
The representations below are consistent with the
definition here. This means that ¢ = e®% (p— p,) + p, and
d=¢%(q—p,)+p,, where points p; and p3 are located
on the £, and &,, respectively. Clearly, points ¢ and d are
located on the circle C; normal to &,. The twist &, passes
through point p,. According to the geometric and
algebraic constraints, this is easily accessible as

o) (c—d)=0, 7

le=po[| = |l .|| ®)

By substituting the expressions for points ¢ and d into

Egs. (7) and (8) and squaring both sides of Eq. (8), e™®*

and e®% are replaced by their Rodrigues’ formulas. The
above two equations are transformed as follows:

X, sinf, +y,cos6, + x,8inf; + y,cosf;+z, =0, (9)
X38in6,; +y;cos b, + x,8in6; + y,cosb; +z, = 0, (10)
where  x, =-0,0,(q-p,), »= —a)gc?)f (g-p) x=

0103 (p=p,). 2= 00, (p-py), 21 = 0)[Bi(g-p)-
@3(17_P3)+Q_P], X3 :_2(p|_P2) @, (q_p])= 3=
“2p = p.) ®,(4-p), X =-2p;=p.) & (P py), ¥ =
2p,-p) @y (p-p,), and z=|q-p +|p. - -
le-2. - lps - poll + 20— ) (1+8}) (g p)) - 2(ps - p)'
(1+8)(p-py).

For the revolute joints, @]@, = @)@, = 0,,; holds if €, is
parallel to &,. The RRR three-joint subproblems for
special configurations are explained and illustrated
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Fig. 1 General form of the RRR three-joint subproblem.

considering the property of parallel joint axes.

Category 1: &, ff & when &, || €.
This category indicates wld; =0,; and wl®, # 0,,s.

Then Eq. (9) is transformed to
x;sinf, +y,cosf, +z, =0.

(11)

6, can be solved by combining the above equation and

the trigonometric relationship. If x, #0, then 6, =
arcsin ————— — arctan &; if y,#0, then 6, =
VX o
—Z X
arccos ——— + arctan —.

X+ i
The value of 6, is substituted into Eq. (10), and
similarly, 85 can be solved. 8, can be solved by combining
the value of 6, the value of 6, and Eq. (4).
Category 2: €, it &, when &, || €,.
This category indicates w)®, =0,.; and @)®; # 0,...
Then Eq. (9) is transformed to

X, 8inf; +y,cos6; +z, = 0. (12)

Likewise, 6; can be solved by combining the above
equation and the trigonometric relationship, and 6, can be
solved by substituting the value of 6; into Eq. (10). 8, can
be solved by combining the value of 6,, the value of 6;,
and Eq. (4).

Category 3: &, | £, when &, [| £,

This category indicates that w,®, =0,,; and
wld; =0,,,. Points ¢, d, p1, p2, and p; are located on one
plane. The plane passes through points p and ¢ and is
perpendicular to the twist &,. Therefore, the identity of
Eq. (7) is always established. For Eq. (8), there are two
cases here, namely, the unique solution or an infinite
number of solutions. The case of the unique solution is
shown in Fig.2. Let l,=|p,—p.|} bs=|p:—p.|
o= ||q—p1“, 03 = ||p—p3“. l1» represents the distance
between points p; and p,, b3 represents the distance
between points p, and p3, §; represents the distance
between points ¢ and p;, and §3 represents the distance
between points p and p3. Assuming [, > [, the following
equation is satisfied when there is a unique solution;
otherwise, there is an infinite number of solutions:

112_51 =lz3 +53. (13)

The locations of the transition points are

d=p,+(p,—p)o/li, and ¢ = p,+(p;—p,) (L3 +63)/ s.
0., 8, and 6, are solved by Eq. (4).
Conversely, if [}, < I3, then [}, + 0, = l,; — 05 is satisfied

when there is a unique solution.

Category 4: &, f €, when &, I &.

There are two cases in this category: Two adjacent axes
are non-intersecting or two adjacent axes are intersected.
For the case where two adjacent axes do not intersect,
x1y; — x3y, # 0 and x,y, — x,y, # 0 hold at least one. Thus,
Egs. (9) and (10) can be written in the case of x;y;—
x3y #0 as

{Siﬂ@l=alsin93+b100803+cl, (14)

cosl, = a,sinb; + b, cosO; + ¢,,

X4Y1 = X2)3 YiYa—Y2)3 Y122 = Y321
where a, = , b= , € = ,
ox xx}c)@—xayl X5y §1§3—x3)’1 ))%1%3—%3%’1

2X3 — X1 Xy 3Y2 — X1 Y4 321 — X122
aQ=——— b,=——— and ¢, = ——.
X1Y3 — X3 X1Y3 — X3)1 X1Y3 — X3

Substituting Eq. (14) into sin°6, + cos’d, = 1 is written as

(al Sin93 + bl COSH; + C1)2 + (az Sin@; + b2 COSH:; + C2)2 =1.
(15)
Let t=tan6;/2, then sinf; =2¢/(1+#) and cos6; =
(1=7)/(1+7). These are substituted into Eq. (15) as

myt* +mot +mat® +myt+ms =0, (16)
where m, = (b, —¢,))’ +(b,— )’ =1, m, =4[a,(c, —b)+
a(c, = b)), my=2Q2a*+2a:-b-bi+ci+c2i-1), my=
41a, (b +c)) +a, (b, + )], and ms = (b +¢;)*+
(b, +c,)"—1. For the quartic equation of Eq. (16), the
solution of ¢ is easily obtained by adopting Ferrari’s
method. The value of 0, can be solved as

6; = 2arctant. 17
The value of 8; is substituted into Eq. (14) to solve 6,.
Similarly, 6, can be solved by combining the value of 6,,
the value of 6, and Eq. (4).
The schematic for the case where two adjacent axes
intersect is shown in Fig. 3. The twists &, and €, intersect

at one point. Points ¢ and d are located on one plane that

v%

Fig.2 Form of the unique solution under triaxial parallelism.

Fig.3 General form of the two adjacent axes of the RRR
three-joint subproblem.
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is perpendicular to the twist &,. The geometric constraint
is the same as Eq. (7), and algebraic constraint in Fig. 3 is

le=p[ = [la=p.|| (1)

By substituting the expression for point ¢ into Eq. (18)

and squaring both sides of Eq. (18), €% is replaced by

Rodrigues’ formula. The above equation is transformed
as follows:

a, Sin93 +b100803+C1 :0, (19)

where  a, =2(p, _Pz)T‘?h (p-py), b =-2p, _Pz)Té\)i

2 2 2
(p-p). and e =|p-pi| +|pi-p.| ~llg-p.[ +
2ps ) (I+33) (- p).

6, can be solved by combining the above equation and
the trigonometric relationship, and 6, can be solved by
substituting the value of 6; into Eq. (9). 6, can be solved
by combining the value of 6, the value of 6;, and Eq. (4).

3.2 NAG method realization for the RRT subproblem

For the RRT three-joint subproblem, it is assumed that
point p moves along &, by 6, to point ¢ and point g rotates
around &, at —6, to point d, as shown in Fig. 4. This
means that ¢ = 6;v;+p and d = e®% (q—p,) + p,, where
p11s located on the &,. It is obvious that points ¢ and d are
located on the circle C; normal to €,. The twist €, passes
through point p,. This is easily accessible according to the
geometric and algebraic constraints as

ol (d-c)=0, (20)

le=po[| = lld=p.]| 1)

By substituting the expressions for points ¢ and d into

Egs. (20) and (21), respectively, and squaring both sides

of Eq. (21), e is replaced by Rodrigues’ formula. The
above two equations are transformed as follows:

x;sinf, +y,cos6, + 1,05 +z, =0, (22)

X>8in 6, +y,c086; + 1,0;° + 1305 +2, = 0, (23)
where x, = -@}®,(g—p,), yi=-0]d,(q-p), A=
z=ol|é(g-p)+q-p} x=-2p -p) &

y: = =2(p, _Pz)T"‘\’T (g-p) A=-1, A=

T
_w2 V3,

(g-p):

~2(p-p,)'vs, m=|lg-p |+l -2l ~|lp-p.| +
2p,-p)' (I+a7)(q-p).

For the revolute joints, @@, = @@, = 0,,; holds if €, is
parallel to &,. For arbitrary two axes, o] @, = 0 holds if £,
is perpendicular to &,. The RRT subproblems for special
configurations are explained and illustrated considering
the characteristics of parallel and vertical joint axes.

Category 1: &, || €, when &, L €.

This category indicates )@, =0,,; and wjv;=0.
Points ¢, d, p, and p; are located on one plane. The plane
passes through points p and g and is perpendicular to the
twist &,. Therefore, the identity of Eq. (20) is always
established. For Eq. (23), there are two cases here: the
unique solution or an infinite number of solutions, as sho-
wn in Figs. 5(a) and 5(b), respectively. Let [}, = ||pl —p2||,
l, = “c—p2 , and ¢, = Hq—pl , where [, represents the
distance between the points p; and py, [ represents the
distance between the points ¢ and p;, and §; represents
the distance between the points ¢ and p;. Point ¢ is the
tangent point between the circle C; and twist &, and
l;,+0, =1, is satisfied when there is a unique solution.
This means that ¢ = p+v;v} (p,—p). For the case of a
unique solution, Eq. (23) should satisfy that 6; has a
unique solution as follows:

A5 =42, (x,8in b, +y,cos6, +2,) = 0. (24)

6, can be solved by combining the above equation and
the trigonometric relationship, and 6; can be solved by
substituting the value of 6, into Eq. (23).

Another solution to this problem is to obtain
0; = —A3/(24,) based on the fact that #; has a unique
solution. Then, 6, can be solved by substituting the value
of 6, into Eq. (23) and the trigonometric relationship. 6,

Fig. 5 Solution of RRT satisfying @, || @1 and @, L v3. (a) Unique solution of category 1, (b) infinite number of solutions of category 1.
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can be solved by combining the value of 6,, the value of
s, and Eq. (4).

The infinite number of solutions of 6; are depicted as
red line segments in Fig. 5(b), with the inverse solution of
0, at any point on the line segments.

Category 2: €, is not parallel to &, when &, L &..

This category indicates @@, # 0,,; and @;v; = 0. Then
Eq. (22) is transformed to

x,sinf, +y,cosf, +z, =0. (25)

6, can be solved by combining the above equation and
the trigonometric relationship. 6; can be solved by
substituting the value of 6, into Eq. (23) and the
trigonometric relationship. 6, can be solved by combining
the value of 6, the value of 6;, and Eq. (4).

Category 3: &, || €, when &, is not perpendicular to &,.

This category indicates w,@, = 0,,; and @, v; # 0. Then
6, can be solved by 6; = —z,/ A, according to Eq. (22). The
value of 6, is substituted into Eq. (23) to solve 6,. 6, can
be solved by combining the value of 6,, the value of 6,
and Eq. (4).

Category 4: €, }t €, when &, is not perpendicular to &,

This category indicates w,®, # 0,,; and w,v; #0. If
twists €, and &, intersect, the choices of points p; and p,
should not be the point where the twists intersect. 6; is
replaced with sin6, and cos, in Eq. (22) and substituted
into Eq. (23) as

a,sin’0, + a,cos’6, + a; sinh, cos b,
+ a,sinf, +ascosb, +as =0, (26)
where a, = 4,x3, a, =), a3 =2Lxy, a,=Lx+
20,x2, = L Asxy,  as = Ay, +24,y,z - LAy, and  ag =
A=A dszy+ Az, Let  t=tan6,/2, then 6, =
sin(20)/(1+#) and cos§, =(1-7)/(1 +#). Those are
substituted into Eq. (26) as

m1t4 + m2t3 + m3t2 + m4t+ ms = 0, (27)
where m, =a,—as+as,, m,=2a,—a;), m;=2Q2a,—
a,+ag), my=2(as+a,), and ms =a,+as+as. For the
quartic equation of Eq. (27), the solution ¢ is easily
obtained by adopting Ferrari’s method. The value of 6,

can be solved as

6, = 2arctant. (28)
The value of 6, is substituted into Eq. (22) to solve 6,.
Similarly, 6, can be solved by combining the value of 6,

the value of 6;, and Eq. (4).
3.3 NAG method realization for the RTR subproblem

For the RTR three-joint subproblem, it is assumed that
point p rotates around &, at €; to point ¢ and point ¢
moves along &, by 6, to point d, as shown in Fig. 6. This
means that ¢ = e (p— p,) + p, and d = ¢ + 6,v,, where p;
is located on the &,. Clearly, points d and ¢ are located on
the circle C; normal to &,. The twist &, passes through

Fig. 6 General form of the RTR three-joint subproblem.

point p;. This is easily accessible according to the
geometric and algebraic constraints as

o (d-q)=0, (29)

la=pill = fla—p| (30)

By substituting the expressions for points ¢ and d into

Egs. (29) and (30), respectively, and squaring both sides

of Eq. (30), e®* is replaced by Rodrigues’ formula. The
above two equations are transformed as follows:

X1 Sin93+y100893+/1192+21 =0, (31)
X, 8in6; +y,cos 6; + 1,6,” + 136,
+ .X:392 Sin63 +y392 00593 +z; = 0, (32)
where x, = 0[d; (p—py), y1 = —0]d;(p-p,), 1 =]y,

n=ol (& (p-p)+p-q), 0 =2p,—p) d:(p-p),
v2==2(ps=p) &, (p-p;). L=1, L=201[(I+&)) (p—py)+
(;=p)] % =22010;(p-ps), ¥ =-206;(p-p,), 22 =
lp—psIP+lps—p,IP-llg—p,IP+2(p,—p,)" I+@:) (p-p,).

For the revolute joints, @@, = @)@, = 0,,; holds if €, is
parallel to &,. For two arbitrary axes, @]@, = 0 holds if &,
is perpendicular to &,. The RTR three-joint subproblems
for special configurations are explained and illustrated
considering the characteristics of parallel and vertical
joint axes.

Category 1: €, || €; when &, L&,

This category indicates w;@, =0,,; and ev,=0.
Points ¢, d, p;, and p; are located on one plane, which
passes through points p and ¢ and is perpendicular to the
twist &,. Therefore, the identity of Eq. (29) is always
established. For Eq. (32), there are two cases here,
namely, the unique solution or an infinite number of
solutions, as shown in Figs. 7(a) and 7(b), respectively.
For the unique solution of special posture, both transition
points ¢ and d are tangent points, and both &, and &, are
on opposite sides of &,, as shown in Fig. 7(a). Let
or=lp—pill, 6s=Illg—p,l, and p,;=p, —p;, where 6
represents the distance between the points p and ps3, 3
represents the distance between the points ¢ and p;, and
P13 represents the difference between the vectors p; and
p3. When ||p; — v,y p;ll = 6, + 65 is satisfied, it means that
there is a unique solution; otherwise, there is an infinite
number of solutions. The position solutions of the two
tangent points ¢ and d have the most critical selections.
The solution for the position of point ¢ is used as an
example, as shown in Fig. 8.
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(b)

Fig. 7 Solution of RTR satisfying @ || @3 and @; L v;. (a) Unique solution of category 1, (b) infinite number of solutions of category 1.

Fig. 8 Solution for the position of point c.

As seen from Fig. 8, point ¢ is the tangent point of
circle C3 and twist &,. Let m= p,—p, the vector m
represents the difference between the vectors p; and p,
and the projection of the vector m on &, is v,vIm. Thus,
m’' =m—v,vm can be obtained. Since the tangent point
of a line and a circle may exist in two opposite directions,

’

the location of point ¢ is ¢ = p, +||m||- Similarly,

[l ||
the position of point d can be solved and then 6, can be
solved from 6, =|d—-c||/||v.]l. The wvalue of 6, is
substituted into Eq. (32) to solve 6;. 6, can be solved by
combining the value of 6,, the value of 6;, and Eq. (4).

The infinite number of solutions of 6, is depicted as the
red circular arc segments in Fig. 7(b), with the inverse
solution of #; at any point on the red circular arc
segments.

Category 2: €, Jt €, when €, L €,

This category indicates wlm, # 0,,; and @]v, = 0. Then
Eq. (31) is transformed to

X, sinf; +y,cosb; +z, =0. (33)
6, can be solved by combining the above equation and
the trigonometric relationship. 6, can be solved by
substituting the value of 6, into Eq. (32). 6, can be solved
by combining the value of 6,, the value of 6;, and Eq. (4).
Category 3: €, || €; when €, is not perpendicular to &,.
This category indicates wl®, = 0,,; and @]v, # 0. Then
0, can be obtained by 6, = —z,/A,. 6, can be solved by
substituting the value of 6, into Eq. (32) and the
trigonometric relationship. 6, can be solved by combining
the value of 6,, the value of 6;, and Eq. (4). If twists &,
and &, intersect, the choices of points p; and p3 should not
be the point where the twists intersect.
Category 4: €, }t €, when €, is not perpendicular to &,.
This category indicates @@, # 0,,; and @[v, #0. It is

easy to know that the relationship between &€, and £, in
Eq. (6) is equivalent to the relationship between &, and &,
in Eq. (1) for the RTR three-joint subproblem. Therefore,
it is likely that &, is not perpendicular to &, in this
category. If twists &, and &, intersect, the choices of
points p; and ps3 should not be the point where the twists
intersect. 6, is replaced with sin6; and cosé; in Eq. (31)
and substituted into Eq. (32) as

a,8in°6; + a,c08%6; + a; sinb; cos b,
+ a,sinf; +ascosf; +ag =0, (34)
where a; = L,x3 — ,x, X3, 4y = L,Y2 — 4y1ys, a3 = 2,x,y,—
X3y — A x1ys, Qg = /l%xz +2h,x12) — A3 X — A1 X3z, as =
Ay, + 20120 = 4 3y — A yszi, G = Aoz — A Aszy + Ajzs.
Likewise, let ¢=tan6;/2. Then sin6; =2t/(1+7) and
cos; = (1 —7*)/(1 +#*). Those are substituted into Eq. (34)

as

mt + ot +mstt +myt+ms =0, (35)
where m, =a,—as+as, m,=2(a,—as), my;=2Q2a,—a,+ag),
my =2(as+a,), ms=a,+as+as For the above quartic
equation, the solution ¢ is easily obtained by adopting
Ferrari’s method. The value of 6; can be solved as

6; = 2arctant. (36)
The value of 6; is substituted into Eq. (31) to solve 6,.
Similarly, 6, can be solved by combining the value of 6,,

the value of 6, and Eq. (4).
3.4 NAG method realization for the RTT subproblem

For the RTT three-joint subproblem, it is assumed that
point p moves along &, by 6; to point ¢ and point ¢ moves
along &, by 6, to point d, as shown in Fig. 9. This means
that ¢ = p+6;v; and d = ¢ + 6,v,. It is obvious that points
d and g are located on the circle C; normal to &,. The
twist &, passes through point p;. This is easily accessible
according to the geometric and algebraic constraints as

o (d-q)=0, 37)

la=pil| = fla—p| (38)

By substituting the expressions for points ¢ and d into

Egs. (37) and (38), respectively, and squaring both sides

of Eq. (38), the above two equations are transformed as
follows:
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Fig. 9 General form of the RTT three-joint subproblem.

X160, +y,6;+z =0, (39)

X:0," + 1,05 +a,60,6; + 4,0, + as05 +z, = 0, (40)
where x; = ovs, yi=0v;, z1=0](p-q), n=y,=1,
a, = 2v§;2, a, = 2(€—pl)Tv2, a;=2(p-p,)'vs, and z, =
lo=pill"~lla—pi"

For two arbitrary axes, w/®,=0 holds if & is
perpendicular to &,. The RTT three-joint subproblems for
special configurations are explained and illustrated
considering the characteristics of vertical joint axes.

Category 1: €, is not perpendicular to £, when &, L €,.

This category indicates w{v;#0 and wv, =0. 6; is
casily obtained through 6; = —z,/y,. The value of 6; is
substituted into Eq. (40) to solve 6,. The value of 6, can
be solved by combining the value of 6,, the value of 6,
and Eq. (4).

Category 2: €, is not perpendicular to &, when &, L €,.

This category indicates v, #0 and wv;=0. 6, is
easily obtained through 6, = —z,/x,. The value of 6, is
substituted into Eq. (40) to solve 6;. The value of 6, can
be solved by combining the value of 6,, the value of 65,
and Eq. (4).

Category 3: €, is not perpendicular to &, when &, is not
perpendicular to &,.

This category indicates @{v,#0 and ]v;#0.
Combining Egs. (39) and (40), 6, is used in place of 6, by
0, = —=(y165 +z))/ x, as

m10§+m203+m320, (41)

— 2 2 —
where  m; = )+ Xy —ai Xy, My =2X0,2) — a1 Xz —
ax,y, +azxi, and m; = x,20 — a,x,z, + Xiz,. If m; # 0, then

6 can be solved by 6; = (—mz + \m,? —4m1m3)/(2m1); if
m; =0, then Eq. (41) is degraded to m,0;+m; =0. The
value of 6; is substituted into Eq. (39) to solve 6,. The
value of 6, can be solved by combining the value of 6,
the value of 6;, and Eq. (4).

Category 4: €, L &, when &, L &,.

This category indicates w]v, = 0 and w[v; = 0. Points ¢,
d, p, and ¢ are located on one plane, which is
perpendicular to the twist &,. Therefore, the identity of
Eq. (37) is always established. It is not possible to solve
for the values of 6, and 6; by relying only on Eq. (40).
The form of an infinite number of solutions is shown in
Fig. 10. The arbitrary point on the red circle C; is the
solution of the inverse kinematics.

3.5 NAG method realization for the TRT subproblem

For the TRT three-joint subproblem, it is assumed that
point p moves along &, by 6; to point ¢ and point g moves
along &, by -0, to point d, as shown in Fig. 11. This
means that ¢ = p+6;v; and d = ¢ —6,v,. It is obvious that
points ¢ and d are located on the circle C; normal to &,.
The twist &, passes through point p,. This is easily
accessible according to the geometric and algebraic
constraints as

ol (c—d)=0, (42)

le=p.l[ = [l ]| (43)

By substituting the expressions for points ¢ and d into

Egs. (42) and (43), respectively, and squaring both sides

of Eq. (43), the above two equations are transformed as
follows:

x191+y193 +2z; :0, (44)

X0,° + 3,605 +a,0, + a,6; + 2, = 0, (45)
where x, = v,y =0, 21 =0, (p—q), x, =-1,y, =1,
a, = 2(q2—pz)Tv|, a=2(p-p,)'vs, and z=|p-p,| -
la=p.l["

For two arbitrary axes, w]w,=0 holds if & is
perpendicular to &,. The TRT three-joint subproblems for
special configurations are explained and illustrated
considering the characteristics of vertical joint axes.

Category 1: £, is not perpendicular to & when &, L €.

This category indicates w,v; #0 and w,v, =0. 6; is
easily obtained through 6; = —z,/y,. The value of 6; is
substituted into Eq. (45) to solve 6,. The value of 6, can
be solved by combining the value of 6,, the value of 6,
and Eq. (4).

Category 2: £, is not perpendicular to & when &, L &,.

This category indicates w,v, #0 and w,v;=0. 6, is

Fig. 10 Solution of RTT satisfying @; L v, and @; L vs.

Fig. 11 General form of the TRT three-joint subproblem.
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easily obtained through 6, = —z,/x,. The value of 6, is
substituted into Eq. (45) to solve ;. The value of 6, can
be solved by combining the value of 6,, the value of 6,

and Eq. (4).

Category 3: £, is not perpendicular to &€, when &, is not
perpendicular to &,.

This category indicates v, #0 and ,v;#0.

Combining Egs. (44) and (45), 6, is used in place of 6, by
0, = —(y165 +z))/ x, as

m1032 + m203 + m3 = O, (46)
where m, = X,y +X7y,, m, = 2x,y,z; —a, X1y, + a,x;, and
my = X,z; —a; x,z, + X;z,. If m; #0, then 6; can be solved

by 6; = (—mzi \/m§—4m]m3)/(2ml); on the contrary, if
m; =0, then Eq. (46) is degraded to m,0;+m; =0. The
value of 6; is substituted into Eq. (44) to solve 6,. The
value of 6, can be solved by combining the value of 6,,
the value of 6;, and Eq. (4).

Category 4: €, L & when &, L &,.

This category indicates w;v, = 0 and ]v; = 0. Points c,
d, p, and g are located on one plane, which is
perpendicular to the twist &,. Therefore, the identity of
Eq. (42) is always established. It is not possible to
identify the values of 6, and 6; by relying only on Eq.
(45). The form of the infinite number of solutions is
shown in Fig. 12. The arbitrary point on the red line
segments is the inverse kinematics solution of 6.

3.6 NAG method realization for the TTT subproblem

For the TRT three-joint subproblem, it is assumed that
point p moves along &, by 6; to point ¢, point ¢ moves
along &, by 6, to point d, and point d moves along &, by 6,
to point ¢, as shown in Fig. 13. Hence, it is easy to obtain

the relationship equation between points p and g as
q=p+91V1+92v2+03V3. (47)

Equation (47) can be converted into the matrix form as

Fig. 13 General form of the TTT three-joint subproblem.

Vo =0, (48)

where V = [vl 12 V3], 6= [91 0, 93]T, 0=4q-p,
and Q represents the difference between the vectors ¢ and
p. The precondition for Eq. (48) to have a unique solution
is that V is full-rank, that is, £, €,, and &, are linearly
independent of one another. The solution of 6 is
0 =V'Q. If two axes are parallel, then V is not full-rank
and there is an infinite number of solutions.

4 Results

To wvalidate the effectiveness and practicability of the
proposed NAG methods, the inverse kinematics simula-
tions of arbitrary three-joint subproblems were
implemented, and the simulation and master—slave
tracking experiment based on the Huaque III minimally
invasive surgical robot were carried out. Simulations
were executed in MATLAB R2016b. According to the
given joint motion ranges of each subproblem, 51 points
were uniformly sampled to calculate the positions of the
end-effector and then the NAG method was applied to
calculate the joint angle values. The symbol x represents
51 integers from 1 to 51. In the simulation diagrams of
joint inverse solutions, the symbol “0” represents the
sample points of each joint while the symbol “+”
represents the joint angles of the inverse solution. Note
that the joint direction vectors need to be standardized
before kinematic calculations can begin. There are several
sets of joint angles of inverse solutions in simulations
based on the NAG methods. The solutions that joint
angles are in the angle ranges and the end posture is
consistent with expected posture are screened. Then, the
joint angles of inverse solutions are output and compared
with sample points.

4.1 Simulations of arbitrary three-joint subproblems

4.1.1 Simulation of RRR subproblem

For the simulation of the RRR subproblem, category 4 is
taken as an example to verify effectiveness of the NAG
method. Three joints satisfy that €, is neither parallel to £,
nor parallel to €,. In this case, the three joint axes do not
intersect one another. The directions of the three joint

axes are o, =[0 0 1], @,=[0 1 177, and
w;=[2 1 O0]". The positions of the three reference
points are p,=[1 0 O], p,=[5 0 O], and

p,=[0 5 O0]". The position of initial point p is

p=[5 -10 -10]". The movement ranges of the three
.. . T Xn T Xxn

JOlntS4 are determined as 6, = 5 cos 75 6, = 3 cos 75 and
0; = gncos(g —n). The sample points and joint angles

of the inverse solution are shown in Fig. 14. Clearly, the
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joint angles of the inverse solution are coincident with the
sample points.

4.1.2  Simulation of the RRT subproblem

For the simulation of the RRT subproblem, category 4 is
taken as an example to verify the effectiveness of the
NAG method. Three joints satisfy that &, is neither
parallel to &, nor perpendicular to &,. The directions of the
three joint axes are o, =[1 0 1], @,=[0 1 17T,
and v;=[2 1 O0]". The positions of two reference
points are p,=[0 0 O]" and p,=[5 O O]". The
position of the initial point p is p=[5 —-10 —5]". The
movement ranges of the three joints are determined as

2
6, = gncos %’ 6, = gcos %, and 6; = 50008(% —n).

The sample points and joint angles of the inverse solution
are shown in Fig. 15. It is easy to know that the sample

1.5
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points and the joint angles of the inverse solution are
coincident.

4.1.3 Simulation of the RTR subproblem

For the simulation of the RTR subproblem, category 4 is
taken as an example to verify the effectiveness of the
NAG method. Three joints satisfy that &, is neither
parallel to &, nor perpendicular to &,. The directions of
three joint axes are @, =[1 0 117, v,=[0 1 17,
and w;=[2 1 O0]". The positions of two reference
points are p,=[0 0 O]" and p,=[0 5 O]". The
position of initial point p is p=[5 —-10 -5]". The
movement ranges of the three joints are determined as

2n X1 Xn T X7
6,=—cos—, 6,= SOCOS(g —n), and 6, = gcos—
The sample points and joint angles of the inverse solution

5 25 25°
are shown in Fig. 16. Clearly, the sample points and joint
angles of the inverse solution are coincident.

P

o g
W <)
Vany

(=]

Joint angle/rad

25 30

Sample points

Fig. 14 Sample points and joint angles of the inverse solution of RRR subproblem.
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g {10 =
) -2
= . =
=) 0F 0, )
3 6 {710 2
-0.5 - k]
-1.0 - 1-30
-L5 L L L 1 L L L L I P 50
5 10 15 20 25 30 35 40 45 50
Sample points
Fig. 15 Sample points and joint angles of the inverse solution of RRT subproblem.
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4.1.4 Simulation of the RTT subproblem

For the simulation of the RTT subproblem, category 3 is
taken as an example to verify the effectiveness of the
NAG method. Three joints satisfy that &, is neither
parallel to &, nor perpendicular to &;. The directions of the
three joint axes are w, =[1 0 117, v,=[0 1 17T,
and v;=[2 1 O0]". The position of reference points is
p,=[0 0 O0]" The position of the initial point p is
p=I[5 -10 —5]". The movement ranges of the three
joints are determined as 6, :? cos %, 6,=50 cos(% - n),
and 6; = 50cos % The sample points and joint angles of

the inverse solution are shown in Fig. 17. Apparently, the
joint angles of the inverse solution are coincident with the
sample points.

11

4.1.5 Simulation of the TRT subproblem

For the simulation of the TRT subproblem, category 3 is
taken as an example to verify the effectiveness of the
NAG method. Three joints satisfy that &, is not
perpendicular to &, when &, is not perpendicular to &..
The directions of three joint axes are v, =[1 0 1],
w,=[0 1 11", and v;=[2 1 O0]". The position of
reference points is p,=[5 O O]". The position of
initial point p is p=[5 -10 -5]'. The movement

ranges of the three joints are determined as
2
0, = 50005(% —n), 6, = gncos %, and 6, =50cos %

The sample points and joint angles of the inverse solution
are shown in Fig. 18. Obviously, the joint angles of the
inverse solution and the sample points remain coincident.

15F T T T T DR T T T T ] 50
g b
1.08 ®30
o 0sfh g
g 410 =
2 — 0 g
%D 0F — 6, 10 =
: — 0, g
g 4-10 2
= =
-0.5 3
-1.0 4 -30
-1.5 I I L 1 I ! I 1 1 -50
5 10 15 20 25 30 35 40 45 50
Sample points
Fig. 16 Sample points and joint angles of the inverse solution of RTR subproblem.
50 T T T T XD, T T T T 15
g D
30 11.0
g 105
E .
s 10 F — 0 K
8 — 6, 32
= . e
2 g} 10 g
£ =
g -10 - k)
S 1-0.5
30T 1-1.0
_50 1 1 1 1 P 1 1 1 1 715
5 10 15 20 25 30 35 40 45 50

Sample points

Fig. 17 Sample points and joint angles of the inverse solution of RTT subproblem.
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4.1.6 Simulation of the TTT subproblem

For the simulation of the TTT subproblem, three joints
are linearly independent of one another. The directions of
the three joint axesarev, =[1 0 1]%,v,=[0 1 1],
andv;=[2 1 O]". The position of the initial point p is
p=[5 -10 -5]". The movement ranges of the three

joints  are  determined as 6, =50cos (% - n),
6, = 25cos ;—:, and 6; = 50cos ;—TSE The sample points and

joint angles of the inverse solution are shown in Fig. 19.
Distinctly, the joint angles of the inverse solution are
coincident with the sample points.

4.2 Simulation of 6-DOF problem based on Huaque I1I
surgical robot

Huaque III minimally invasive surgical robot [30]

Front. Mech. Eng. 2022, 17(2): 25

includes two instrument manipulators and one endoscopy
manipulator. The instrument manipulator consists of
passive joints, active joints, and a surgical instrument, as
shown in Fig. 20. Passive joints are used to locate the
remote center of motion (RCM) at any point in space.
Active joints are used to achieve rotation and translational
motion around the RCM point. Surgical instrument
coordinates with active joints to adjust the position and
posture of the end-effector. Note that three joint axes of
instrument do not intersect at one point, that is, it does not
satisfy the Pieper criterion. Joints 7 and 8 are coaxial, and
joints 7 and 8 are prismatic and rotary joints, respectively.
Two joints can be exchanged on the premise that the
order of interchanging joints does not affect the end-
effector pose [31]. To conveniently solve the inverse
solution, joints 7 and 8 are swapped in turn. The screw
representation and reference coordinate points of each
joint axis are as follows:

50 T T T DS T T T n\l'l\: 1.5
6 b
30 41 1.0
g 40.5
£ ol
g e
= _ 3
Z —_— 91 0 tén
<
Z 10} s z
3 T s B
0r 1-10
—504 1 1 L 1 SMava> L L 1 1 ww: —1.5
5 10 15 20 25 30 35 40 45 50
Sample points
Fig. 18 Sample points and joint angles of the inverse solution of TRT subproblem.
50 T T T T I T T T T
30 .
4 D
=
£
g 10 | b
2
e
S0t — 0
g — 0
2
_30 - -
_50 1 1 1 1 P 1 1 L 1
5 10 15 20 25 30 35 40 45 50
Sample points

Fig. 19 Sample points and joint angles of the inverse solution of TTT subproblem.
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) »ld 5 »

Passive joints

Active joints Surgical instrument

R

LI
I Oy ___ D7 (Py)

Fig. 20 Structure diagram of the instrument manipulator of Huaque III surgical robot.

[ 0 0 CoS @y
w, = wg = 0 , Wy = W3 =Wy = 0 , W5 = 0
| O
0

1 —sina,

0 1
ws=wy=| -1 |, 0;= 0 |,wo=| 0|,
0 -1 0
(49)
[ 0 a, a, +a;
r, = 0 , Fr3 = 0 , Iy = 0 .
| d, d, d,
a, +as+dscosa,
Fs=Frg=r,=ry= 0 ,
dl_dSSina'4
a, +a; +d5COSG’4
r10: O (50)
d,—dssina, —ay

The forward kinematics solution of the Huaque III
surgical instrument end-effector is

10

2.0 =] [#&.0,

i=1

(5D

where g (0) and g (6) respectively represent the initial
transformation matrix and transformation matrix at
different joint angles of the tool frame. The passive joint
remains stationary during the operation, and Eq. (51) can
be transformed as

10

[l_[ e“’] .08, @ =] .

i=1 i=5

(52)

4 -1
, Let g, = l_[e‘f“" 2.0 g;'(0). Thus, the above

. i=1
formula is converted as

10 -1 7
gl(l—[ eg'e’J = l_[ew’.
i=5

i=8

(53)

Joints 5, 6, and 7 are all rotary joints, and their axes
converge at a point. The homogeneous coordinate vector
of the intersection point is multiplied on both sides of the
above equation by right, and according to the position
preservation principle, the equation can be obtained as

10 .
(]_[ef"*)gl‘ﬁs = b5 (54)

i=8
where p,=[rl 1] rs and p, represent the position
vector and homogeneous coordinate of the point ps. Let
G, = g;'Ps, then 6, 8,, and 6,, can be solved by the NAG
method for the RRT subproblem. Next, 6, 6, and 6, can
be solved by the NAG method for the RRR subproblem
by substituting the joint angles of 6;, 6,, and 6,, into
Eq. (53). The parameter values of the minimally invasive
surgical robot are d;, =1000 mm, a, =500 mm, a; =
500 mm, a, =n/4, ds =800 mm, and a, = 10 mm. The
angles of the passive joints are constant as 6, =200,
6, =m/9, 6; = —n/18, and 6, = —x/ 18. The motion ranges
of the joints are 6s€e[-n/,2,n/2], 6s€[-n/3,n/3]
0; € [-m, n], 6 €[100, 350] mm, 6y € (—n/2, n/2), and
6,0 € (—n/2, n/2). The motion curves of the other joints

are 65 = = sin = 2 —Esin—(x_zs)n -
( 525_)2 25 T3 25, T
. x— T T . XT
sin ——2—, Oy =4(x—-1) +100, 6, = 3 Sin sz and
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2n XT

910:?sin25

inverse solution are shown in Fig. 21. It is evident that the
joint angles of the inverse solution are coincident with the
sample points.

. The sample points and joint angles of the

4.3 Master—slave tracking experiment based on the
Huaque III surgical robot

The surgeon operates the master manipulator on the
master console to control the slave manipulator and
perform a series of surgical operations (Fig. 22). The two-
stage approximation and compensation method [5] has
relatively higher accuracy and faster compensation speed,
and thus the compensation method is chosen as a contrast
to the closed-form solution for the Huaque III surgical
robot. The master manipulator is moved in a random

curve trajectory, and the movement trajectory from the
slave manipulator is recorded based on two methods. The
trajectories of the master and instrument manipulators are
compared in the situation where the master manipulator
trajectories have been reduced to one-fourth and their
tracking errors are calculated, as shown in Figs. 23 and
24. In Figs. 23(a) and 23(b), the incremental ranges of the
slave manipulator trajectory are xe(—15,15) mm,
y € (-10, 30) mm, and z € (—10, 20) mm for the closed-
form solution, while the incremental ranges of the slave
manipulator trajectory are x € (—20, 30) mm, y € (—15, 5)
mm, and z € (—15, 20) mm for the compensation method.
The motion ranges of the two methods are close.
Additionally, the trajectories of the slave manipulator are
very close to those of the master manipulator. The end-
effector tracking errors of master and slave manipulators

Joint angle/rad

-2 1 1 | !

300

Joint translation/mm

I 1 | I !

1
5 10 15 20 25

30 35 40 45 50 100

Sample points

Fig. 21 Sample points and joint angles of the inverse solution for Huaque III surgical robot.

Fig. 22 Huaque III minimally invasive surgical robot.
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Fig. 23 Movement trajectories for two methods: (a) closed-form solution and (b) compensation solution.
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Fig. 24 End-effector tracking errors for two methods: (a) closed-form solution and (b) compensation solution.

are very small. The mean and maximum errors of the
master—slave tracking experiment are 0.1486 and
0.4777 mm, respectively, for the closed-form solution,
while the mean and maximum errors are 0.3188 and
0.6394 mm, respectively, for the compensation method.
The mean and maximum tracking errors of the closed-
form solution are 53.59% and 25.29% less than that of the
compensation method. The maximum tracking errors are
less than the absolute positioning accuracy of the robot at
1.4 mm, which meets the control accuracy requirements
of the master—slave tracking of the surgical robot.

5 Conclusions

In this paper, the NAG methods are presented, and on
their basis, the general closed-form inverse kinematics for
all types of three-joint subproblems are obtained. The
preconditions consisting of the geometric and algebraic
constraints are applied to solve the inverse kinematics of
three-joint subproblems. Special postures (parallel, perpen-
dicular, and intersect) of three-joint subproblems are also
discussed and illustrated. The inverse kinematics of
arbitrary three-joint subproblems in an arbitrary postural
relationship can be solved by the NAG methods. The
inverse kinematics simulations of all three-joint

subproblems are implemented, and the inverse solutions
are consistent with the given joint angles. Simulation
results validate the general closed-form inverse
kinematics. The simulation and master—slave tracking
experiment are carried out to verify the NAG methods of
the RRR and RRT subproblems based on the
experimental platform of the Huaque III minimally
invasive surgical robot. The simulation result shows that
the inverse solutions are consistent with six sets given
joint angles. The mean and maximum of the master—slave
tracking experiment for the closed-form solution are
0.1486 and 0.4777 mm, respectively, while the mean and
maximum of the master—slave tracking experiment for the
compensation method are 0.3188 and 0.6394 mm,
respectively. The mean and maximum tracking errors of
the closed-form solution are 53.59% and 25.29% less
than those of the compensation method. Clearly, the
closed-form solution is superior to the compensation
method. The general closed-form inverse kinematics are
validated according to the simulation and experiment
results. The arbitrary three-joint subproblems expand the
Paden—Kahan subproblems, and the proposed general
closed-form inverse kinematics can be combined and
widely applied in series, parallel, reconfigurable, and
other types of robots.
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Nomenclature

Abbreviations

D-H Denavit-Harbenterg

DOF Degree-of-freedom

NAG Novel algebraic geometric

POE Product of exponential

R, T revolute joint and translational joint, respectively
RCM Remote center of motion

Variables

¢, d,p,pi, p2, s, Position vectors of points ¢, d, p, p1, p2, p3, and ¢,
and ¢ respectively

£2.(0), g,(0)

ch
Li(4,j=1,2,3)

Acknowledgements

Initial transformation matrix and transformation
matrix at different joint angles of the tool frame,

respectively
Distance between points ¢ and p,

Distance between points p; and p;
Difference between the vectors p3 and p

Homogeneous coordinate of point ps

Homogeneous coordinate of points g and p,
respectively
Position vector of the reference point r of the

revolute joint axis
Position vector of point ps

Unit directional vector of the translational joint axis
Generalized angle of the ith joint

Distance between two vectors s and ¢, § = ||s — ||
Unit directional vector of the revolute joint axis
Skew-symmetric matrices of @

Joint twist

Twist coordinate of the ith joint axis

Instantaneous joint twist of the ith joint axis
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