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ABSTRACT Real-time dynamic adjustment of the tunnel bore machine (TBM) advance rate according to the rock-
machine interaction parameters is of great significance to the adaptability of TBM and its efficiency in construction. This
paper proposes a real-time predictive model of TBM advance rate using the temporal convolutional network (TCN),
based on TBM construction big data. The prediction model was built using an experimental database, containing 235
data sets, established from the construction data from the Jilin Water-Diversion Tunnel Project in China. The TBM
operating parameters, including total thrust, cutterhead rotation, cutterhead torque and penetration rate, are selected as the
input parameters of the model. The TCN model is found outperforming the recurrent neural network (RNN) and long
short-term memory (LSTM) model in predicting the TBM advance rate with much smaller values of mean absolute
percentage error than the latter two. The penetration rate and cutterhead torque of the current moment have significant
influence on the TBM advance rate of the next moment. On the contrary, the influence of the cutterhead rotation and
total thrust is moderate. The work provides a new concept of real-time prediction of the TBM performance for highly
efficient tunnel construction.

KEYWORDS hard rock tunnel, tunnel bore machine advance rate prediction, temporal convolutional networks, soft
computing, construction big data

1 Introduction can help the TBM operator optimize the tunnel constru-
ction schedule and thus improve construction efficiency

The tunnel bore machine (TBM) has become one of the when dealing with engineering-difficult geological

most advanced technologies for tunnel construction, due
to its advantageous characteristics of fast, safe, and
environment-friendly construction mode. It has been
widely promoted in the excavation of ground traffic
tunnels and the construction of water diversion tunnels
[1]. However, the TBM has poor adaptability to complex
geological conditions, which cause decision-making
errors in tunnels with engineering-difficult geological
conditions. It also degrades the construction efficiency
[2,3]. The prediction of the TBM performance parameters
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conditions [4]. The advance rate is one of the most
important TBM performance parameters that the TBM
operator optimizes to improve construction efficiency.

The advance rate however is difficult to estimate since
it is affected by many different factors. Fortunately, the
TBM advance rate can be predicted based on the data
collected over a large number of rock-machine interaction
parameters using the soft computing techniques. It has
been an advantage predictive model to many engineering
fields.

For example, the artificial neural network (ANN),
fuzzy logic [5] and adaptive neuro-fuzzy inference
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system [6] were applied to predict the compressive
strength of concrete. The general regression neural
network, and the extreme learning machine (ELM), were
integrated to predict the ground settlement induced by
tunnel excavation [7], and other geotechnical problems
[8]. The support vector machine (SVM) [9], the ELM
[10], particle swarm optimization (PSO)-neural network
[11], were also used to predict slope stability and
displacement [12]. The relevance vector machine
classifier, and the cuckoo search optimization, were
combined for spatial prediction of landslides [13]. The
ANNs and SVMs were also used to predict unconfined
compressive strength of soils stabilized [14]. It can be
seen that the application of soft computing methods in
engineering forecast of problems, is of a great
progression in solving practical engineering problems.
Different soft calculation methods have also been
developed and applied to predict TBM penetration rate or
advance rate.

The TBM advance rate is mainly affected by
parameters of penetration rate [15]. The models including
traditional or optimization regression analysis [16,17],
PSO [18], SVM, and its optimization [19,20], fuzzy logic
method [21], were used to predict penetration rate. The
linear multiple regression, and non-linear multiple
regression, were proposed to predict TBM penetration
rate and advance rate [22]. The Grey Wolf optimizer-
feature, weighted-multiple kernel-support vector regre-
ssion technique, was used to predict the penetration rate
[23]. The gene expression programming equation was
developed to predict the penetration rate [17,24,25]. The
risk matrix method was used to analyze the geotechnical
risk and predict the advance rate [26]. Additionally, a
variety of optimization algorithms have been used to
optimize the SVM to predict the advance rate [27].
However, the rock-machine interaction parameters may
have a certain correlation in-time series. The outputs of
traditional machine learning methods are only determined
by the current input without prior learning information,
thus they cannot be directly applied to the real-time
prediction of TBM operation parameters [28].

In addition, deep learning as a sub-field of machine
learning, has been widely used to predict penetration rate
and advance rate due to its mightier computing power.
For example, an ANN has been developed to predict
advance rate based on rock-machine interaction
parameters [29,30]. Two hybrid intelligent systems, the
PSO-ANN and the ICA-ANN, were established to predict
penetration rate, respectively [31]. Firefly algorithm
combined by ANN aimed to predict penetration rate of
TBM [32]. Several other optimized ANN combination
models were used to predict advance rate [33]. A variety
of optimized PSO-ELMs were also used to predict
advance rate [34]. The total thrust, cutterhead rotation,
and rock characteristics, were used as input parameters to
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realize the estimation of advance rate based on XG-Boost
and Bayesian optimization. It is verified that the machine
parameters have a more evident influence on the
prediction of advance rate [35]. However, due to the
structural limitations of traditional neural network, it has
poor memory for data with temporal attributes. At
present, the most widely used soft computing method for
processing data with time attributes, is the recurrent
neural network (RNN) [36] and long short-term memory
(LSTM) network proposed on the basis of RNN to
effectively resolve the problems of gradient disappea-
rance and gradient explosion [37]. The LSTM has been
applied to the prediction of TBM performance [38],
tunnel lithology [39] and pore-water pressure in front of a
TBM [40] based on construction big-data.

However, recent studies have shown that the temporal
convolutional network (TCN) can retain longer-term
memory than LSTM. It also has a simpler and more
precise frame structure design. The prediction problem of
long sequences is precisely compared with LSTM, and
the prediction accuracy is improved to a certain extent
[41]. In addition, the TBM rock-machine interaction
parameters have significant volatility and complex
change trends. Therefore, it is necessary to select a long
sequence of rock-machine interaction parameters as the
time sequence input length. TCN can have absolute
accuracy advantages in its prediction after training. In
response to the above, we propose to use TCN to
establish a TBM advance rate prediction model, and
compare it with the RNN and LSTM prediction models to
verify the prediction accuracy of TCN for TBM
parameters.

The structure of this paper is as follows. Section 2
introduces the principle and architecture of TCN. Section
3 introduces the engineering background and data
analysis that this research relies on and the construction
of the advance rate prediction model. Section 4
introduces the prediction results and discussion. Finally,
the corresponding conclusions are obtained.

2 Temporal convolutional network
principle and architecture

In the process of TBM excavation, interactive parameters
of the rock-machine are collected over time. From the
perspective of deep learning, the prediction of TBM
advance rate can be regarded as a time series prediction
problem. The powerful nonlinear mapping capability of
TCN can be used to learn complex relationships from the
vast original database.

It has the following two characteristics as a new
sequence analysis model. Firstly, causality between layers
of TCN is generated to reduce the occurrence of historical
information omission and future data omission. Secondly,
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the architecture of TCN model can be adjusted to any
depth and can be mapped to the corresponding output
according to the number of output channels. TCN mainly
relies on the structural design of causal convolution,
residual block, and dilated convolution, to improve the
predictive ability of the model.

2.1 Casual convolution

Causal convolution was first proposed in the WaveNet
network [42]. It is a convolution model used to deal with
sequence problems. The sequence problem can be
transformed into predicting the information at time ¢
based on the sample information before time .

Causal convolution has two characteristics. The first
characteristic is: The given input sequence is [X},....X7 |,
XpXpi1seXp,] only, according to the time before ¢
sequence [X,....X}. ] to predict Y, is utilised instead of
using the sequence [Xp ;,Xp,....] that has not started
learning. Accordingly, the predicted value at this time is
only related to the information at the previous time.
Secondly, the longer the historical information that needs
to be memorized, the more hidden layers, will be needed.

The causal convolution model is shown in Fig. 1. It can
be observed that the result of the causal convolution at a
certain point in the future will take into account the
information before that point in time. The advantage is
that it can be used to deal with prediction problems with
time series attributes. However, when the prediction
result requires long-term information, more layers of
convolutional layers are needed. This leads to the more
common problems in deep learning such as, complex
training, vanishing gradient, and poor fitting effects.
Therefore, the joint application of Dilated Convolution
and Residual block is required to solve the above

output
hidden layer

hidden layer
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problems.
2.2 Residual block

The conventional design idea of convolutional neural
networks, is the deeper the network design, the better the
effect. However, with the increase of the number of
hidden layers in the conventional network (as illustrated
in Fig. 1), the easier the phenomenon described in
Subsection 2.1, will occur. Therefore, the fundamental to
improve performance is how to solve the vanishing
gradient problem, on the basis of increased network
depth. In response to this phenomenon, the TCN model
uses a residual module, as is shown in Fig. 2.

The residual block is a network structure widely used to
solve the wvanishing gradient problem primarily by
making some information move onto the hidden layer.
The cross-layer output information, and the information
output by the hidden layer, in the normal convolution
condition, are arithmetic added to obtain the output result.
Establishing the identity mapping in the model enables
the structure of the entire model to converge in the
direction of the identity mapping. The final error rate will
not increase with the increase of the depth of the hidden
layer of model, as is described in Eq. (1) [41].

o = Activation(x + f(x)), )

where x represents the module information of the identity
mapping, and f{x) represents the information entered into
the current layer by the previous hidden layer.

2.3 Dilated convolution

The form of injecting holes into the standard hidden layer
to form spaced convolution is called, dilated convolution.
Dilated convolution can improve the structure of CNN,
obtain a larger receptive field, and reduce the omission of
information [43]. The hyper-parameter of CNN contains
the size of the convolution kernel. The expansion

=30 convolution in addition, contains a dilation parameter
used to indicate the size of the hole. Ordinary convolution
’ hidden layer receptive field is calculated according to Eq. (2) [44].
hidden layer __J P
o o input R, =R\ +|(Ni - 1>x]_[&}, @
L . J i=1
32
where R, represents the receptive field size of the kth
Fig.1 Causal convolution structure. layer, S; represents the stride of the ith layer, and N,
X identity mapping
input Welg}?t Fi(x) weight — ‘:/ F,(x) F,(x)+x output
X layer FYeg layer gt

Fig.2 Residual block structure.
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represents the size of the convolution kernel of the
current layer.

Dilated convolution can increase the size of the
receptive field without missing pooling layer information.
The structure of dilated convolution is manifested in
Fig. 3. It can be observed that the dilated convolution is
equivalent to inserting d holes into the convolution
kernel. The size of the convolution kernel of the dilated
convolution is then calculated by Eq. (3) [45].

Nia=d-1)X(Ne = 1)+ Ny, (3)

where N, , represents the Kernel Size after adding dilated
convolution. The receptive field of dilated convolution
has been greatly improved according to the equation. The
calculation of the output result calculated by Eq. (4).

¢, =W, ® Xy, (4)
k=0

where W, is the weighting matrix, and x., is the
information of current layer input to the next layer.

The input data of this article is a 4-dimensional feature
sequence X=[X.X;,...,X},] with a length of 32. The stride
(s) is set to 1. The size of the convolution kernel (R)) is
set to 2, and the dilated rate of the kth layer (d,) is set to
211t can be known that in the case without dilated
convolution, 30 hidden layers (as is shown in Fig. 1) are
required for the prediction result by taking the state of the
sequence into account at all times. Regardless, 7 hidden
layers are required with dilated convolution and two
residual blocks (as is shown in Fig. 3).

Figure 4 shows a general flow of the TCN. In Fig. 4, M,
represents the length of the input time sequence. 4,
represents the length of the output time sequence. N,

Xl\nlm Xl\nl\m Xl\ﬂ4 X/\ﬂ3 Y/\nz
N Xn-iom Xonm Krins KXrin-2 Y1 \/<J$
! It )
M A

time-slider
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represents the number of M in a single tunneling cycle. S
represents the number of tunneling cycles, and 7,
represents the dimension of the input feature. K,
represents the number of convolution kernels. The overall
design framework of the model is demonstrated in Fig. 5.
Firstly, we select the features and prediction parameters,
and then divide the selected loop into training set,
validation set, and test set. The training set is passed
forward through the TCN layer and the full connection
layer, and then the parameter weightings are back-
propagated to update. The validation set is then used for
evaluation until the model reaches the optimal effect
within the selected range of hyper-parameters, and the
training is stopped. Finally, the test set is used for testing.

3 Tunnel bore machine data analysis and
model construction

3.1 Project background

In this paper, a granite cross section of the Yinsong water
diversion project in Jilin province, is taken as the research
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Fig.3 One-dimensional dilated temporal convolution with two
blocks.
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object. A prediction model of advance rate based on TCN
is established. The total length of the diversion tunnel
project is 263.02 km. There are four sections using a total
of 3 TBMs in construction. The length of the four
sections is 19.7 km in total. The construction length of the
TBM reaches 17.5 km. The tunnel excavation diameter is
7930 mm. The buried depth of the tunnel is 85 to 260 m.
The TBM is equipped with 56 hobs. The maximum
advance rate is 120 mm/min. The driving power is 3500
kW. The rated propulsion is 23260 kN, and the effective
tunneling days is 728 d. The TBM information collection
frequency is 1 Hz, and the total data volume reaches 4.08
billion rows with 199 parameters (such as advance rate,
penetration rate, etc.). The data set used in this study
adopts the pile ranging from k52+960 to k53+535.

3.2 Data analysis and preprocessing

The data is composed of multiple cycles. Each cycle can
be divided into four periods over time, by visualizing the
established TBM rock-machine interaction parameter
database, as shown in Fig. 6. The cutterhead rotates but
the TBM does not have any displacement when the TBM
is in the initial period. Further analysis shows that the
cutterhead has a forward displacement, but only over-
comes the friction force generated on the surface of the
tunnel wall, and the cutterhead does not generate thrust.
The remaining two periods are the increase period, where
most of the parameters are in a sharp increase period and

the stable period, where most of the parameters are
floating in a small range.

From the above analysis, the increase and stable period
occupy most of the time of the cycle. It can be also
known that TBM does not touch the tunnel face in empty-
void period. It is meaningless to predict the advance rate
of empty-void period. Therefore, this study establishes
the prediction model for the TBM advance rate in the
increase period and the stable period. The research has
intercepted 800-second continuous time series samples
from each cycle. Each sample includes an increase period
and a stable period as a typical cycle with sufficient time
series length to train the model. The change trend of some
parameters in a typical tunneling cycle is demonstrated in
Fig. 7.

Pearson correlation coefficient, is widely used to
measure the degree of correlation between two variables.
The value range is between —1 and 1, and is calculated by
Eq. (5). In this study, the correlation degree of the
research parameters is divided into 4 levels. |R| < 0.4 is a
weak correlation. 0.4 <|R| < 0.6 is a moderate correlation.
0.6 < |R| < 1.0 is a strong correlation. R = 1 is a perfect
positive correlation. R = —1 is a perfect negative correla-
tion. The correlation between the two variables can only
be caused by accidental factors, so we have to judge the
significance level of the correlation between the two
variables. It indicates that there is a significant linear
correlation between the two variables, when p < 0.05.
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The correlation analysis between the characteristic
parameter in the first seconds and the current moment is
carried out, and the result is displayed in Fig. 5. The
Pearson correlation coefficients of penetration, and
cutterhead torque, are 0.9 and 0.78 respectively, and the
correlation is strong. The Pearson correlation coefficient
values of cutter head speed, and total propulsion, are 0.47
and 0.54, respectively, and the correlations are both
moderate. The significance level p-values are all 0.
Therefore, there must be a significant linear relationship
between the selected feature parameters and the predic-
tion parameters, and it can be seen from Fig. 5 that there
is also a nonlinear relationship.

It can be seen from Fig. 8 that the unit dimensions

between different rock-machine interaction parameters of
TBM are different. The numerical range between the
parameters is very large. It is unreasonable to directly
input heterogeneous data with a large difference in
numerical range with different features into the neural
network without processing. Larger gradient updates may
occur, which can cause the model to fail to reach a state
of convergence. The sample features should have the
characteristics of homogeneity to make it easier for the
training of the model to achieve satisfactory test results.
Most of the values are needed in the range of 0 to 1, and
the values of all features should be in the same range
before input to the network model.

The normalization of the data is carried out. The data
range of different interaction parameters of TBM that
differed greatly is eliminated. The influence of sharp
numerical changes under the same dimensions is
eliminated. The effects of drastic numerical changes at
the same scale are resolved. The interaction parameters of
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TBM machines with different dimensions can be
compared and weighted. Standard score normalization is
used to scale the 4 rock-machine interaction parameters,
and the parameter mean is 0 and the variance is 1, which
is achieved by Eq. (6) [46]:
x=2"# 6)
o
where x is the initial input data, x' is the normalized input
data, pand o are the mean and standard deviation of the
original data, respectively.

3.3 Construction of advance rate prediction model

In this study, all datasets are divided into a training set,
and a test set. The training set and validation set of the
training model, used randomly selected data from 80% of
188 cycles of data. The validation set used 40 cycles of
the data and test set of the model used 20% of 47 cycles
of data. The TCN based on Keras framework is used to
develop the TBM advance rate prediction model. The
prediction model is mainly composed of TCN layer,
ReLU layer, and output layer. The frequency of
information collection of TBM is 1 Hz. The TBM data is
changeable. This research uses the time sequence length
in the 32 seconds to scroll to predict the parameters of the
next second to enable the model to learn enough
deformation trends with appropriate calculation. There-
fore, the time sliding window is set to 32. After multiple
trainings, it can be seen that TCN selects 125 convolution
kernels with a size of 2 to have better results. Therefore,
the values of parameters such as M, A, N, S, T, and K are
32, 1,768, 235, 4, and 125 in Fig. 4, respectively.

The activation function of the hidden layer uses the
ReLU activation function calculated according to Eq. (7)
[47].

ReLU(x) = max(0, x). @)

In addition, although we have done normalization in the
initial period of data input, it is likely to change the data
distribution after the input data undergoes non-linear
processing. Inclusively, the multi-layer operation of the
network, the data is being distributed more and more
widely. Therefore, Batch normalization [48] is added
between the TCN and ReLU layers, to speed up the
training and improve the generalization ability of the
network. The principle is demonstrated as follow. y, o
functions of x, analogous to responses; v, 8: parameters to
be learned, analogous to weightings.

Input: Values of x over a mini-batch: B = {x,,x,,....x,,};
Parameters to be learned: vy, §.

Fori=1 to m, do:

.. 1
1) calculate the mini-batch mean: u, « —Z Xi;
m=

.. . l w
2) calculate mini-batch variance: o3’ —— Z (i — g Vs
m

i=1

Xi—Hp
X V O'BZ + O .
4) scale transformtion and scale shift: y; « yx; + f=
BN% ﬁ(x,‘);
5) return the learned parameter y and S.
Output: {y; = BN, 4(x,)}.
In addition, the mean square error is selected as the loss
function of the model, as is calculated in Eq. (8).

3) normalize: X; «
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M=

_ l(xi_yi)

L(X,Y) = ’T’
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where x; is the target value, and y; is the predicted value.

Adam optimization algorithm [49] is used to update the
weighting, which can effectively calculate and accelerate
the training process. The hyper-parameter search
adjustment is realized by the hyperband algorithm [50]. It
is verified that if Learning rate and Learning rate decay of
Adam optimizer are set to 9x10™ and 0.3 respectively,
the model fits, will be better. Early stopping is used to
reduce the over-fitting of the model and improve the
generalization [51] according to the performance of the
verification set and the dropout regularization method
[52]. The main hyper-parameters of TCN, RNN, LSTM
model and their values are shown in Table 1.

4 Results and discussion

4.1 Prediction by TCN-based model

The mean absolute error (MAE), root mean square error
(RMSE), and mean absolute percentage error (MAPE),
given in Eq. (9), are used to evaluate the deviation
between the predicted values and the measured value.
The coefficient of determination R is used to indicate the
fitting effect of the model. Thereby, the predictive
performance and generalization of TCN-based model are
expressed.

IR
MAE = = 3" Iy~

i=1

N
D=3
i=1

N bl

100% < [y —,
MAPE = A)Zb’z yll’
N vy Yi

Z O _yi)2

21
o=l Z(y,-—yf’

RMSE =
)

where §; is the predicted value, y, is the measured value, y
is the sample average, and N is the number of samples.
RMSE focuses on the overall data set deviation. Since the
actual measured value of the advancing speed in this
study contains zero values, MAPE cannot be used directly
as a metric in this study. The zero value is eliminated and
then the comparative evaluations of different models are
carried out. The higher the value of R” is, the closer the
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predicted value of the model will be to the measured
value.

Figure 9 shows the prediction accuracy of advance rate
by TCN. As shown in Fig. 9, the trend of the predicted
value is basically the same as the measured value of the
advance rate. Figure 9 also shows the absolute error
between the predicted value and the measured value of
the advance rate.

The error variation range is wide due to the large error
of individual timing points, but the overall error variation
range is mainly between 0 to 4 mm/min. Large errors
generally occur when advance rate mutations occur. The
deviation range between the predicted and the measured
value during the stable period, especially in the later
period, is relatively small. This may be due to the fact
that the historical information available to the model
gradually increases as the rolling input timing increases,
in each cycle during model training. At the same time, as
shown in Fig. 5, the contact time between the cutterhead
and the tunnel face increases during the increase period of
the advance rate. In this phase, the values of the machine
parameters change significantly, which makes the
prediction more complicated.

The RMSE, MAE, MAPE, and R* are used to evaluate
the performance of the TCN real-time prediction models
for advance rate and the results are given in Table 2. The

Table 1 Hyper-parameters of the advance rate prediction model

hyper-parameter candidate value TCN  RNN LSTM
value  value value
Macurons [25, 125, 225, 325, 425] 125 325 325
k> 12,3, 4] 2 - -
A [[1,2,4,8]; [1,2,4, - -
[1,2,4,8,16]; 8, 16]
[1,2,4,8,16,24]]
d
Pstacks ) [1, 2] 2 - -
Mropout [0.2,0.3,0.4,0.5] 0.3 0.3 0.3
learning rate [0.003, 0.001, 0.0009,  0.0009 0.001  0.0003
0.0003, 0.0001]
Notes: a) 71,,0ns: NUMber of filters used in the TCN, number of nodes used

in the RNN; b) k: size of the kernel used in each convolutional layer; c) d:
dilated convolutions; d) ng,: number of stacks of residual blocks to use;
©) Nyropou: Probability of each filter being removed.
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Fig. 9 Comparison of measured value and TCN predicted
value of advance rate.
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results on the test data set are, respectively, 4.3403
mm/min, 3.3349 mm/min, 6.182%, and 0.7213 for the
RMSE, MAE, MAPE, and R*. The RMSE and MAE have
the same dimension as the propulsion speed, and the
average value of the advance rate, is usually in the range
of 30 to 100 mm/min. Therefore, the values of the RMSE
and the MAE of this model are within the acceptable
range. Since the MAPE is less than 10%, the MAPE is
also within the acceptable range. From the evaluation
result of the test set RZ, it can be seen that there is no
under-fitting or over-fitting, which indicates the model
fits well.

4.2 Comparison and analysis of temporal convolutional
network-based and recurrent neural network-based models

In this study, the prediction effect of TCN on TBM
advance rate is verified by the comparison with the
prediction of RNN and LSTM. The database is divided
four times in the same proportion (according to
Subsection 3.3) for training and testing separately, to
verify the prediction accuracy of the model on different
training sets, and test sets. R* is used to evaluate the
performance of the TCN, LSTM and RNN real-time
prediction models for advance rate and the results are
given in Table 3. As shown in Table 3, TCN model out-
performs LSTM and RNN model in predicting TBM
advance rate in all datasets, indicating that TCN has
higher accuracy in predicting TBM advance rate in this
database. However, different datasets have different
precision performance, and the performance of the three
prediction models in dataset 3 is better than that of other
datasets. The representation of each model in dataset 3 is
expanded to analyze the data representation of each
model more deeply.

The fitting of the predicted and measured values of the
advance rate of the three models on the same randomly
selected test set, is visualized by Figs. 9 and 10. It can be

Table 2 Performance of TCN-based model on different data sets

evaluation index training & validation set  training set  test set

RMSE (mm/min) 4.0894 4.0393 4.3403
MAE (mm/min) 3.1582 3.1282 3.3349
MAPE 5.612% 5.556% 6.182%
R 0.6910 0.6891 0.7213
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observed from Figs. 9 and 10 that the predicted trends of
the three models in the stable period of the advance rate
are in good agreement with the change trends of the
measured values.

The prediction of the three models has a large deviation
when the mutation value of the advance rate is high. That
may be because after the model reaches a certain
mapping range, the range of some mutation values is
excessive, resulting in low prediction accuracy. In
addition, there is a buffer period in about ten seconds at
the beginning of the increase period, and the predictive
ability of TCN at this period is significantly better than
that of RNN and LSTM. However, the overall predictions
of the three models all have high prediction accuracy.

Figure 11 demonstrates the absolute error distribution
between the predicted and measured advance rate of the
three prediction models. To better compare the prediction
errors of each model, the periodic moving average error
line is adopted in Fig. 11. According to the periodic
moving average error in Fig. 11, it can be clearly
observed that the absolute error generated by RNN is the
largest in the whole cycle. The absolute error generated
by TCN is the smallest in most positions. It is clearer that
TCN has better performance for the prediction of advance
rate.

The initial stage of the increase period and the stable
period are visualized to compare advance rate measured
and predicted value of TCN, LSTM, and RNN in more
detail respectively, as is shown in Fig. 12. It is found that
the forecasting trends of TCN, RNN and LSTM on
advance rate are basically the same. The research finds
that, the individual position shows a trend that is contrary
to the change by comparing predicted values with
measured values, which may be related to the auto-
correlation of the advance rate. However, the overall
agreement is good, and the predicted value based on the
TCN prediction model tends to change the curve of the
measured value, especially in the early stage of the
increase period.

The prediction accuracy of TCN, RNN, and LSTM, on
the same training set and test data set, is compared
through performance evaluation indicators to further
prove the prediction performance of the advance rate
prediction model proposed in this study. The results are
illustrated in Table 4. The TCN, LSTM, and RNN,
developed in this research all showed good generalization

Table 3 Models prediction results of advance rate on different datasets based on R

model

dataset 1 dataset 2 dataset 3 dataset 4 average
TRY TS TR TS TR TS TR TS TR TS
TCN 0.653 0.673 0.681 0.710 0.689 0.721 0.658 0.689 0.670 0.698
LSTM 0.628 0.605 0.711 0.706 0.663 0.712 0.650 0.669 0.653 0.673
RNN 0.617 0.596 0.602 0.586 0.637 0.693 0.626 0.617 0.621 0.623

Notes: a) TS: testing; b) TR: training.
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on the test set, and no over-fitting occurred. In the
training set and the test set, the prediction accuracy of
LSTM is improved more than that of RNN in all aspects,
by comparing the three evaluation indexes of RMSE,
MAE, and R*. This is related to the memory processing
ability of the RNN for the sequence samples. LSTM is an
improved recurrent neural network based on RNN. For
samples with longer time series, the memory ability has
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been improved by controlling various gating structures,
and has a good performance.

It is obvious that the performance of the RNN is
superior by comparing the MAPE of the two models. This
may be because the prediction performance of the RNN is
better than that of the LSTM when the actual measured
value of the advance rate is small. Under all the
evaluation criteria, the predictive ability of the TCN
predictive model is better than that of the other two
models. The coefficient of determination R” is the largest
with 0.7213, and the model fitting is the best. Especially
compared with RNN, the effect is improved more
obviously. The TCN time series convolutional network is
suitable for predicting TBM advance rate to a certain
extent.

The number of optimal cycles of the three models in the
test set (47 cycles) is counted under each indicator to
prove the generality of the performance of the TCN
model. This operation is performed for all four evaluation
indicators. According to Fig. 13, the TCN RMSE, MAE
minimum cycle number, and R* maximum cycle number
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Fig. 12 Partial comparison between the measured and the predicted value of advance rate: (a) early period and (b) stable period.

Table 4 Comparison of performance evaluation indexes of prediction models

model RMSE (mm/min) MAE (mm/min) MAPE R

TR TS TR TS TR TS TR TS
TCN 4.0393 43403 3.1282 33349 5.556% 6.182% 0.6891 0.7213
LSTM 42042 4.4246 3.2564 3.4888 5.954% 6.864% 0.6636 0.7115
RNN 43947 4.5676 3.3669 33978 5.929% 6.808% 0.6366 0.6925
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are all 37, and the minimum cycle number of MAPE is
35, which shows the values of TCN model are better than
those of the other two models by absolute advantage. It is
further confirmed that TCN model is better than RNN
and LSTM model in predicting the advance rate in the
whole test set.

Figure 14 shows the correlation and linear relationship
between the measured value of advance rate and each
model's predicted value of advance rate. The TCN model
is more convergent to the measured value, and the slope
of its linear expression is 0.9837, which tends to 1
compared with the 1.0506 of LSTM, and 1.042 of RNN
models.

Therefore, the prediction performance of the TCN
model is optimal on both a single cycle and the whole test
set according to the above analysis. The results show that
the TCN has advantages in predicting the TBM advance
rate. Thus, it is suggestable to use the TCN model for
TBM advance rate prediction.
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Fig. 13 Optimal cycles of evaluation indexes of each model.
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5 Conclusions

Based on the study of real-time prediction of TBM
advance rate by the TCN model, a conclusion can be
drawn as follows.

1) The TCN-based model proposed in this paper has
satisfactory predictive performance in TBM advance rate
prediction. On the test set, the RMSE is 4.3403 mm/min;
the MAPE is 6.182%; and the R” is 0.7213. The method
can effectively predict the TBM advance rate and assist
the driver in adjusting the tunneling parameters of the
TBM.

2) The TCN model outperforms the RNN and LSTM
models in predicting the TBM advance rate. It is found
that the MAPE of the three models are all less than 7%,
and they all show good generalization. However, the
TCN prediction model with a MAPE value of 6.182% has
a higher accuracy in predicting the advance rate
compared with the RNN and LSTM models with a MAPE
of 6.808% and 6.864%, respectively. It illustrates that
TCN model is more suitable for the prediction of TBM
advance rate considering its time-series characteristics.

3) The penetration rate and cutterhead torque of the
current moment have significant influence on the TBM
advance rate at the next moment. The influence of the
cutterhead rotation and total thrust on the TBM advance
rate is moderate.

The TCN-based model for real-time prediction of the
TBM advance rate in this paper is of great potential with
significance in guiding the TBM operator in adjusting the
TBM tunnel construction control. However, the
applicability of the model in varying geological condition
is still under investigation with more data and validation
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results going forward. In future, with collection of real-
time TBM interaction parameters, the TCN model will be
improved and incorporated into the TBM operating
system for real-time modeling and control of TBMs.
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