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Abstract Wearing masks is an easy way to operate and
popular measure for preventing epidemics. Although
masks can slow down the spread of viruses, their effi-
cacy in gathering environments involving heterogeneous
person-to-person contacts remains unknown. Therefore,
we aim to investigate the epidemic prevention effect of
masks in different real-life gathering environments. This
study uses four real interpersonal contact datasets to
construct four empirical networks to represent four
gathering environments. The transmission of COVID-19
is simulated using the Monte Carlo simulation method.
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The heterogeneity of individuals can cause mask efficacy
in a specific gathering environment to be different from
the baseline efficacy in general society. Furthermore,
the heterogeneity of gathering environments causes the
epidemic prevention effect of masks to differ. Wearing
masks can greatly reduce the probability of clustered
epidemics and the infection scale in primary schools,
high schools, and hospitals. However, the use of masks
alone in primary schools and hospitals cannot control
outbreaks. In high schools with social distancing between
classes and in workplaces where the interpersonal contact
is relatively sparse, masks can meet the need for
prevention. Given the heterogeneity of individual behavior,
if individuals who are more active in terms of
interpersonal contact are prioritized for mask-wearing,
the epidemic prevention effect of masks can be
improved. Finally, asymptomatic infection has varying
effects on the prevention effect of masks in different
environments. The effect can be weakened or eliminated
by increasing the usage rate of masks in high schools
and workplaces. However, the effect on primary schools
and hospitals cannot be weakened. This study contributes
to the accurate evaluation of mask efficacy in various
gathering environments to provide scientific guidance for
epidemic prevention.

Keywords COVID-19, masks, behavioral heterogeneity,
asymptomatic infection

1 Introduction

As of November 2021, global reported COVID-19 cases
have exceeded 250 million, with more than 7 million
deaths. Countries have adopted measures such as iso-
lating cases (Patterson et al., 2020), isolating susceptible
individuals (Cui et al., 2020), and closing public places
(Sun and Wah, 2020) to suppress the spread of the virus.
Although these measures can effectively control the
development of an epidemic, a huge number of infections
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can still occur before the epidemic is detected. Therefore,
prevention measures should be adopted in daily life to
reduce the burden of subsequent epidemic prevention
work.

Prevention measures include maintaining social
distance (Thu et al., 2020), wearing masks (Leung et al.,
2020), and being vaccinated (Alvarez et al., 2021).
Wearing masks is a low-cost, easy-to-operate, and easy-
to-popularize epidemic prevention measure. Masks can
block the transmission of droplets or aerosols from
coughers and protect wearers from inhaling droplets or
aerosols from nearby coughers. Thus, masks can inhibit
the spread of diseases that are transmitted by droplets
or aerosols (Brienen et al., 2010; Lai et al., 2012; Davies
et al.,, 2013). Chu et al. (2020)’s meta-analysis of 39
studies found that, on average across social settings,
people wearing masks have a 3.1% chance of being
infected, while those without masks have a 17.4% chance
of being infected with SARS-CoV-2 and the betacorona
viruses that cause severe acute respiratory syndrome
(SARS) and Middle East respiratory syndrome (MERS).

However, mask efficacy can vary in different regimes
of virus abundance, the population’s average infection
probability, and the virus’ reproduction number (Cheng
et al., 2021). In real-life gathering environments, such as
schools, hospitals, and workplaces, mask efficacy and the
epidemic prevention effect of masks are still unknown. In
addition to virus-related changes, whether individual
behavior and individual heterogeneity (Rong et al., 2019;
Mao et al., 2021) can affect mask efficacy is an issue that
needs to be discussed. This study aims to fill these gaps
by analyzing the relationship between the epidemic
prevention efficacy and adoption rate of masks in several
critical social gathering settings. Specifically, we use a
multi-agent modeling method to simulate the epidemic
spreading in human contact networks harvested by real-
time tracking devices. Four datasets are used to construct
the human contact networks in schools, hospitals, and
workplaces. By tuning the mask adoption rate and the
personnel for whom mask-wearing is mandatory in the
model, we look for the optimal mask adoption rate and
strategy so that the epidemic can be suppressed.

The rest of this study is organized as follows. In
Section 2, we describe real interpersonal contact datasets
in primary school, hospital, high school, and workplace;
introduce the infectious disease model used for the
simulations; and explain the various forms of mask-
wearing strategies used in the model. In Section 3, we
discuss the influence of the heterogeneity of individuals
within environments and environmental heterogeneity on
mask efficacy and the epidemic prevention effect of
masks, analyze two methods to improve the prevention
effect of masks, and discuss the effect of asymptomatic
infection on the prevention effect of masks. In Section 4,
we conclude.

2 Data and method
2.1 High-resolution real interpersonal contact datasets

This study uses four real interpersonal contact datasets:
People within primary school, high school, hospital, and
workplace, respectively (Stehlé et al., 2011; Vanhems
et al., 2013; Gemmetto et al., 2014; Génois et al., 2015;
Mastrandrea et al., 2015). In the four environments,
individuals wear customized RFID (radio frequency
identification devices) sensors (Cattuto et al., 2010) to
detect and record close contact between individuals at a
time resolution of 20 s. The primary school dataset
includes the contact information of 242 students or
teachers over two days. The high school dataset includes
the contact information of 329 students over five days.
The hospital dataset includes the contact information
of 92 patients or staff over five days. The workplace
dataset includes the contact information of 92 employees
over ten days.

Given that the datasets only include contact informa-
tion gathered over two, five, or ten days, we need to
expand the four datasets in the time dimension to ensure
that the epidemic simulation can be carried out over a
longer period. The extension method we use is similar to
that used in previous research on disease simulation
(Gemmetto et al., 2014). Given that most primary schools,
high schools, and workplaces are closed on Saturdays and
Sundays, individuals in these three environments are
considered to have no contact with each other. Therefore,
for the primary school, the two days of data are used in
turn during school days. For the high school, five days of
data correspond to contact activity from Monday to
Friday. For the workplace, ten days of data correspond to
contact activity from Monday to Friday over a two-week
period. The hospital is unique in that patients’ hospi-
talization is not restricted to weekdays, so we do not
distinguish between weekdays and weekends. Therefore,
five days of data are used interlaced.

Based on the expanded datasets, we use 20 minutes as
a time slice to construct temporal networks (Gemmetto
et al., 2014). The networks use individuals as nodes and
contacts as connecting edges, reflecting the contact
activities of people in gathering environments.

2.2 Interpersonal contact in four environments

The contact situations of the four environments are hetero-
geneous (Fig. 1). More intensive interpersonal contact is
present in primary school and hospital, as shown by the
relatively large proportion of red nodes in both graphs. In
these two environments, most individuals have a large
degree (number of contacts) and a large weight (contact
duration). The average degree of individuals is 0.28
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Fig. 1 Contact between individuals in the four environments (students are arranged by their classes in the primary school and high
school plots; the colors represent the duration of contact between individuals each day, where red means that the contact duration exceeds

10 min, while blue means that it is less than 10 min).

(primary school) and 0.40 (hospital), respectively, of the
total population, while the average contact duration for
every two individuals who come into contact is 2.52 and
2.37 min a day, respectively. The contacts between
students in the same class form obvious boxes in Fig. 1.
Given that the high school in this study restricts contact
between classes and grades, the outside of these boxes
is mostly blue. The average degree of individuals is 0.09
of the total population, which is significantly lower than
that in primary school. No restrictions are placed on
contact between individuals in the same class, so the
average contact duration for every two individuals who
come into contact is 2.56 min a day, which is slightly
higher than that in primary school. Figure 1 shows that
the workplace environment has the fewest red nodes,
and most of the contact duration is shown in blue.
Therefore, the workplace has the sparsest interpersonal
contact. Most individuals have a small degree and a
small contact weight.

Figure 2 shows the degree and weight distributions of

individuals in the four environments. For both distribu-
tions, we divided the X-axis into 20 groups on average
according to the maximum and minimum values of the
X-axis. The results reveal obvious differences between
the degree and weight of individuals in gathering
environments. In addition to the heterogeneity among
environments, individuals within a particular environ-
ment are also heterogeneous. How this heterogeneity
affects mask efficacy is discussed in Section 3.

2.3 SEIR model with variable infection rate

Classical disease transmission models include the SI,
SIS, SIR and SEIR models. In the SI model, individuals
have only susceptible (S) state and infectious (I) state.
Susceptible individuals who do not carry the virus but
can be infected have a probability of transferring to the
infectious state, in which they show symptoms and are
infectious. Infectious individuals in the SIS model can
re-transfer to susceptible state. The SIR model adds a
removed (R) state based on the SI model; infectious
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Fig. 2 Degree distribution (left) and weight distribution (right) of individuals in the four environments.

individuals can transfer to removed state, in which they
cannot be re-infected and are not infectious. This paper
only considers removed individuals to be cured rather
than dead. The SEIR model builds upon the SIR model
but adds an exposed (E) state to incorporate the
incubation period. In this model, individuals have a total
of four states: Susceptible (S), exposed (E), infectious (1),
and removed (R). Whenever a susceptible individual is in
contact with an infectious individual, the probability p of
being infected continually increases with the exposure
time At at a constant rate SBeonst, 1.€., P = BeonsAf @S shown
in Fig. 3. If BeonstAt > 1, the susceptible individual is
infected and transfers to exposed state, at which point the
individual enters the incubation period and does not
demonstrate any symptom. After the incubation period,
the exposed individual will enter the infectious state. If
the infectivity of patients during the incubation period is
not considered, the infection rates are shown by the green
line in Fig. 3. Given that COVID-19 patients in the
incubation period are infectious, some studies use SEIR
with infectivity during the incubation period. The result-
ing infection rates are shown by the blue line in Fig. 3. A
constant infection rate assumes that the virus shedding
volume is constant during the infectious period.

However, constant virus shedding volume does not
apply to SARS-CoV-2. Experiments on cynomolgus
macaques inoculated with SARS-CoV-2 have shown that
the virus shedding volume from macaques gradually
increases from the first day after infection, peaks on the
fifth day, and then gradually decreases until recovery or
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Fig.3 Constant and variable infection rate models (the gray
and yellow areas are the infection rate of the exposed and
symptomatic state, respectively).

death (Rockx et al., 2020). Based on the empirical virus
shedding volumes, researchers characterize the transmis-
sibility of COVID-19 patients with a variable infection
rate (the red line in Fig. 3). This is introduced into the
SEIR model to propose a variable infection rate model.
This model considers the infectivity during the incubation
period and more closely matches the virus excretion of
COVID-19 patients (Sun et al., 2021). Four assumptions
are made in this model. First, a patient’s infection rate is
proportional to the logged virus shedding volume, i.e.,
B(t) ~ log E(¢) (Du et al., 2020). Second, the incubation
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period is four days (Guan et al., 2020) and the recovery
period is ten days (Wang et al., 2020). Third, the cumu-
lative infection rates of the variable infection model and
the traditional SEIR model are the same. Fourth, most
SARS-CoV-2 outbreaks are caused by the Delta variant
at present. The R, value of this virus is 5-10 (R, is the
basic reproductive number of an infectious disease,
which is defined as the average number of people that
each infectious individual can infect during the infectious
period) (Liu and Rockldv, 2021). To ensure that the
average R, value of the four environments remains in
this range, this study sets Sconst as 8.3 x 1074 s71. In other
words, a 20 min accumulated contact can cause an
infection. Based on B.onst and virus shedding (Rockx
et al., 2020), we can set the variable infection rate of
COVID-19 patients (Sun et al., 2021), as shown in Fig. 3.

This study used the Monte Carlo simulation method.
To eliminate the randomness of the results, each experi-
ment was simulated 5000 times.

2.4 Mask strategy

We select a certain proportion of people to wear masks
before each simulation to introduce masks into the
simulation model. Researchers found that those who wear
masks have a 3.1% chance of being infected, whereas
those who do not have an infection chance of 17.4%
(Chu et al., 2020). Therefore, the risk of infection of
individuals without masks is 5.6 (17.4/3.1) times higher
than that of individuals wearing masks. To show the
difference between wearing masks and not doing so
during the simulation, we set the virus transmission
between individuals as follows.

1) When both infected and susceptible individuals do
not wear masks as shown in Fig. 4(a), susceptible
individuals can be transformed into exposed individuals
with the probability of S.
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2) When either infected or susceptible individuals wear
masks as shown in Figs. 4(b) and 4(c), susceptible
individuals can be transformed into exposed individuals
with probability of 8 x (1/5.6).

3) When both infected and susceptible individuals wear
masks as shown in Fig. 4(d), susceptible individuals can
be transformed into exposed individuals with probability
of B % (1/5.62).

3 Experimental results

3.1 Influence of the heterogeneity of individuals on mask
efficacy

Mask efficacy is defined as

maSk efficacy = (Pinf, pop Pinf, pop, mask)/ Pinf, pop» (1)

where Pjy 0, 1S the probability that an individual without
a mask is infected (i.e., the infected proportion in all
people without a mask), and Py pop, mask 1S the probability
that an individual wearing a mask is infected (i.e., the
infected proportion in all people wearing a mask)
(Cheng et al., 2021). We use Chu et al. (2020)’s data and
consider Py pop = 17.4%, Pt pop. mask = 3-1%, and hence
mask efficacy = 82.2% is considered as the baseline
mask protection efficacy across social settings. Chu
et al. (2020)’s Piy pop aNd Pisg pop. mask Were gathered from
studies that only consider virus spreading for at least
ten days. To compare the masks efficacy in gathering
environments with the baseline efficacy, this study also
set the same virus transmission time, i.e., the simulation
time to 10 days.

In an environment where individuals are heterogeneous,
such as in the four environments used in this study, mask
efficacy can significantly differ from the baseline efficacy.

Susceptible individual

Fig. 4 Diagram of virus transmission.
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As shown in Fig. 5, the intensity of interpersonal contact
and the usage rate of masks are two factors that affect
mask efficacy in a specific environment. In environments
with relatively sparse interpersonal contact, such as at
workplace and high school, when the usages of masks are
10.0% and 60.0%, respectively, mask efficacy can be
greater than the baseline. In environments with relatively
intensive interpersonal contact, such as at hospital and
primary school, surpassing the baseline requires almost
90.0% and 100% usages of masks, respectively.

Mask efficacy improves as the usage rate of masks
increases in the same environments. In the workplace,
sparse contact between individuals results in mask
efficacy greater than 90.0% at 10.0% usage rate of masks.

100%
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Fig. 5 Comparison of mask efficacy in the four environments
and the impact of usage rate of masks on mask efficacy (the
dotted line shows the baseline of mask efficacy in social
situations).

Increasing usage does not improve mask efficacy
significantly. For the other three environments, with the
increase in mask usage rate, mask efficacy significantly
improves, especially in primary school and hospital.
When all the people wear masks, mask efficacies in
hospital and primary school are 96.0% and 97.0%,
respectively, increased by 63.0% and 92.0%, respec-
tively, compared with that when the usage rate of
masks is 10.0%.

3.2 Differences in the epidemic prevention effect of masks
among gathering environments caused by environmental
heterogeneity

Mask efficacy can reflect the possibility of reducing the
chance of infection but cannot reflect the epidemic
prevention effect of masks in specific environments. To
evaluate the epidemic prevention effect of masks more
carefully in the four environments, we set two indicators.
(1) The probability of a clustered epidemic. In gathering
environments, the occurrence of five or more cases can
indicate that a clustered epidemic has occurred. There-
fore, we define it as the number of simulations with more
than five cases divided by the total number of simula-
tions. (2) Infection scale. If one only considers simula-
tions in which clustered epidemics can occur, the average
number of cumulative infections in these simulations
indicates the infection scale. These two indicators reflect
the overall prevention effect of masks in the four
environments, as shown in Fig. 6.

First, the probability of clustered epidemics and the
infection scale can be reduced with increased usage rate
of masks. Given obvious heterogeneity in terms of the
contact situation in the four environments, the overall
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Fig. 6 Overall epidemic prevention effect of masks in the four environments.
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prevention effect of masks also differs among them. In
primary school, hospital, and high school, the decreasing
trend is more obvious. The probability decreased by
70.0%, 73.0%, and 91.0%, respectively, and the infected
cases decreased by 222, 58, and 286, respectively, when
all the people wear masks. By contrast, in the workplace,
increasing the usage rate of masks cannot significantly
reduce the probability of a clustered epidemic and the
infection scale. This finding shows that wearing masks
and increasing the usage rate of masks is more important
for primary school, high school, and hospital. Second,
owing to the close interpersonal contact in the hospital
and primary school, a high probability of clustered
epidemics (13.8% and 31.0%, respectively) and a large
infection scale (9 and 19 cases, respectively) still exist
when all individuals wear masks. Compared with the
primary school, the high school limits contact between
classes and grades. Although the contact duration
between individuals is longer in the high school, each
individual has fewer close contacts. Therefore, when all
the people wear masks, the probability of clustered
epidemics (2.0%) and the infection scale (9 cases) are
lower. In the workplace, which has the sparsest density
of interpersonal contact, when more than 70.0% of
individuals wear masks, clustered epidemics will hardly
occur. When mask usage is greater than 90.0%, there will
be almost no infection incidents.

Masks can inhibit the occurrence of clustered
epidemics and protect individuals from being infected.
We use the proportion of uninfected individuals with
masks among all individuals with masks to represent the
individual protective effect. The result is shown in Fig. 7.
First, increasing the usage rate of masks can limit the
spread of the virus, reducing the chance of individuals
being infected. The individual protective effect of masks
is therefore improved. Second, the heterogeneity of the
four environments leads to differences in the individual
protective effect. In the hospital and primary school, 4-5
and 2-3 of people wearing masks are still infected when
all individuals wear masks, respectively. In the high
school, when the usage rate of masks is more than
90.0%, the probability of mask-wearing individuals
being infected is less than 1.0%. In the workplace,
individuals wearing masks are hardly infected.

Based on the above results, we conclude that the
heterogeneity of environments causes the overall pre-
vention effect and individual protective effect of masks
to differ significantly among the four environments.
Wearing masks is an important preventive measure for
people within primary school, high school, and hospital.
Wearing masks can meet prevention needs in high school
and workplace, but the high school needs to ensure that
all individuals wear masks. However, masks only cannot
meet prevention needs in primary school and hospital,
given the high probability of clustered epidemics, and
individuals wearing masks are still at risk of infection.

100%

80%

60%

40%

Individual protective effect

-#- Primary school
High school
—¥- Hospital
0% -~ Workplace
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Usage rate of masks

20%

Fig. 7 Individual protective effect of masks in the four
environments.

3.3 Individual mask-wearing selection strategies based on
the heterogeneity of behavior

In the four environments, individual behavior is hetero-
geneous, as shown in Fig. 2. Individuals with a large
degree or weight have a higher infection risk. On this
basis, we propose three selection strategies for people
wearing masks: (1) degree strategy, in which individuals
with a large degree are given priority to wear masks,
(2) weight strategy, in which individuals with a large
weight are given priority to wear masks, and (3) random
strategy, in which individuals are randomly selected
to wear masks.

The relationship of probability of clustered epidemics
and different mask usage rates under three strategies in
the four environments is shown in Fig. 8. First, the degree
strategy and the weight strategy can similarly optimize
the prevention effect of masks under the same mask
usage, resulting in a lower probability of a clustered
epidemic. The optimization effect of the two strategies is
similar due to the strong correlation between the degree
and weight of individuals. Second, the optimization effect
of these two strategies (degree strategy and weight
strategy) differs among the four environments. In the
primary school, given that most individuals have a large
degree and weight, the two strategies can be optimized
only when the usage rate of masks is greater than 50.0%.
The optimization effect is more obvious in the hospital
and high school. The hospital environment shows greater
heterogeneity in individual behavior. Therefore, the
optimization effect is obvious when the usage rate of
masks is greater than 10.0%. In the high school, the two
strategies can be optimized when the usage rate of masks
is greater than 20.0%. In the workplace, individuals have
a lower risk of infection than in the other environments,
so the optimization effect is not obvious.

Figure 9 shows the individual protective effect of three
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mask-wearing selection strategies under different mask
usage rates. When the usage rate of masks is lower,
masks cannot inhibit the spread of the virus. Mask-
wearing individuals who are very active in terms of
interpersonal contact still have a high risk of infection, so
the effects of the degree strategy and weight strategy are
worse than that of a random strategy. The heterogeneity
of the environments leads to different usage thresholds
under which the degree and weight strategies could
produce better effects. The superior effects of the degree
strategy and weight strategy are achieved when the usage
rate of masks is greater than 30.0% in hospital and high
school and 50.0% in primary school. In the workplace,
the effects of all three strategies are similar.

On the basis of the above results, we conclude that
due to the heterogeneity of individual behavior within
particular environments, when individuals with a high
level of contact activity wear masks, the prevention
effect of masks can be significantly improved. The
heterogeneity of environments leads to different usage
thresholds for producing superior effects, so appropriate

Primary school

1.0
0.8
0.6
0.4
0.2
0.0

0% 10%  20% 30% 40%  50%

100%

50%

Usage rate of masks

0%

Hospital

100%

50% 1

Usage rate of masks

0% 0.0
0% 10%  20%  30% 40%  50%

Asymptomatic probability

Fig. 10

usage rate of masks should be set for different environ-
ments to ensure that the prevention effect of masks
can be improved.

3.4 Influence of asymptomatic infection on the epidemic
prevention effect of masks

In this study, asymptomatic patients are those who still
do not show symptoms after the incubation period; these
infections cannot be detected without nucleic acid testing
(Day, 2020). Therefore, they have always been a problem
for epidemic prevention. In this study, we experiment
with different proportions of asymptomatic patients in the
model and analyze the impact of asymptomatic infection
on the prevention effect of masks.

Figure 10 shows the impact of asymptomatic infection
on mask efficacy. Asymptomatic probability indicates the
probability that patients will not show symptoms after the
incubation period. In primary school and hospital, mask
efficacy decreases as asymptomatic probability increases
at any usage rate of masks. In the high school, this

High school

1.0
100%

50%

0%

0.0

0%  10% 20% 30% 40% 50%

Workplace
100%

50%

0% 0.0
0%  10% 20% 30% 40% 50%

Asymptomatic probability

Impact of asymptomatic infection and usage rate of masks on mask efficacy.
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weakening trend can be prevented if all the people wear
masks. In the workplace, when usage rate of masks is
greater than 40.0%, mask efficacy cannot be reduced by
asymptomatic infections.

Figure 11 shows the overall epidemic prevention effect
of masks under different asymptomatic probabilities and
different mask usage rates. In primary school, hospital,
and high school, the probability of a clustered epidemic
increases as the asymptomatic probability increases.
Wearing masks cannot stop this trend. The impact of
asymptomatic infection in workplace can be reduced or
even eliminated by increasing the usage rate of masks.
The result with an asymptomatic probability of zero is
similar to the result with an asymptomatic probability of
50.0% when all individuals wear masks.

The impact of asymptomatic infection on the individual
protective effect is shown in Fig. 12. The primary school
and hospital are heavily affected. The protective effect
decreases as the asymptomatic probability increases. In
the high school, the impact of asymptomatic infection on
the individual protective effect decreases as mask usage
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increases. When all individuals wear masks, the pro-
tective effect under an asymptomatic probability of 0 is
similar to that under an asymptomatic probability greater
than 0. In the workplace, when the mask usage is greater
than 80.0%, the impact of asymptomatic infection on the
protective effect is almost eliminated.

In summary, asymptomatic infection can affect the
prevention effect of masks. The heterogeneity of the
environments results in the different degrees of impact
among the environments. In primary school and hospital,
even if all the people wear masks, asymptomatic
infection still weakens the mask efficacy and prevention
effect. In the high school, increasing the usage rate of
masks can reduce the impact of asymptomatic infection
on the mask efficacy and individual protective effect,
while asymptomatic infection still has a large impact on
the overall epidemic prevention effect of masks. In the
workplace, as the number of individuals wearing masks
increases, the impact of asymptomatic infection can be
weakened or even eliminated.
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4 Conclusions

This study focuses on the epidemic prevention effect of
masks in gathering environments. It uses real interper-
sonal contact datasets from primary school, high school,
hospital, and workplace, and a variable infection model
that fits the virus excretion of patients with COVID-19.
Based on the Monte Carlo simulation method, the
prevention effects of masks in the above gathering
environments are simulated and analyzed. We found that
increased usage rate of masks can suppress the
occurrence of cluster outbreaks, reduce the scale of
infection when outbreaks occur, and improve the
protective effect of masks on individuals. Therefore,
wearing masks is an effective prevention measure in
gathering environments.

The heterogeneity of individuals in gathering environ-
ments causes mask efficacy in these environments to
differ from the baseline efficacy of general society.
Whether efficacy in these environments is greater or less
than the baseline is affected by the usage rate of masks
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and interpersonal contact density. The efficacies in high
school, hospital, and primary school are higher than the
baseline when the usage rate of masks achieves 60.0%,
90.0%, and 100%, respectively. In the workplace, the
efficacy is greater than the baseline at any usage. The
situation of high efficacy with high mask usage rate in
primary school, high school, and hospital indicates the
greater importance of improving the usage rate of masks
in these three environments.

Environmental heterogeneity results in different overall
prevention effects and individual protective effects of
masks among the four environments. Wearing masks can
greatly reduce the probability of clustered epidemics and
infection scales in primary school, high school, and
hospital. However, in primary school and hospital, the
probability of clustered epidemics remains high when all
the people wear masks. Therefore, we suggest that
prevention strategies other than wearing masks, such as
social distancing, should be combined in these two
environments. If all the people wear masks in a high
school with limited contact between classes and grades,
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the occurrence of clustered epidemics is curbed. This
illustrates the effect of combining mask-wearing and
social distancing. Masks only can meet the prevention
needs in workplaces.

Owing to the heterogeneity of individual behavior,
when people with a large number of contacts or long
contact duration wear masks, the epidemic prevention
effect of masks is better than that when people are
randomly selected to wear masks.

Asymptomatic infection can reduce the prevention
effect of masks. Environmental heterogeneity results in
varying degrees of reduction. By increasing the usage
rate of masks, the impact of asymptomatic infection can
be eliminated in workplaces and weakened in high
schools, but it cannot be decreased in primary schools
and hospitals.

Given the above results, we make the following recom-
mendations regarding the use of masks in gathering
environments. First, the mask efficacy baseline of general
society does not necessarily reflect the efficacy of masks
in specific gathering environments. Mask efficacy should
be re-evaluated in combination with interpersonal contact
and mask usage rate in gathering environments. Second,
for gathering environments with a high likelihood of
intensive contact, such as primary schools and hospitals,
wearing masks alone is not enough to prevent clustered
epidemics. Mask-wearing should be accompanied by
measures such as social distancing and strict control of
personnel entry and exit. If school administrators imitate
the limited contact allowed by the high school in this
study, wearing masks is an effective measure. Masks can
meet the prevention needs in workplaces, so in the post-
epidemic era, work activities can be resumed safely with
the support of masks. Third, individuals with frequent
activities that involve interpersonal contact should be
required to wear masks. Fourth, in the event of a high
probability of asymptomatic infection, more than 80.0%
of or even all workers in workplaces should be required
to wear masks. For schools and hospitals, if only masks
are used as a prevention measure, we do not recommend
opening these places during the epidemic outbreak.
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