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Abstract With the acceleration of supply-side renewable
energy penetration rate and the increasingly diversified
and complex demand-side loads, how to maintain the
stable, reliable, and efficient operation of the power system
has become a challenging issue requiring investigation.
One of the feasible solutions is deploying the energy
storage system (ESS) to integrate with the energy system
to stabilize it. However, considering the costs and the input
/output  characteristics of ESS, both the initial
configuration process and the actual operation process
require efficient management. This study presents a
comprehensive review of managing ESS from the
perspectives of planning, operation, and business model.
First of all, in terms of planning and configuration, it is
investigated from capacity planning, location planning, as
well as capacity and location combined planning. This
process is generally the first step in deploying ESS. Then,
it explores operation management of ESS from the
perspectives of state assessment and operation optimi-
zation. The so-called state assessment refers to the
assessment of three aspects: The state of charge (SOC), the
state of health (SOH), and the remaining useful life (RUL).
The operation optimization includes ESS operation
strategy optimization and joint operation optimization.
Finally, it discusses the business models of ESS.
Traditional business models involve ancillary services and
load transfer, while emerging business models include
electric vehicle (EV) as energy storage and shared
energy storage.
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1 Introduction

Global warming is a common environmental problem
faced by countries worldwide, and greenhouse gases such
as carbon dioxide emitted from the burning of fossil fuels
have been recognized as an important factor contributing
to this problem (Aneke and Wang, 2016). As a major part
of energy production and consumption, power generation
using fossil fuel-based energy will continue to increase
ecological pollution (Zhou et al., 2016; Jiang et al., 2020).
The use of various renewable energy sources for power
generation has become a necessary path for the
transformation of power systems in various countries (Li
et al., 2020c; Lu et al., 2020; Zhou et al., 2022). As the
installed capacity of renewable energy continues to
increase, new issues have emerged. Some inherent
shortcomings such as randomness, intermittence, and
uncontrollability of renewable energy may impose a
negative impact on the stability, safety, and economy of
the energy system (Byers and Botterud, 2020; Feng et al.,
2021; Zhou et al., 2021b). Energy storage system (ESS)
can temporarily store energy and realize bi-directional
energy flow, which can support the safe and stable
operation of energy systems with large-scale renewable
energy access through peak regulation, stabilizing grid
fluctuations, improving power quality, delaying grid
upgrades, and reserving energy (Suleiman et al., 2019;
Lockley and von Hippel, 2021).

Energy storage resources management, including
planning, operation management, and business model
issues, is an important way to lessen the fluctuation
brought by renewable energy, thereby improving the
efficiency and economy of energy system operation as
well as the performance of ESS itself. ESS planning is
the basis for using ESS. Without proper planning, the
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capacity of ESS may be very large, leading to high cost
and waste of resources in the energy system (Hanak and
Manovic, 2020; Kiptoo et al., 2020). After determining
the ESS configuration, optimizing the operation of the
ESS is necessary (Hou et al., 2022). Operation manage-
ment is an important guarantee for the rational optimiza-
tion of the ESS, which can maximize the utility of the
installed ESS. These studies include two aspects, namely,
state assessment and operational optimization. State assess-
ment includes the state of charge (SOC), state of health
(SOH), and remaining useful life (RUL) assessments of
ESS. Meanwhile, operational optimization involves ESS
operation optimization and joint optimization of ESS and
other systems. Finally, the business model is selected to
explore the application of ESS in real-world settings. The
business model is also an important factor that affects the
wide deployment and cost-efficient operation of ESS.
The summary of business models can support the better
understanding of the advantages and disadvantages of
existing models and stimulate the business model inno-
vation of ESS. The business models include the traditional
business model represented by auxiliary services and load
transfer and the emerging business model represented by
the electric vehicles (EVs) as energy storage and shared
energy storage. The above three aspects have different
focuses, involving the whole cycle of ESS from planning
to operation and then to application. We hope that
summarizing these three aspects can promote the
innovation of related theoretical research and the
sustainable development of the ESS industry.

This paper is structured as follows. Section 2
investigates the energy storage resource planning from
capacity planning, location planning, and capacity and
location combined planning. Section 3 focuses on the
ESS state assessment, and Section 4 discusses the ESS
optimization. Then, Section 5 introduces the energy
storage market business models, including conventional
and emerging business models. Section 6 provides some
discussions, and Section 7 finally draws the conclusions.

2 Energy storage resource planning

According to different ways of storing energy, energy
storage technologies can be categorized into mechanical,
electrical, chemical, electrochemical, and thermal groups
(Luo et al., 2015). Furthermore, each group has many
specific energy storage technologies as shown in Fig. 1.
Configuration planning is the first step and the basis of
operation optimization when ESS is equipped in an
energy system. Capacity planning and location planning
are two important contents of ESS planning research.
Capacity planning examines appropriate power capacity
and energy capacity according to the technical and
economic requirements of different application scenarios.
Requirements of ESS application, and land, economic,
and environmental conditions of different regions are
often considered when determining the optimal location
for ESS. Capacity and location combined planning that
optimizes these two aspects together are more common.
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Fig. 1

Types of energy storage technologies.
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2.1 Capacity planning

Capacity generally refers to the installed size of the ESS.
For cost reasons, larger capacity means higher costs. In
addition, wasting resources is possible if the equipped
capacity is not fully utilized. However, when the capacity
is too small, the ESS will not be able to meet the energy
storage needs of users. Therefore, how to reasonably
configurate the capacity of ESS is a critical research issue.
Capacity planning researchers mostly use multiple
methods to analyze and determine the optimal capacity
that can balance performance and cost. The generalized
capacity planning not only includes determining the
installed size of the ESS but also involves the selection of
the energy storage type and the setting of the ratio when
different energy storage types are mixed. The general
research on capacity planning only involves size
determination, and the main methods used include
statistical probability method, intelligent algorithms,
and programming methods.

Different energy storage technologies are suitable for
different scenarios and can meet different requirements,
and they differ in capacity scale, rapid response ability,
and energy conversion efficiency, to name a few. Energy
storage technologies with different characteristics can
also be combined as a hybrid system called, hybrid ESS
(HESS), which could offset each system’s shortcomings
as well as meet more complex requirements of the energy
system (Qi et al., 2021). However, capacity planning of
HESS is more complicated than ESS with single energy
storage technology. Related studies can be divided into
two groups by the number of involved energy storage

technologies as introduced in Table 1.

Whether it concerns using energy storage to stabilize
the long-term charge and discharge demand of renewable
energy fluctuations or the instantaneous power response
needs when energy storage is involved in market
frequency regulation, these relatively simple application
scenarios can meet the demand by choosing the right
single energy storage technology. Based on the price of
the Polish energy market, Lepszy (2020) uses historical
data from the day-ahead market to determine the required
storage capacity for a hydrogen storage system con-
structed from a hydrogen generator. Olaszi and Ladanyi
(2017) develop a hidden layer feedforward neural
network to analyze the optimal capacity of the battery
ESS (BESS) under three different discharge strategies.
Zheng et al. (2017) and Dui et al. (2018) examine the
optimal configuration of ESS capacity in the power
system with power generation equipment. The former
study regards each participant as an independent indi-
vidual and plays a non-cooperative game to determine
their own ESS configuration, while the latter study
establishes a two-stage optimization model to solve the
optimal capacity allocation in the whole system.

As the supply and demand sides of the power system
become increasingly diverse, many new types of loads
cannot be stored by a single energy storage technology.
To illustrate, pulsating load demand is typically character-
ized by low average power; however, the peak power
may be much higher than the average power. HESS can
better deal with such loads than ESS with single storage
technology. Capacity planning of single technology ESS
is relatively simple as it only has to determine the proper

Table 1 Summary of capacity planning related studies categorized by energy storage technologies used

Types Objectives Methodology Uncertainty Scenarios References
Single Electricity cost reducing Intelligent algorithms YES Hydrogen energy storage market Lepszy (2020)
ESS Arbitrage benefits
Self-consumption-reducing Intelligent algorithms NO Grid connected residential Olaszi and Ladanyi
photovoltaic (PV) systems (2017)
Reducing operation cost of Game theory YES Distribution system Zheng et al. (2017)
multiple agents Intelligent algorithms
ESS capacity and operation strategy Two-stage method YES Power system with wind farm and ~ Dui et al. (2018)
optimization Programming method thermal plants
Statistical probability method
Intelligent algorithms
HESS Reducing total cost Mixed-integer programming YES Microgrid Li et al. (2020b)
Improving the reliability Regional integrated energy system  Wang et al. (2020)
Reducing cost and environmental impact Multi-objective method YES Microgrid Feng et al. (2018)
Improving stability, safety, and reliability ~Statistical probability method
Meeting reliability requirement Pinch analysis YES PV-based isolated power system  Jacob et al. (2018)
Reducing life cycle cost Design space
Increasing smoothing ability Intelligent algorithms YES Standalone hybrid power system  Aravind et al. (2015)
Meeting stability requirements
Improving reliability and optimizing Intelligent algorithms YES Island microgrid Lietal. (2022)
capacity distribution
Reducing total cost Two-stage stochastic YES Distribution system Baker et al. (2017)
Meeting stability requirements programming
Reducing total cost Stochastic programming YES Wind-based isolated power system  Mohamed Abd El
Statistical probability method Motaleb et al. (2016)
Improving renewable energy utilization Intelligent algorithms YES Island microgrid Qiu et al. (2021)

and voltage stability
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capacity of ESS, while capacity planning of HESS needs
to allocate capacity among different technologies.

Economy, stability, and environmental friendliness are
goals often considered in studies of capacity configura-
tion. Li et al. (2020b) and Wang et al. (2020) establish
mixed-integer programming models. On the basis of the
multi-attribute utility method, Feng et al. (2018) optimize
the capacity of HESS to reduce cost and environmental
impact while increasing the operational performance of
microgrids. Jacob et al. (2018) determine the capacity
configuration that meets the reliability requirement and
reduce life cycle cost with pinch analysis and design
space method.

ESS arranged at a renewable energy generation site can
even out variation, reduce waste of renewable energy,
and thus substantially improve renewable energy utiliza-
tion. For ESS utilized to offset the shortcomings of
renewable energy, considering the variation and random-
ness of renewable energy is important. Aiming at an
independent hybrid power system containing synchro-
nous generators, wind energy, and BESS, Aravind et al.
(2015) propose a coherent control strategy to adjust the
voltage and frequency of the independent power grid.
To improve the ability of island microgrid to deal
with uncertainty, Li et al. (2022) propose a flexible
island microgrid model on the basis of real-time
price demand response, which optimizes the capacity
configuration of HESS.

Isolated power system or isolation mode stands for
power system operating without interaction with grid and
power generation systems, and ESS fully bears the load
of the power system. Some studies have been conducted
to define proper capacity for the isolated power grid. To
reduce the total cost, Cao et al. (2019) use the chance
constraint method to optimize ESS and power generation
equipment size. Baker et al. (2017) optimize generation
outputs and sizes of ESS in different scenarios on the
basis of a two-stage stochastic model. Mohamed Abd El
Motaleb et al. (2016) perform optimal sizing for a hybrid
power system with wind/energy storage sources on the
basis of stochastic modeling of historical wind speed
and load demand. To provide a reasonable plan for the
island microgrid with an electric-hydrogen hybrid ESS,
Qiu et al. (2021) establish a planning optimization
method that considers unit cost, load loss rate, and excess
energy rate.

Capacity planning is conducted to determine the
appropriate energy capacity and power capacity of ESS
for different purpose in different application scenarios. In
summary, optimization objectives are around technology
and economy such as improving reliability, increasing
smoothing ability, reducing total cost, and reducing
investment, among others. Statistical probability method,
intelligent algorithms, and programming methods are the
three main methods being used. Owing to the influence
of the uncertainty of future renewable power generation
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and loads in the power system on optimization effects,
this uncertainty often needs examination in the capacity
planning process to ensure the effectiveness and
adaptability of the optimization results, and Monte Carlo
simulation is the most common method being used.

2.2 Location planning

Apart from capacity, the location of the ESS is also an
important factor in its performance. The efficiency of
energy transmission in the distribution network and the
voltage conditions at each node are influenced by the
location of the ESS. Improper location selection can
increase the energy loss level, deteriorate the voltage
distribution, and negatively affect the safe and stable
operation of the whole network. Given that location
planning of ESS is inevitably influenced by the storage
capacity as well as the operation mode, separate location
planning studies are not common. Unlike capacity
planning, location planning involves spatial factors,
aiming to select a suitable access location for centralized
or distributed ESSs and to maximize the reliability of
electricity consumption after energy storage access. The
main method used in this area of research is the
intelligent optimization algorithm.

Related research mostly optimizes the location of ESS
to improve the efficiency of renewable energy. Ahmadi
et al. (2020) apply a two-steps hierarchical model and
multi-criteria decision-making approach, while Satkin
et al. (2014) use ArcGIS Boolean logic algorithms to
determine optimal sites for wind-compressed air ESS.
Das et al. (2018) utilize the artificial bee colony
algorithm to optimize ESS in distribution networks with
high penetration of renewable energy.

The abovementioned research optimized ESS place-
ment from the aspect of technology and economy, which
are to determine the optimal site by investigating its
support effect to renewable energy utilization and cost.
Intelligent algorithms are often applied to solve optimi-
zation problems. ESS allocated in optimized placement
can effectively increase the reliability and economy of
the energy system, as it can not only offset shortcomings
and increase the efficiency of renewable energy but
also reduce the investment and operation cost of the
power systems.

2.3 Capacity and location combined planning

When planning the configuration of ESS, capacity and
location planning are often considered together,
especially when designing a new ESS or adding equip-
ment to an old ESS. Compared with separate planning,
capacity and location combined planning considers more
other factors and thus has additional complexity.
Relevant research can be roughly divided into three
categories according to optimization goals: Economic,
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technical, and economic and technical research.

Some studies have optimized the ESS configuration
to reduce the economic cost of energy, reduce the
investment and operating costs of ESS, and increase the
consumption of renewable energy to achieve the goal of
improving the economics of power systems. Fernandez-
Blanco et al. (2017) use the stochastic mixed-integer
linear programming. With the optimization goal of
maximizing the annual net income of the ESS, Wang
et al. (2021) use an improved particle swarm optimiza-
tion (PSO) algorithm to solve the established ESS
optimization configuration model. Nojavan et al. (2017)
also consider load loss and establish a bi-objective
optimization model to reduce the total cost in optimizing
the ESS configuration.

To optimize the ESS configuration with technical
optimization goals, many studies focused on intelligent
algorithms. You et al. (2014) establish a multi-objective
optimization model for the configuration optimization of
ESS using the improved PSO algorithm to solve the
model. Bridier et al. (2016) propose a heuristic method
for the optimal design of ESS for renewable energy. The
method is based on adaptive storage operation, which can
ensure higher system reliability. Giannitrapani et al.
(2017) determine the most suitable configuration of ESS
by multi-period optimal power flow framework and
economy criterion. Motalleb et al. (2016) combine complex-
valued neural networks and time domain power flow to
determine a better configuration of ESS, which can
support power more effectively. Ramirez et al. (2018)
optimize the configuration of ESS with better frequency
smoothing ability by the bat optimization algorithm.

Technical and economic objectives are sometimes
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optimized together in certain research. Zhang et al.
(2021b) propose a control strategy for ESS that stabilizes
the short-term fluctuations of photovoltaic (PV) power.
In line with the proposed control strategy, this study
establishes the optimal selection model of ESS to analyze
the economy of PV ESS. To improve system economy
and renewable energy utilization, Tang and Low (2017)
optimize the configuration of ESS on the basis of the
continuous tree with the linearized DistFlow model. To
improve the regulation capacity of ESS and reduce the
total cost, Nick et al. (2018) utilize mixed integer second-
order cone programming to determine the optimal
configuration of ESS and then apply conditionally the
exact convex optimal power flow to optimize ESS con-
figuration. Table 2 classifies the research review related
to capacity and location combined planning according to
application scenarios.

Considering that the capacity of ESS has a greater
impact on its performance than its location, the research
on capacity planning is more abundant. By contrast,
location planning involves spatial problems, and spatial
measures and intelligent optimization algorithms have
been the methods to solve them. Intending to increase
technology and economy performance of ESS, capacity
and location combined planning determines the optimal
site and capacity allocated in each site. Different methods
such as programming methods, multi-criteria decision-
making methods, statistical probability methods, and
intelligent algorithms have been applied to model and
solve the problem. According to the results of simulations
in the literature, capacity and location combined planning
can largely increase the support effects of ESS to the
energy system. With the popularization of distributed

Table 2 Summary of capacity and location combined planning related studies categorized by application scenarios

Scenarios Objectives Methodology References
Distribution Improve utilization of renewable energy Optimal power flow analysis Atwa and El-Saadany (2010)
network Increase economic benefits Cost/Benefit analysis Tang and Low (2017)
Continuous tree with linearized DistFlow model
Reduce the total cost Two-stage model Awad et al. (2014)
Genetic algorithm
Avoid over- and under-voltage Multi-period optimal power flow framework Giannitrapani et al. (2017)

Active Improve the regulation capacity of ESS Multi-objective optimization model You et al. (2014)
distribution Reduce the total cost of ESS Improved PSO algorithm Nick et al. (2014)
network Mixed integer second-order cone programming Nick et al. (2018)

Conditionally exact convex optimal power flow

An isolated
section of the

Improve frequency smoothing

power grid

Transmission Reduce the economic cost

system

Power grid Improve the ability of stabilizing voltage
fluctuation of ESS

Microgrid Reduce the total cost

Transmission Improve the technical performance of ESS

system and

distribution Reduce the economic cost

network

Improve the system voltage profiles

Stochastic mixed-integer linear programming

Bi-objective optimization model

Complex-valued neural networks and time domain power flow

Bat optimization algorithm Ramirez et al. (2018)

Fernandez-Blanco et al.
(2017)

Genetic algorithm Crossland et al. (2014)

Simulated annealing algorithm

Nojavan et al. (2017)
g-constraint method

Fuzzy satisfying technique

Motalleb et al. (2016)

Economic dispatch

Hybrid multi-objective PSO Wen et al. (2015)
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renewable energy generation and ESS, many new
application scenarios will bring new challenges to the
arrangement and operation of ESS. An example is how to
install appropriate ESS in sparsely populated areas and
extremely cold areas that can not only reduce energy cost
but also reduce system cost as much as possible.

3 Energy storage system state
assessment

As most related literature is oriented to BESS, this
section systematically explores the research of ESS state
assessment, including SOC estimation, SOH estimation,
and RUL prediction. These three indicators are important
to reflect the usability of BESS, and they have a guiding
role in the practical application of BESS (Waag et al.,
2014). Figure 2 illustrates the relationship among the
three indicators.

SOC refers to the ratio of the amount of electricity
stored in the battery to its capacity, and it is an important
indicator for the safe and effective application of the
battery. Certain research has been devoted to predicting
SOC more accurately. In most cases, the adopted method
is based on an empirical analysis model, and the param-
eter values are derived from experimental data using
an empirical model. Additionally, with the continuous
development of information technology, many studies
have started using machine learning methods to build
data-driven SOC evaluation models. Two forecasting
models, namely, energy reservoir model and the charge
reservoir model, are modified and applied to forecast
SOC by Rosewater et al. (2019), and the two models
have been proven effective and suitable for different
types of batteries. Chen et al. (2019) believe that
polarization of battery will lower the accuracy of SOC
estimation on the basis of electric charge and thus define

Real-time current data
Real-time voltage|data State of
charge

. [
Real-time temperature data . .
e ¢ temperature d estimation

State of
. health
estimation

Historical data

SOC on the basis of voltage. Research proposed a new
estimation method on the basis of particle filter to
estimate the SOC. Dineva et al. (2021) use a machine
learning model combined with a direct multi-step
prediction strategy to predict the SOC of lithium-ion
batteries. The simulation results prove the effectiveness
of its prediction performance. Tang et al. (2017) analyze
SOC estimation error caused by sensor drift and model-
ing mismatch and improve the accuracy by rectifying the
interference of different influence factors.

Future usability assessment is the other important
aspect of ESS state assessment and is often represented
by life assessment. Battery life has two definitions:
Nominal life and actual life. Nominal life is the lifetime
marked by the manufacturer, which is the longest range
of battery life. Owing to the influence of current, voltage
fluctuation, and frequent charging and discharging, the
actual useful life of the battery will be shorter than the
nominal life. Most of the research on battery life is
focused on prediction based on the actual application
scenario, charge—discharge behavior, and relevant his-
torical data. SOH and RUL are two key indicators of
battery life that cannot be obtained directly. These two
indexes must be estimated by capacity, resistance, and
other parameters. Abundant literature related to SOH and
RUL forecasting exists, and a variety of measurement
technologies are proposed.

Research about SOH assessment can be roughly
divided into two categories: Model assessment method
and experiment-based assessment method.

Model assessment method focuses on various methods
for SOH assessment, compares and summarizes different
methods, or proposes a new assessment model by
analyzing previous studies. Berecibar et al. (2016)
summarize SOH forecasting methods as experimental
techniques, including a comparison of adaptive models,
advantages and disadvantages, and estimation quality. Li

SOC
SOH
Remaining
useful life RUL
prediction

Fig. 2 Relationship among SOC, SOH, and RUL.
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et al. (2018) believe that estimation method based on
incremental capacity (IC) and/or differential voltage
(DV) analysis is the third type. The IC analysis method
based on the charge voltage capacity curve was
established, and the characteristics of the IC curve
obtained by Gaussian filter smoothing were used to
extract the relationship between the battery capacity
evolution and the characteristic index, which was used to
identify SOH online. Roman et al. (2021) design and
evaluate a machine learning pipeline to estimate battery
SOH on 179 cells cycled under various conditions.
The proposed model can be used for real-time estimation
of SOH.

Most of the experiment-based assessment methods
estimate the battery SOH through the actual operation
data of BESS. This method does not depend on a specific
model. Mao et al. (2021) propose an online SOH
monitoring method for lithium-ion batteries based on the
real-time charging and discharging characteristics of the
battery. The proposed method has good robustness. Bian
et al. (2021) combine the open circuit voltage model and
incremental capacity analysis to propose a new fusion-
based SOH estimator. The proposed method uses the
terminal voltage curve measured during constant current
charging to extract charging characteristics. Wang et al.
(2016) develop a center least squares method based DV
curve generation method; a function of capacity loss and
DV curves has been obtained through offline experi-
ments, and a new online SOH estimation method is
proposed on the basis of the DV curve generation method
and the function. Weng et al. (2013) use several
algorithms in analyzing IC to identify aging law, and
support vector regression shows the best output.

In many studies, SOC and SOH are estimated by one
model, but the variabilities along their time scales are
quite different. Estimating the two indexes at one time
will cause extra calculation complexity. To solve this
problem, Zou et al. (2015) employ two different extended
Kalman filters to estimate SOC and SOH in different
time scales, respectively.

Some research combines the above experimental based
method and adaptive model method when estimating
SOH. Hu et al. (2012) estimate SOC and capacity of the
battery using a multi-scale method, which is based on
coulomb counting and adaptive filtering. Dubarry et al.
(2017) adapt the two kinds of methods, forming an aging
look-up table on the basis of the evolution law of
different characteristics of the chemical cell through
simulation experiments; the proposed method can remove
the dependence of simulation experiments on historical
cyclic data while decreasing the calculation complexity
of the adaptive model method.

The assessment of RUL of battery is another important
content of battery management and an important index of
battery aging identification. Existing RUL assessment
methods can be divided into the model-based method and

data-driven method. The model-based method usually
establishes a mathematical model to describe the relation-
ship between battery aging index (e.g., capacity, resistance,
etc.) and lifetime (commonly represented by cycle times).
Then, the model is optimized and adjusted with other
methods. The data-driven method does not need to
establish a mathematical model but must learn the
historical data to determine the evolution law related to
battery aging. Zhang et al. (2018) utilize long short-term
memory-recurrent neural network algorithm to predict
RUL online, with the process optimized by using a
resilient mean square backpropagation method and a
dropout technique. They also propose another online
RUL prediction method based on Box—Cox transforma-
tion in follow-up work (Zhang et al., 2019). Severson
et al. (2019) propose a battery cycle life prediction
method which only needs data indicators of the first 100
cycles. The method is based on the study output of a
large number of battery characteristic data under different
quick charging modes. Liu et al. (2019) use the genetic
algorithm and particle filter to predict SOH and RUL.

Assessment of SOC, SOH, and RUL are the three
important items of BESS utilization and management. As
these indexes cannot be measured directly, they must be
estimated with the help of current, voltage, temperature,
cycle times, and other real-time and historical data. When
estimating SOH and RUL, IC/DV curve is a common
tool in both methodological and adaptive methods. At
present, the forecasting and assessment method systems
are relatively perfect, but these indicators cannot be
measured directly and are affected by many factors.
How to further improve the accuracy of the results has
puzzled the researchers.

4 Energy storage system optimization

Operational optimization achieves an overall improve-
ment of the power system by formulating better operating
strategies for ESS. ESS is utilized to support energy
system in ways such as improving power quality,
reserving energy, and improving renewable energy
utilization, among others. The timing of the ESS
equipment’s storage and release of energy, the amount of
energy required for storage and release, and the proper
transmission power are all problems that should be
determined in combination with actual situations. Accord-
ing to the optimization object, it can be divided into ESS
operation strategy optimization and joint operation
optimization. The former only optimizes the control of
ESS, while the latter optimizes the combination of ESS
and other subsystems in the smart energy system.

4.1 Operation strategy optimization

ESS operation strategy optimization is the basis for
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optimizing the operation of the power system and
improving the operation efficiency of ESS by regulating
the charging and discharging power and depth, coordina-
tion between different equipment, and other behaviors of
ESS. Application scenarios, technologies, and optimiza-
tion objectives will all impose considerable influence on
ESS operation strategy optimization. Relevant research
can be divided into three categories according to the
optimization goals, which are to improve economy and
efficiency, optimize the support role of ESS on the
energy system, and extend the life of ESS.

Optimizing the operation strategy of ESS can improve
the consumption of renewable energy, reduce load loss,
and minimize damage to ESS equipment. van de Ven
et al. (2013) reduce average electricity cost by using ESS
reserve energy when the price is low, and operation
optimization based on periodic-review and single-item
inventory models is applied to determine the behavior of
ESS. To improve penetration and efficiency of wind
power in the power system, Lou et al. (2016) determine
operation strategy for HESS by grouping wind power
output with discrete Fourier transform.

Operation strategy optimization can improve the
support of ESS to energy system, such as improving
power quality, reserving energy, and reducing energy loss.
To improve the support of ESS to the energy system, the
research can be divided into static operation optimization
based on historical data and model solving and dynamic
operation optimization based on real-time data according
to the optimized time dimension.

Static operation optimization analysis of historical data
is carried out to obtain operation law of power system
and then develop an operation strategy for ESS. For the
electric-heat-gas multi-energy hybrid energy center with
ESS, Dini et al. (2022) propose a new optimization model
to ensure its flexible and reliable operation. Zhang et al.
(2021a) propose a feasibility pump-based column and
constraint generation solution algorithm for solving two-
stage robust optimization problems in ESS, and the
simulation results prove the robustness and high effi-
ciency of the algorithm. Kazhamiaka et al. (2016)
develop an operation strategy for ESS based on integer
linear program without prediction data under differential
pricing and peak-demand pricing law, respectively. To
increase penetration of wind power in power system, Li
et al. (2017) establish an evaluation system for wind
power prediction based on wind power control error, and
the prediction error is absorbed on the basis of ESS.
Teo et al. (2021) propose a fuzzy logic-based energy
management system for grid-connected microgrids
containing ESSs to reduce the average peak load and
operating costs through ESS arbitrage operation.

As static operation optimization is heavily dependent
on historical data, responding to emergencies or excep-
tional cases could be difficult for ESS. Some studies

determined real-time operation strategies for ESS with
real-time data of the power system and ESS itself. Lyu
et al. (2020) propose a segmental degradation cost model
for the real-time management of lithium-ion batteries. A
tube-based model predictive control approach is newly
proposed in accommodating the real-time operation of
ESS. Levron et al. (2013) allocate energy in network
domain and time domain based on power flow solver and
dynamic programming recursive search with real-time
factors of BESS and power system, thus possibly
obtaining a global optimal solution. Malysz et al. (2014)
optimize management of BESS with mixed-integer-linear-
program optimization based on variable time scale
prediction data of the power system; particularly, this
model can formulate the operation strategy of ESS
according to the optimization goals proposed by users. To
increase the revenue of wind ESS in the real-time energy
and regulation markets, Xie et al. (2021) propose a
bidding strategy optimization model based on robust
predictive control. Mueller et al. (2019) regard the
operation of BESS as a stochastic decision problem,
subsequently employing the Markov decision method to
optimize the management of BESS.

Improper operation of ESS could cause equipment
damage. Accordingly, some researchers develop optimal
operation strategies for ESS to minimize damage to
equipment and thus extend equipment life and cut cost.
Most of the research is focused on BESS. Zhao et al.
(2013) optimize the management of BESS in standalone
microgrid based on nondominated sorting genetic
algorithm; the proposed strategy can significantly reduce
energy cost and prolong battery life. Maia et al. (2019)
optimize the traditional constant current and constant
voltage (CC—CV) charging protocol commonly used in
lithium-ion batteries, develop an optimization algorithm
to couple it into the dynamic model, and consequently
obtain a charge—discharge curve that maximizes battery
life. Wei et al. (2017) develop a self-learning algorithm
to determine better management rules for BESS based
on real-time indicators, which could allow the smart
grid to realize lower power cost and extend the lifetime
of BESS.

Operation optimization develops an appropriate
operation strategy for ESS to increase the economics and
reliability of energy system and prolong the lifespan of
ESS equipment. The above analysis suggests that
researchers have developed different system models and
applied different optimization methods to solve problems
according to the characteristics of the envisioned energy
systems. Three common optimization methods include
mixed integer linear programming, mixed integer
nonlinear programming, and metaheuristic algorithms. As
the operation is a dynamic process, the operation strategy
developed for ESS should be equipped with strong
adaptability to future changes, thus necessitating the
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prediction data or dynamic optimization methods.
Especially, prediction error requires consideration when
the optimization process relies on prediction data. Given
that errors are inevitable, how to obtain a more precious
prediction of the power system and how to mitigate the
influence of the prediction error are persisting problems
worth studying.

4.2 Joint optimization

Merely optimizing the ESS may sometimes be insuffi-
cient to achieve the optimization goals of the whole
energy system. Joint operation optimization refers to
taking ESS and other subsystems or individuals in the
power system as a whole, optimizing and regulating the
overall operation behavior to achieve economic and
technological optimization.

To improve the economy, safety, and wind power
penetration of the power system, some articles optimize
wind farms and ESS as a whole. Taking the operation
cost and the capacity degradation of the ESS as the
optimization objectives, Liu et al. (2020) use a dynamic
programming global optimization method to determine
the best capacity of the wind-ESS. Han et al. (2017)
establish a cooperative game model aiming at maximiz-
ing the overall economic benefits of wind power genera-
tion and storage system, and they realize the joint optimal
control by combining the filter.

Some studies optimize the operating economy of ESS
and flexible load regulation systems. Sha et al. (2016)
establish a multi-objective optimization model optimizing
operation of ESS and flexible load, subsequently apply-
ing an adaptive particle swarm algorithm to solve the
model. To optimize the flexible power supply, Yan and
Li (2020) propose a multi-time-scale flexible dynamic
optimization model for the active distribution network
based on the participation of smart loads. The designed
model can dynamically adjust the output sequence of
the ESS.

Combined with probability methods, intelligent
algorithms, and other solutions, joint optimization could
substantially improve the economics, efficiency, and
reliability of ESS in specific scenarios. As renewable
energy is increasingly applied in other scenarios, extra
attention should be paid to the cooperation between ESS
and renewable energy power generation equipment. With
the rapidly developing intelligent technologies, ESS will
further improve the performance of the smart energy
system in coordination with intelligent commodities.

5 Energy storage market business models

The business model in the energy system is often service-
oriented, including energy supply, energy management,

and energy efficiency services, among others (Bryant
et al., 2018; Reis et al., 2021). In the context of supply-
demand interaction, ESS has different business models
(van der Linden, 2006; Hamelink and Opdenakker, 2019).
In chronological order, we divide the business model of
ESS into the conventional business model and the
emerging business model.

5.1 Conventional business models

The business models of ESS in power system involve
power generation, transmission, and distribution (Loisel
and Simon, 2021) and have many applications (Ramos
et al., 2021). Conventional business models include ESS
as ancillary services and load transfer.

5.1.1 Ancillary services

Ancillary services play a crucial role in the electricity
market (Aghaei et al., 2009; Kargarian et al., 2011). They
are defined as all auxiliary measures required to deliver
electrical energy from power plants to users while
ensuring safety and quality, including power generation
and transmission and distribution emergencies. The
auxiliary services that ESS participates in include
frequency regulation, voltage control, backup power,
and black start (Zhang et al., 2021d).

Frequency is one of the basic indicators to measure
power quality, and it is a symbol to reflect the balance of
power supply and demand in power system (Nguyen and
Mitra, 2016). Frequency regulation refers to adjusting the
frequency of power system so that its change does not
exceed the specified allowable range to ensure power
quality (Zhang et al., 2017). The large-scale use of
renewable energy makes the power system susceptible
to large frequency offsets (Akram et al., 2020). In this
context, the use of ESS for frequency adjustment has
attracted widespread attention in the academic
community (Shim et al., 2018). ESS provides frequency
regulation by dynamically injecting/absorbing power
to/from the grid in response to the decrease/increase in
frequency (Akram et al., 2020). Different types of ESS
are suitable for frequency regulation in different
scenarios and can provide frequency regulation from the
second level to hour level (Zakeri and Syri, 2015).
Dhundhara and Verma (2018) explore the impact of the
ESS device and optimization techniques to enhance the
frequency regulations during sudden load change in a
multi-source, multi-area power system in a complex
deregulated framework.

Voltage is one of the most important parameters to
maintain the stability of the power grid (Zhang et al.,
2021d). Similar to frequency regulation, the main
purpose of voltage control is to maintain the voltage
profile within an acceptable range (Zhang et al., 2021c).
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The large-scale integration of variable loads and
distributed energy sources will cause power fluctuations
and voltage instability in the distribution system (Murray
et al., 2021). This scenario adds challenge to the voltage
control work (Vandoorn et al., 2011). Taking the voltage
rise process as an example, reducing the active power
injected into the grid can reduce the voltage rise; adding
the ESS can also store this part of the reduced energy,
thus somewhat avoiding loss and waste (Tant et al.,
2013). Ariyaratna et al. (2019) study the control of the
charging and discharging of the integrated BESS to
alleviate the slow and fast voltage fluctuations caused
by rooftop PVs.

The ESS as a backup power supply includes two forms:
Emergency power supply and uninterruptible power
supply. The emergency power supply is an independent
power supply device that provides power supply for
critical loads in the event of a power outage, enhances the
flexibility of the grid, and protects lives and properties
against losses from power outages (Zhou et al., 2018).
The uninterruptible power supply is a power supply
system that guarantees an uninterrupted power supply,
providing clean, adjustable, and uninterrupted power for
sensitive loads such as data centers, communication
systems, and medical support systems (Aamir et al.,
2016). Emergency power supply emphasizes the function
of continuous power supply. The uninterruptible power
supply is generally used for precision instrument load,
which requires high power supply quality, provides near-
instantaneous protection, and prevents input power
interruption. It emphasizes inverter switching time,
output voltage, frequency stability, and purity of output
waveforms. Both emergency and uninterruptible power
supplies are inseparable from the participation of ESS.
Mitra (2010) studies the determination of the power and
energy capacity of the ESS as backup power to meet
specific reliability goals.

Black start refers to the self-recovery process of the
system after a large-scale power failure (Qiu et al., 2016).
This process does not rely on the help of other networks.
The generator units with self-start ability drive the
generator units without self-start ability and gradually
expand the recovery scope to the whole system. When
the power grid fails as “all black”, the ESS enters an
island operation state, which completely relies on the
stored electric energy to maintain its operation and can
supply power to important loads in the area. The
independent control system of the ESS can adjust the
voltage frequency and phase during island operation and
participate in the black start of the power grid as the
black start power supply at any time (Liu and Liu, 2020).
As a black start power supply, ESS has the advantages
of simple start-up scheme, short start-up time, and low
cost. Li et al. (2020a) propose a multi-energy storage
coordinated control strategy to solve the unstable black
start. The article also establishes the black start model of

the multi-wind power storage system.

Apart from the above functions, the participation of
ESS in auxiliary services also has functions such as
delaying transmission and distribution investment, and
improving power quality and stability. As a mature model,
ESS as auxiliary service has been applied in many fields.
Relevant research should pay extra attention to starting
from reality and combine with application to carry out
new research.

5.1.2 Load transfer

Load transfer is another relatively important business
model of ESS. This model adjusts the charge and
discharge time of ESS according to the load change on
the supply side or demand side to achieve different
purposes. Accordingly, we divide the load transfer into
four modes: Renewable energy integration, peak shifting
and valley filling, price arbitrage, and seasonal energy
storage.

Renewable energy integration is a mode of dispatching
power from the perspective of the power grid or
renewable energy investment operators to use ESS when
consuming additional renewable energy. Owing to the
strong intermittence and uncertainty of renewable energy,
renewable power generation will have difficulty in
directly meeting the power demand (Tan et al., 2021). A
large amount of renewable energy incorporated into the
power grid will also cause load fluctuation of the power
grid, thereby requiring the regulation of renewable
energy power generation. The ESS eliminates its
intermittency by smoothing the power generated by
renewable energy. During the peak period of renewable
energy output, when the power supply is far greater than
the power demand, excess power will be used to charge
the ESS. Correspondingly, during the low period of
renewable energy output, the insufficient power supply
will be supplemented by the ESS to realize the transfer
of power. To effectively integrate renewable energy,
Harsha and Dahleh (2015) carry out the optimization
management and scale planning of ESS under dynamic
pricing law.

From the standpoint of the power grid, peak shifting
and valley filling are aimed at alleviating the imbalance
of load at different times and dispatching the power
delivered to the demand side through the ESS. The load
demand frequently encounters substantial variations at
different times. The complete distribution of power
according to the load demand will cause power imbalance
in the power grid, which is not conducive to the safe
operation of the power grid. Shifting peak and filling
valley aim to provide part of power through ESS during
power peak hours to reduce power grid pressure.
However, in the period of power trough, the power grid
distributes more power than the load demand, and the
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excess power will be used to supplement the energy of
the ESS. Accordingly, the effect of “transferring” the
power in the peak period to the low period can be
achieved, and the stability and security of the power grid
can be ensured. Chen et al. (2022) analyze the economic
feasibility of the joint operation of nuclear power and
BESS for peak shaving, which provides an effective
solution for determining the construction scale and
battery type.

The main body of price arbitrage is demand-side users,
which can be household users, industrial parks,
commercial buildings, or aggregators. Owing to the
quarterly mismatch between supply and demand of power
system, many places have adopted time-of-use price or
even real-time price policy, resulting in marked
differences in power costs at different times. Price
arbitrage means that the ESS stores energy when the
electricity price is low and then uses or sells the stored
energy when the electricity price is high to reduce
electricity costs or gain revenue. Research in pursuit of
cost minimization often adopts this model. Krishna-
murthy et al. (2018) propose a stochastic formula for
maximizing the arbitrage profit of storage owners under
the uncertainty of day ahead and real-time market price.
The proposed model can help ESS owners conduct
market bidding, engage in operational decision-making
and evaluate the economic feasibility of ESS.

Distinct from other load transfer modes, seasonal
energy storage achieves load transfer on a longer time
scale. Owing to the limited time and storage efficiency,
its scale is generally large and it is often invested by
power grid or power operators. Seasonal energy storage
refers to the long-time and large-capacity energy storage
technology that needs to be used to realize the energy
translation of long-time scale, stabilize the power
fluctuation of days, weeks, and even seasons, and
participate in the regulation process of months, seasons,
years, and even cross years (Converse, 2012). Seasonal
energy storage involves two energy storage modes. One
mode is to convert electrical energy into other forms of
energy for long-term storage, then converting them back
into electrical energy when used. The other mode
converts electrical energy into other forms of energy for
storage, and subsequently directly uses the forms of
stored energy without converting them back into
electrical energy. The forms commonly used for seasonal
energy storage include the power to gas, pumped energy
storage, and compressed air, heat, and cold storage,
among others. The emergence of the seasonal energy
storage mode allows stabilizing the seasonal fluctuation
of renewable energy. It can also be used to smooth the
load fluctuation on a long-time scale and even realize
spatiotemporal multi-scale transfer through other forms
of energy storage. Taie et al. (2021) investigate feasibility
of using underground hydrogen storage devices for
seasonal energy transfer in northern climates and evaluate

the technical, economic, environmental, and policy
aspects of seasonal energy storage in the studied area.

Load transfer is another relatively mature business
model of ESS, which is reflected in the scheduling model
of ESS. ESS scheduling models, including day ahead
scheduling, day scheduling, and other short- and medium-
term scheduling, have been widely applied in real life.
Future research should focus more on the real-time
scheduling of ESS in the complex supply and demand
environment after renewable energy access or how ESS
can better participate in the long-term scheduling of
energy to help implement seasonal energy storage and
even longer-term load transfer projects.

5.2 Emerging business models

Apart from traditional business models, many new
business models are emerging in the current ESS. Here,
we introduce two emerging business models: EV as
energy storage and shared energy storage.

5.2.1 EV as energy storage
As a representative of clean transportation, EVs have
constantly received widespread attention (Wu et al,,
2021; Ling et al., 2022). Especially in recent years, the
number of EVs has been rising. EVs can be used as
mobile energy storage devices to provide effective
support for the safe operation of the power grid. Using
EVs as energy storage is an emerging business model for
ESS. Here, we introduce three modes: Orderly charging,
vehicle to grid (V2G), and EVs as auxiliary services.
Large-scale random charging of EVs will increase the
instability of the grid load (Kennedy and Philbin, 2019)
and may increase the peak-to-valley load difference of
the grid. The orderly charging strategy can potentially
alleviate this problem. The orderly charging strategy
refers to the use of economic or technical measures to
guide and control the charging time of EVs on the
premise of meeting their charging demand, to avoid the
peak power consumption caused by a large number of
EVs charging simultaneously (Zhou et al., 2021a). Figure 3
illustrates the target effect of orderly charging. On the
one hand, this strategy can reduce the negative impact of
large-scale EV access on the power grid. On the other
hand, it can enable users to further reduce their costs
while meeting their charging needs. The main research
problem of orderly charging is how to coordinate the
charging time of all EVs while meeting the needs of all
users under the established goal, that is, the minimum
cost of users, the maximum income of charging stations,
or the minimum impact on the power grid. Zhou et al.
(2020) propose a coordinated charging scheduling
method for micro-grid EVs to shift the load demand from
the peak period to the trough period. The proposed
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Fig. 3 Target effect of orderly charging.

method can support more friendly power supply—demand
interaction to accommodate the increasing penetration of
EVs and the rapid development of flexible microgrid. In
the scenario of orderly charging, the EV does not act as
an energy storage unit but an energy consuming unit to
interact with the grid. In this process, the charging load of
the EV is regarded as a “transferable load”. However, the
capacity of load transfer is constantly limited. Thus, this
model does not give full play to the peak shaving
potential of EVs.

Owing to the energy storage characteristics of EVs,
they can theoretically be used as energy storage devices
to realize the two-way flow of energy, and this function is
realized by V2G. V2G refers to the reverse transmission
of the stored electric energy to the grid when the EV is
not in use, which can alleviate the pressure of the grid
or users to obtain benefits. Figure 4 shows the basic
architecture of the V2G mode. The movable nature of
EVs makes their theoretical peak shaving ability better
than ordinary energy storage equipment. Uddin et al.
(2018) consider the feasibility of V2G operation from the
perspective of battery technology and policy. In the
scenario of V2G, the EV interacts with the power grid
as a “movable energy storage unit”, giving full play
to the peak shaving potential of the EV. However,
implementing this model is difficult and requires both
EVs and EV access equipment. Therefore, this model is
not widely used in real life. Subsequent research should
focus on evaluating its actual operation and designing the
implementation scheme.

The use of EVs as auxiliary services is another
application mode of EVs as energy storage. The types of
EVs participating in auxiliary services generally include
frequency regulation and spinning reserve. EVs are
connected to the power grid through power electronic
equipment. They have the ability to make rapid power
adjustment and have substantial load regulation potential
in large-scale scenarios. They are expected to become
important auxiliary service resources in the future. Yang
et al. (2021) propose a two-layer optimization model for
the charging and discharging of a power exchange bus,
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Fig. 4 Basic architecture of V2G mode.

which considers carbon emission allowances and the
market for peaking auxiliary services. Recognizing that
EVs are used as auxiliary services with high requirements
for required software, hardware, and communication
conditions and participating in auxiliary services will
accelerate battery aging and capacity attenuation, many
obstacles persist in promoting this mode. The design of
dispatching plans and compensation mechanisms for EVs
involved in auxiliary services as well as the feasibility
and economic evaluation after large-scale implementation
can be used as follow-up research directions.

Although the use of EVs as energy storage has always
been a relatively popular research direction, the applica-
tion of this business model in real life is not extensive.
Although the research has been quite mature, the orderly
charging technology has not been applied in real life
on a large scale. Following the successful attainment
of the technical level of hardware equipment, studying
the design of the top-level solution and how to further
reduce the cost of each link to promote its application
is necessary.

5.2.2 Shared energy storage

With a large number of distributed energy sources



Kaile ZHOU et al. Energy storage resources management: Planning, operation, and business model 385

connected to the grid, installing an independent ESS for
each user requires high investment costs. Conversely, not
fully utilizing the ESS equipment installed by users is
also a waste of investment. Installing large-scale ESS,
reducing the fixed cost of ESS, and reducing the
workload of ESS maintenance led to the emerging
business model for shared energy storage. Shared energy
storage has many different application scenarios and
modes. Here, we introduce four modes: Peer-to-peer (P2P)
power trading, community shared energy storage, cloud
energy storage, and virtual energy storage. Figure 5
shows a simple architecture of four modes of shared
energy storage.

P2P power trading mode was born with the continuous
deployment of distributed energy. In this mode, different
power prosumers do not need middlemen to trade power
directly, and the traders determine the transaction price.
Compared with the direct transaction with the power grid,
this transaction mode enables the seller to obtain addi-
tional benefits and the buyer to issue lower costs. When
all prosumers involved in power trading are equipped
with ESS, this mode realizes the connection of ESS
between different users and the real-time cross-user flow
of energy. Therefore, we classify this mode as shared
energy storage. Nguyen et al. (2018) propose an optimiza-
tion model for rooftop PV distributed power generation
with BESS in a P2P power trading environment.

d
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Community shared energy storage refers to the
installation of the same ESS for multiple users in the
community, and the installed ESS provides energy
storage services for multiple families or buildings in the
area. Benefiting from economies of scale, community
shared energy storage has a lower cost than users
installing ESS alone. In this scenario, users can share
the stored capacity. Apart from realizing the real-time
balance of energy supply and demand, it can also realize
the cross-time and cross-user flow of energy. He and
Zhang (2021) propose a double auction mechanism to
realize the interaction in the community energy sharing
market composed of distributed solar energy producers
and consumers.

Starting from the concept of cloud service and sharing
economy, some scholars put forward the concept of cloud
energy storage. Cloud energy storage uses centralized
energy storage equipment to provide users with
distributed energy storage services. Users can choose the
rental capacity and duration according to the price of
cloud energy storage and cannot continue to use it after
the lease expires. Compared with shared energy storage
in the community, cloud energy storage has a larger
scale, which not only further reduces the cost but also
enriches the user groups. With the transmission advan-
tages of the power grid, the users of cloud energy storage
can cover a large number of different types such as
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(b) Community shared energy storage

(d) Virtual energy storage

Fig. 5 Four modes of shared energy storage.
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families, industrial and commercial buildings, and
utilities within a certain range. Liu et al. (2017) put
forward the concept of cloud energy storage, analyzes the
architecture and business model of cloud energy storage,
and analyzes the profitability of cloud energy storage on
the basis of the actual power system data.

Virtual energy storage is another application mode of
shared energy storage. Unlike cloud energy storage,
virtual energy storage is not limited to using a centralized
energy storage device. Virtual energy storage uses aggre-
gators to integrate centralized and distributed energy
storage units distributed in the power grid and then
virtualize them into separable virtual energy storage
capacity, which can be sold to end users at an appro-
priate price. Zhao et al. (2020) express the interaction
between the virtual energy storage aggregator and the
user as a two-stage problem. The first stage determines
the virtual energy storage investment and pricing, and
the second stage determines the user’s purchase capacity
and storage operation.

As one of the business models that have emerged in
recent years, shared energy storage has been constantly
emerging with different application models. Follow-up
studies can design corresponding application models for
different scenarios and explore the economics and
feasibility. In addition, the pricing and capacity
allocation of different application modes are worthy
of in-depth study.

6 Discussion

In this section, we will discuss some challenges faced by
energy storage resource management, future research
directions, and some policy implications.

(1) Energy storage resource management considering
safety and risks. ESS is widely used in high-capacity
applications and plays an important role in voltage
regulation and frequency regulation of power systems.
Additionally, ESS safety accidents occur frequently.
Energy storage safety has become a key issue restricting
the healthy development of energy storage industry. For
example, after large amount and varied ESS scales are
connected to the distribution network as distributed
energy sources, the topology of the distribution network
will inevitably change and become increasingly complex.
In addition, protecting some branches may affect the
normal operation of relay protection devices in a
distribution network. In the research framework of
energy storage resource management, considering how
to measure and reflect the safety factors of the ESS
in the established model is important to ensure more
robust operation and risk minimization.

(2) Energy storage resource management considering
more factors under various application scenarios. With

the increasing maturity of related technologies and the
decreasing cost of ESS, the application scenarios of ESS
are becoming more diverse. In this situation, how to
combine own characteristics of each type of energy
storage device and analyze the economic benefits of
different types of energy storage technologies are highly
valuable when selecting the type and allocating capacity
of energy storage. Energy storage is highly sensitive to its
price and market compensation price, and the whole life
cycle cost of ESS should be fully considered in the
process of operation optimization. Most of the current
studies have taken the operating cost as the objective
function. However, how to make the model fully consider
various costs and better fit the actual operation of the ESS
is a problem that requires further investigation.

(3) Energy storage resource management under Energy
Internet environment. ESS is an indispensable part of
Energy Internet. In the Energy Internet environment, a
comprehensive policy system is the foundation for the
sustainable development of ESS. Industry development
and market system are the drivers of new ESS business
models. With the rapid development of Energy Internet,
the efficient operation of wind-PV-storage microgrid
system in grid-connected mode can improve the utiliza-
tion rate of new energy. Stable operation in islanding
mode also provides solution for power shortages in areas
not covered by the main power grid. In the future, with
the improvement of technology and policy system, wind-
PV-storage integration and multi-energy complementarity
have an excellent development potential. Therefore,
exploring the emerging energy storage resource manage-
ment issues is vital under the complex microgrid, energy
hub, and integrated energy service environment.

7 Conclusions

ESS is an important part of an energy system and can
compensate for the randomness, intermittence, and uncon-
trollability of distributed energy resources and improve
the interaction between producers and consumers.
Apart from the electrical engineering and chemical
materials related issues, the energy storage resources
management is also a critical research concern for the
investment, deployment, operation of ESS, as well as
coordination with other distributed renewable energy
resources and the whole power system. From the
engineering management perspective, we present a
systematic review of the ESS planning, ESS operational
management, and ESS business model.

ESS has been widely used in real life. Energy storage
resource management is an essential part of the
continuous development of ESS. The continuous innova-
tion of energy system operation mode and information
technology has provided new background and technology
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for energy storage resource management, which continues
to give rise to new research. Representative directions
include but are not limited to the following.

(1) Synergistic optimization of multiple loads in the
context of integrated energy services with ESS. With
the increasing synergy of different energy resources,
integrated energy services have become an important
model for energy systems. Simple power storage is no
longer sufficient for the multi-energy interaction process.
In terms of energy storage, the organic combination of
various forms of energy storage such as electricity, heat,
and cold storage is a new research point. Whether for
planning, operation management, or business model,
huge changes brought by the demand for diversified
energy storage are anticipated.

(2) Integration of big data and artificial intelligence
with energy storage resource management. The operation
process of energy system generates a huge amount of
data, and various machine learning algorithms can help
organize and analyze big energy data, which in turn can
provide extra reliable support for the planning and
operation of ESS.

(3) Blockchain models and methods supporting the
emerging business model of ESS. In view of the
transparency, privacy protection, tamper-evident, and
smart contract features of blockchain, the blockchain
platform can provide a unique management model for
the market mechanism and scheduling of EVs and the
interaction between users of shared energy storage.

In the future, with the transformation of energy systems
in various countries, managing energy storage resources
will gain increasing attention. Effective and efficient
management of ESS resources can provide a strong
support for building cleaner, low-carbon, flexible, and
secure energy systems.
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