Front. Eng. Manag. 2022, 9(2): 214-220
https://doi.org/10.1007/s42524-022-0192-6

REVIEW ARTICLE

Weimin DAI, Jian-Qiang HU, Lei LEI

Discrete-event stochastic systems with correlated inputs:
Modeling and performance evaluation

© Higher Education Press 2022

Abstract In the majority of the previous works on
discrete-event stochastic systems, they have been assumed
to have independent input processes. However, in many
applications, these input processes can be highly corre-
lated. Furthermore, the performance measures of the sys-
tems with correlated inputs can be significantly different
from those with independent inputs. In this paper, we
provide an overview on some commonly used methods for
modeling correlated input processes, and we discuss the
difficulties and possible future research topics in the study
of discrete-event stochastic systems with correlated inputs.

Keywords discrete-event stochastic system, correlated
input, performance evaluation

1 Introduction

Traditionally, in the study of discrete-event stochastic
systems, the input processes that drive these systems are
assumed to be renewal processes, that is, they have
independent and identically distributed (i.i.d.) inter-
event times. However, in many applications, the input
processes of discrete-event stochastic systems are often
correlated (e.g., inter-arrival times and service times of
customers in queuing networks (Szekli et al., 1994; Choi
et al., 2008) and the demands over multiple periods in
inventory systems (Shang, 2012; Hu et al., 2016)). Diaz
et al. (2016) indicated that advertising campaigns may
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create a dependence effect (e.g., induced autocorrelation)
on the probabilistic demand. Carrizosa et al. (2016)
indicated that demand is usually correlated along time;
thus, assuming that demands over multiple periods are
independent is practically unrealistic. Capturing the depen-
dence of these correlated inputs is important because it
has significant influence on performance measures.
Furthermore, in some cases, one might be interested in
the effect of the correlation on performance measures.
Unfortunately, studies on discrete-event stochastic
systems with correlated inputs are few. In dealing with
such systems, we face two major difficulties: One is how
to model correlated inputs, and the other is that readily
available analytical methods are limited.

In this review paper, we want to give a brief
introduction on some of the commonly used models to
characterize correlated input processes (e.g., autoregres-
sive (AR), AR-moving-average (ARMA), and AR-to-
anything (ARTA) processes; transform expand sample
(TES) models; Markov-modulated processes; and copula-
based models) and compare their advantages and disad-
vantages. More importantly, we want to discuss some of
the recent works and explore possible future research
directions in this area, so that more researchers may
become interested in pursuing related research topics.

First, we are interested in how to model a time series
X,, which can be thought as an input process for a
discrete-event stochastic system (e.g., inter-arrival times
or service times in a queue or demands over multiple
periods of an inventory system). Particularly, we assume
that X, is correlated. In stochastic simulation, and
particularly in the framework of input modeling,
generating a time series with a given correlation structure
(e.g., lagged autocorrelations) and marginal distribution
is a related problem considered in many studies (Kuhl
et al., 2010; Kugiumtzis and Bora-Senta, 2014; Bardsley,
2017). Thus, we would like to model X,, for example,
under the assumption that its marginal distributions and
lag-1 autocorrelation are given. We would also like to
know how to analyze a stochastic system with X, (or
maybe several series of X,) as its inputs, in which case
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we would use a G/G/1 queue (an infinite-capacity
queuing system with general independent input, general
service process and a single server) as an illustrative
example. For the G/G/1 queue, the inter-arrival time
between customers n and n+ 1, denoted as A,, and the
service time of customer n, denoted as S,, can be
regarded as two streams of input processes, and they can
also be correlated with each other. In this setting, we are
interested in some performance measures of the G/G/1
queue, such as the average waiting time of a customer.

The rest of the paper is organized as follows. Section 2
gives an overview on four methods for modeling
correlated processes and discusses their advantages and
disadvantages. Section 3 discusses how to model and
analyze discrete-event stochastic systems with correlated
inputs. Section 4 presents some possible research direc-
tions in this area.

2 Models for correlated inputs

In this section, we present four models for correlated
input processes. They are AR’/ARMA/ARTA processes,
TES processes, Markov-modulated processes, and
copula-based processes. We also discuss some of their
advantages, disadvantages, and relationships.

2.1 AR, ARMA, and ARTA processes

AR process, which assumes the normality of an input
distribution, is perhaps the most widely used one in the
literature for modeling time series data with correlation.
An AR process of order p, denoted as AR (p), is defined
as (Box et al., 1970)

Xn = alxn,l +a2Xn,2+...+aan,p+En, (1)

where ¢, is normally distributed with a mean of 0 and
variance of o2 In the AR(p) model, X, is expressed as
a weighted sum of X; (i=n—-p, ..., n—1) plus an inno-
vation €, The AR(p) model can be extended to an
ARMA (p, g) model, which combines the AR model with
a moving average of previous ¢ innovations, that is,

X,=a X, +..+a,X,_,+e,-06_—..—0_, (2)

AR and ARMA processes can generate random
samples with a normal marginal distribution but cannot
be used in problems in which input variables are not
normal. ARTA processes are therefore introduced to
model other types of marginal distribution (Cario and
Nelson, 1998). Briefly, to construct an ARTA process
{Y,}, we initially apply the standard normal cumulative
distribution function @ on X, and then use the inverse
transformation method to obtain Y, = F;' (®(X,)), with
X, being the AR(p) process defined by Eq. (1) and Fy
being the marginal distribution of Y,. The variance of ¢,
in the ARTA process is set to be

O—Z =1- CY]COIT(XH, Xn+l) - aZCOIT(Xn’ Xn+2) e
—a,Corr(X,, X,.p), 3)

so that the marginal distribution of X, is the standard
normal; hence, ® (X,) is uniformly distributed over [0, 1).
With this, we can obtain an ARTA process for any given
marginal distribution F,. For example, for the G/G/1
queue, the inter-arrival times can be constructed as
F'(D(X,)), or the service times as F' (D (X,)).

Due to their simplicity and linearity, AR and ARMA
processes have been widely used in the literature. In some
cases, they are used for analytical analysis. However, the
main drawback is their requirement of normal marginal
distribution. ARTA processes are developed to overcome
this difficulty, but the dependence structure they can
capture is still quite limited. In fact, an ARTA process for
fitting a specified lag-1 autocorrelation is considerably
difficult to construct. To summarize, the three processes
are mainly suitable for modeling linear correlation but are
not highly appropriate for other dependence structures,
such as tail dependence.

2.2 TES models

We now present the second model for correlated
processes: TES. TES was first introduced by Melamed
(1991) and investigated in detail later by Jagerman and
Melamed (1992). The basic idea of TES is to generate
two correlated processes {U;} and {U;}, which have a
uniform marginal, and then transform them to variables
with arbitrary marginal distributions via the inversion
method. Therefore, generating {U;} and {U;} is the key
in TES, and they are also called TES background
sequences.

We now illustrate how to construct {U;} and {U;}. A
basic TES model is parameterized by a pair of parameters
(L, R): —0.5 < L <R <0.5. The function of these param-
eters is to achieve the full range coverage of lag-1
autocorrelation: {U;} covers the positive range [0, 1] and
{U;} covers the negative range [—1, 0]. This function
also motivates the use of superscripts “+” and “—” in
TES modeling.

For any real number x, let | x] = max{integer n : n < x}
denote the integral part of x, and (x) = x—|x] denote the
fractional part of x. Let {V,} be a sequence of i.i.d.
uniform random variables on [0, 1). Furthermore, let U,
be a uniform random variable on [0, 1) and assume that
it is independent of {V,}. Sequences {U'} and {U;}
are recursively defined by

Uo, n=0
Ur= ,
(U ,L+(R-L)V,), n>0
U, if n is even
U= . @)
1-U;, ifnisodd
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The TES background processes {U:!} and {U;} are
stationary Markovian processes with uniform marginals
on [0, 1), and {V,} only influences the second-order
properties of the TES process (Melamed and Hill, 1995).
The foreground sequences of TES processes, {X'} and
{X:}, can be obtained by the inverse transformation. For
instance, if F (x) is the marginal distribution of the input
process, then processes {X'} and {X;} can be obtained by
letting X* = F~' (U?) and X, = F~' (U;), respectively.

Autocorrelation  functions pj,(r) and p; (1) are
defined as
+ E [X:X:z—w] —,Lti - E [X;Xn_ﬂ] _l'li
pp()=—""—"7TF—,p,(0)= ———,
Oy X
=1, 2, .., (5)

where py and oy are the mean and variance of {X} and
{X;}, respectively (notice that {X'} and {X;} have the
same mean and variance). One advantage of the TES
model is that it can accommodate autocorrelation func-
tions with various shapes. Particularly, when R+ L =0,
the resultant autocorrelation function is monotonically
decreasing to zero with respect to 7, and when R+ L # 0,
the autocorrelation function is oscillatory with respect to
7 with envelopes converging to zero.

TES can be applied to model a broad class of correlated
time series inputs with general marginal distributions and
various dependence structures. It has the ability to
simultaneously fit any given marginal distribution and
lag-1 autocorrelation. It can also cover a wide range of
autocorrelation functions, including monotone and oscil-
latory ones. Computationally, TES sequences are fairly
easy and efficient to generate; hence, TES is highly
suitable for Monte Carlo simulation (Melamed, 1993).
However, similar to AR/ARMA/ARTA processes, TES is
mostly effective when autocorrelations are linear, and
using it to model correlated inputs with tail dependence
is difficult.

2.3 Markov-modulated processes

Another popular method used to model correlated
processes is based on Markov-modulated processes. A
Markov-modulated process is a stochastic process whose
correlation is induced by the underlying Markov process,
and it can be defined as follows.

Let {M,} be an irreducible discrete-time Markov
process with state space S and transition probability
matrix P = (p;)), .s- Let F;(x) be the distribution function
of X,, given that M,_, =i, M, = j, that is,

Fij(x)=Pr(Xn<x|Mn71 =i9 Mn=j)' (6)

We then say X, is a Markov-modulated process driven
by {M,}.

Markov-modulated processes were first introduced to
model correlated inter-arrival and service times for
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queues (Neuts, 1979). A special case of Markov-
modulated processes is the Markov-modulated Poisson
process (MMPP), in which F;;(x) is an exponential
distribution for all 7, j € S. MMPP can also be thought as
a doubly stochastic Poisson process with rate depending
on a Markov process {M,}. Markov-modulated processes
can be further extended to batch Markov-modulated
processes to allow multiple events occurring at once
(Lucantoni, 1991). For a thorough review of Markov-
modulated processes, the reader is referred to Cesar
(2015).

Girish and Hu (1999) discussed how to fit a Markov-
modulated process to the departure process of the G/G/1
queue, {D,}. Suppose {D,} has the k-th marginal moment
of m, and the lag-1 autocorrelation r (which are given).
If we want to use a Markov-modulated process X, to
fit {D,}, then we have

m, = Z Zn,.p,.,aijk, k=1,2, .., K,

€S jeS

r= Z Z Zﬂ'ipijpj/aijlajn —m?, (7

€S jeS (teS

where m; is the steady state of the underlying Markov
process {M,}, and a;; is the conditional moments of
X, defined by a;; =E[X'|M,., =i, M,=j]. We have
(K +1)|S|*=|S|) parameters with K + 1 equations. There-
fore, we have considerable flexibility (or uncertainty)
to construct the Markov-modulated process. Given that
Eq. (7) is a set of nonlinear equations, it is generally
difficult to handle.

Markov-modulated processes preserve many traditional
Markovian properties; thus, analysis under the frame-
work of a Markov process is relatively easy. However,
the Markov-modulated processes have two main short-
comings. First, the effects of correlation are difficult
to be separated from those of marginal distributions.
Second, Markov-modulated processes are often over-
parameterized for statistical purposes.

2.4 Copula-based models
A copula function is a multivariate probability distribu-

tion function with uniform margins. Formally, a d-
dimensional copula C : [0, 1]* — [0, 1] is the cumulative

probability function of a random vector (U, ..., U,;) with
a uniform margin, as shown as follows:
Cuy, ..., ug)=Pr(U, <uy, ..., U;<u,). ®)

If X; is a random variable with continuous probability
function F;(x), then U, = F;(X;) is uniformly distributed
on [1, 0). This condition enables us to relate (F, (X,), ...,
F,(X,)) to a copula function. Particularly, the following
results are very useful (Nelsen, 2000).

1) Let C be a d-dimensional copula function, and
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F,, ..., F,be univariate cumulative distribution functions.
Then, the function

s X)) = C(Fy (%)), ooy Fu(x))), ©

for all (xi, ..., x,) € R(d >2) is a d-dimensional cumu-
lative distribution function with margins F, ..., F.

2) Let H be a d-dimensional cumulative distribution
function, and F,, ..., F, be continuous univariate
cumulative distribution functions. Then, there exists a
unique d-dimensional copula, such that

H(-x17

C(uyy ooy ug) = H(F; (), ..., F;' (1)),

for all (uy, ..., uy) € [0, 11°(d > 2).

The above results are usually referred as Sklar’s
theorem, based on which we have: For any marginal
distribution F; (i=1, ..., d) and a copula C, there exists
a joint distribution function H, such that Eq. (9) holds.
On the other hand, for any given joint probability
distribution function H, there exists a unique copula,
such that Eq. (10) holds if the marginals are continuous.
The concept of copulas allows us to decouple the
dependence structure among random variables from their
marginal distributions. This function gives us the
flexibility of constructing random variables with given
marginal probability distributions in conjunction with
various types of dependence structure, and it makes
studying the effects of correlations considerably easier.

Although most of the previous works on copulas have
focused on modeling the contemporaneous dependence
among multiple random variables, a stream of literature
has also used copulas to model the temporal dependence
of univariate time series inputs. Darsow et al. (1992)
provided the characterizations of first-order!) Markov
processes in terms of two-dimensional copula, and
Ibragimov (2009) obtained the characterizations of a
copula-based time series to be a higher-order Markov
process.

We now illustrate how to construct a Markov process
based on copulas. Let {Y;} be a Markov process with a
continuous marginal distribution G. The process can be
fully characterized by the bivariate joint distribution of
{Y,.;} and {Y,}, say, F (¥, ¥,). On the basis of Sklar’s
theorem, the joint distribution function F( ¢, *) can be
uniquely expressed in terms of the marginal distribution
G and a bivariate copula function C(*, *), as shown
as follows

(10)

FQu, y)=C(GH1), GO). (11)

Thus, we can completely specify a Markov process with
its marginal distribution and a bivariate copula.

In most cases, simulation is the only tool available to
study copula-based processes/systems. Here the first key
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question is how to generate random variables with copula
distribution functions. It is nontrivial and often compu-
tationally intensive. Suppose (U, ..., U;) have joint
copula distribution function C. Then, the conditional

distribution of U,, given the values of (U, ..., U,_,) is
Co(ue luyy .oy )
ZPI'(Uk < Uy | U] < Uy, ..y Uk—l < uk—l)
0C(uyy s s 1, 1)/(9""C(u1, v Uy 1, 0y 1)
a ou,...0u,_, Ou,...0u;_, '
(12)
Hence, (U, ..., U,) can be generated as follows.

* Generate a random variate U, from U (0, 1).
* Generate a random variate U, from C,( * | U,).

» Generate a random variate U, from C,( * | U4, ..., U ).

With (U, ..., U,;), any random variables (X, ..., X,)
can then be generated as

(Fl_l(Ul)$ sy FJI(UzI))$ (13)

as per Sklar’s theorem, where F; is the marginal

distribution of X; (i=1, ..., d). However, generating

random variables in such a way often requires

considerable computation efforts. First, the conditional
distribution Cy (u; | u,, ..., ur_;) does not generally have
an analytical formula, and a root-finding algorithm may
have to be used. To overcome this difficulty, Marshall
and Olkin (1988) proposed an alternative approach to
more efficiently generate samples for Archimedean
copulas, an important family of copulas. Second, the
inversion calculation of marginal distribution functions
can be difficult in many cases, such as for Erlang and
hyperexponential distributions.

The copula-based method has two clear advantages in
modeling correlated input processes. First, it can com-
pletely separate marginal distributions and correlations
via copula functions. Second, the availability of many
different copula families makes it possible to model
different types of dependence, including nonlinear,
asymmetric, and tail dependence. In comparison, the
ARMA process can only capture linear dependence in
correlation. Lei et al. (2022) showed that even at the same
level of linear correlation in input processes, system
performances may be quite different, and copula-based
models are more advantageous in capturing and fitting
different structures of dependence.

2.5 Relationship among the four models

Some of the four models are in fact related to one
another. For example, an ARTA process can be viewed

D A process {X;};cr is called as Markov process of order k> 1 if, for all 1] <...<ty_j4] <..<t, <t, Pr(X; <x| Xy, «ces Xop 11> - X1,)

= Pr(Xt <X | an—k+l s eeey X[”) .
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as a special case of the copula-based model. Similar to
ARTA, Cario and Nelson (1998) also developed the
method, Normal-To-Anything (NORTA), for random
vectors. On the basis of this work, Biller and Nelson
(2003; 2008) developed the method of vector ARTA
(VARTA). The Gaussian copula is actually the key
ingredient in these transformation-based models. Biller
(2009) illustrated the shortcomings of VARTA and
extended it to general copulas instead of the specific
Gaussian copula. The copula-based model and Markov
processes are also closely related (Lei et al., 2022). Lei
et al. (2022)’s study showed that discrete copula-based
processes can be transformed to Markov-modulated
processes. Conversely, TES and copula-based models
use the similar idea in their construction of correlated
processes, that is, they initially generate correlated
process with uniform marginal distribution and then use
the inversion method in their transformation.

3 Systems with correlated inputs

Lei et al. (2022) proposed to use the framework of gener-
alized semi-Markov process (GSMP) to model discrete-
event stochastic systems with correlated inputs. Although
it focuses on copula-based correlated input processes, it
can be applied to any of the four models discussed in this
paper. For details of the GSMP framework, the reader is
referred to Lei et al. (2022). Essentially, GSMP provides
a formal way to simulate or generate sample paths of
discrete-event stochastic systems. It is particularly useful
when the method of simulation is needed. Generally,
obtaining analytical results for discrete-event stochastic
systems with correlated inputs is considerably difficult.
Therefore, in most cases, simulation is probably the only
tool available.

AR/ARMA/ARTA models have been used to study the
effect of autocorrelation. For example, they are used to
model correlated demands in investigating information
sharing and demand propagation, where sharing sales
information has been viewed as a major strategy to
counter the so-called “bullwhip effect” (Lee et al., 1997).
Lee et al. (2000) found that the value of sales information
sharing can be high especially when demands are signifi-
cantly correlated over time, modeled by an AR(1) pro-
cess, because when correlation is large, current demand
information is more valuable for predicting future
demands. Zhang (2004) and Gaur et al. (2005) extended
the work of Lee et al. (2000) by studying the value of
information sharing in a supply chain where the retailer
serves an AR(p, g) demand as opposed to an AR(1)
demand. Information sharing and demand propagation
have been further investigated by using ARMA to
model the demands (Giloni et al., 2014). Pereira et al.
(2012) provided an analysis of the effect of auto-
correlation controlled by parameters in AR processes
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on the performance of a manufacturing process based
on simulation.

Livny et al. (1993) used simulation to investigate the
effect of correlation in inter-arrival and service times of
queuing systems based on the TES model. They showed
that the correlation in inter-arrival and service times has a
significant effect on the average waiting time. A similar
study on manufacturing systems was performed by Altiok
and Melamed (2001). For the G/G/1 queue with Markov-
modulated arrival time, Szekli et al. (1994) showed that
the average waiting time increases with respect to the
autocorrelation in the inter-arrival times.

Markov-modulated processes have been widely used in
queuing networks for correlated inter-arrival and service
times and inventory systems for multi-period demands.
Runnenburg (1962) investigated the effect of correlation
on the average waiting time for the G/G/1 queue with an
integer-valued Markov-modulated arrival process and
exponential service times. Fischer and Meier-Hellstern
(1993) demonstrated that the MMPP is quite useful for
modeling correlated arrival processes because it cap-
tures the important correlations while still remaining
analytically tractable. Patuwo et al. (1993) used the
Markov-modulated arrival process to study the effects of
serial correlations in the arrival process. Patuwo et al.
(1993) studied the G/G/1 queue with a two-state Markov-
modulated inter-arrival process with the mixture of
Erlang marginal probability distribution. Fischer and
Meier-Hellstern (1993) derived a number of analytical
results, including queue length distribution and waiting
time distribution for the G/G/1 queue with Markov-
modulated Poisson arrival process. Szekli et al. (1994)
showed that the average waiting time increases with
respect to the autocorrelation in the inter-arrival times for
the G/G/1 queue with Markov-modulated arrival time.
Lim et al. (2006) studied the departure process of the
G/G/1 queue with Markov-modulated Poisson arrival
process. For the G/G/1 queue with Markov-modulated
inter-arrival and service times, the method of Wiener—
Hopf factorization was developed to analyze the average
waiting time; however, it is not highly effective because
it relies on solving a system of integral equations. Zhu
and Li (1993) developed an effective algorithm to
calculate the moments of the waiting time based on the
method of MacLaurin series analysis, a method first
proposed by Gong and Hu (1992) to analyze a traditional
G/G/1 queue with i.i.d. inter-arrival and service times. Hu
(1996) extended the method to analyze the departure
process of the queue. Hu et al. (2016) applied the same
method to an (s, §) inventory system with Markov-
modulated demands to calculate the moments of the
inventory level, based on which various performance
measures of the system can also be evaluated.

As mentioned earlier, the copula-based method can be
used to model various dependence, including nonlinear,
asymmetric, and tail dependence; hence, it has attracted
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considerable attention in recent years. It has been widely
used in financial and insurance risk managements (Frey
and McNeil, 2003; Embrechts, 2009). The wide range of
copula families and their ease to fit arbitrary marginal
distributions enable one to select the desirable copulas
that satisfy the required properties or fit empirical data.
The benefits of using copulas in modeling dependence
structures of inputs and the review of techniques to con-
struct copula-based input models representing positive
tail dependencies are referred to Biller (2009) and Biller
and Gunes Corlu (2012). Biller (2009) proposed a
copula-based multivariate time-series input model and
developed efficient fitting and sampling algorithms for
the model, which are suited for driving large-scale
stochastic simulation. Jaoua et al. (2013) used a copula-
based approach to model a type of asymmetric depen-
dence structure, which is found in empirical data, and
explored the sensitivity of the pooling decision in a multi-
skill call-center with respect to the dependence. Their
simulation results showed that the assumption of indepen-
dence, as well as the misspecification of the dependence
structure, can lead to substantial errors in call-center
performance.

Some attempts have been made recently to develop
analytical tools for discrete-event stochastic systems with
correlated inputs; the use of MacLaurin series analysis
to study queuing and inventory systems with Markov-
modulated inputs is one example. For systems with
copula-based correlated inputs, Lei et al. (2022) proposed
a method based on discretization, which converts such
systems into systems with Markov-modulated inputs.
Nevertheless, considerable works remain to be done.

4 Future research directions

We believe that several exciting future research direc-
tions are worth pursuing in this area, as listed as follows.
* Analytical tools should be developed in the study of
discrete-event stochastic systems with correlated inputs.
As mentioned earlier, analytical results for discrete-event
stochastic systems with correlated inputs are generally
extremely difficult to obtain. Simulation is probably the
only method available in most cases. However, two
methods seem to be promising. One is to use the theory
of Markov process. For example, if we use Markov-
modulated processes as inputs, then we can most likely
model the resulting discrete-event stochastic systems as
Markov systems. One major difficulty is perhaps the
large size of state spaces, which can make analytical
results infeasible to obtain. Another method is based on
the technique of MacLaurin series, as discussed in
Section 3. Previous works that have mainly focused on
Markov-modulated correlated processes would be inter-
esting to extend to other types of correlated process.
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* For most problems in the area of discrete-event
stochastic systems, input processes are traditionally
assumed to be independent. Therefore, what if inde-
pendent inputs are replaced by correlated inputs is an
idea worth exploring.

* The effects of the correlations of input processes on
discrete-event stochastic systems should be studied. Here,
the key is to select suitable correlated input models to
obtain analytical results. Simulation can always be used
as the last resort in the study of this type of problem.

* Efficient computation methods for constructing copula-
based correlated inputs should be developed. We believe
the copula-based model is the best among the existing
correlated models for correlated input processes in terms
of its flexibility to separate correlations from marginal
distributions and its ability to cover a wide range of
correlation structures. However, handling copula-based
correlated processes, particularly when simulation is the
only tool available, is relatively more difficult because
generating samples for copula random variables often
requires significant amount of computation -efforts.
Therefore, efficient methods must be developed to
generate a sample of random variables with copula
distributions.

* Good methods must be developed to fit a correlated
input model to real data. Although we have several
different models for correlated processes, we lack
efficient statistical methods to fit these correlated models
to real data. Unless this issue can be resolved, applying
these models in real-world problems will be difficult.

* The applicability of correlated input models must be
studied based on real data in various applications.
Currently, which correlated model is more suitable for
correlated input processes in many various application
problems remain unclear. Therefore, more empirical
studies are needed.
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