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ABSTRACT In structural health monitoring (SHM), the measurement is point-wise but structures are continuous.
Thus, input estimation has become a hot research subject with which the full-field structural response can be calculated
with a finite element model (FEM). This paper proposes a framework based on the dynamic stiffness theory, to estimate
harmonic input, reconstruct responses, and to localize damages from seriously deficient measurements. To begin, Fourier
transform converts the dynamic equilibrium equation to an equivalent static one in the frequency domain, which is under-
determined since the dimension of measurement vector is far less than the FEM-node number. The principal component
analysis has been adopted to “compress” the under-determined equation, and formed an over-determined equation to
estimate the unknown input. Then, inverse Fourier transform converts the estimated input in the frequency domain to the
time domain. Applying this to the FEM can reconstruct the target responses. If a structure is damaged, the estimated
nodal force can localize the damage. To improve the damage-detection accuracy, a multi-measurement-based indicator
has been proposed. Numerical simulations have validated that the proposed framework can capably estimate input and
reconstruct multi-types of full-field responses, and the damage indicator can localize minor damages even with the
existence of noise.

KEYWORDS dynamic stiffness, principal component analysis, response reconstruction, damage localization, under-
determined equation

1 Introduction researchers have principally developed two methods of
load estimation.
1.1 Literature review The first method can only estimate the vehicle loads,

known as the bridge weight in motion (BWIM). BWIM

In structural health monitoring (SHM) of the bridges, the o 1¢(5 the vehicular information based on the principle

external mput, including vehicle and wind loads, ' of influence line that is generally obtained by a finite
unknown, but important. However, the measurement is

severely deficient compared with the number of degrees elemept rdeel (FEM)’ or in-sifu measurements [.l]j T.he
of freedom (DOFs). Computation of the real load optimization algorithms have been adopted to minimize
distribution on a bridge from the monitored data, the difference between the measured and computed

responses to optimize the vehicle information, including
Article history: Received Mar 7, 2021; Accepted Dec 12, 2021 the axle weight, speed, and wheelbase [2,3]. Researchers



https://doi.org/10.1007/s11709-022-0805-5

Yixian LI et al. Dynamic stiffness for harmonic in-output estimate

have also developed the orthotropic BWIM algorithm,
influence area method [1], and shear force method [4].
The main difficulties of BWIM include non-constant
vehicle speed [5], multi-vehicle problem, lateral distribu-
tion [6], and dynamic load identification [7]. The moving
force identification can settle the dynamic vehicle load
problem [8,9], whereas, the other difficulties are still
challenging.

The second method has been developed to apply to
general loading distributions. At present, there are two
types of expression. The first one [10] rewrites the
dynamic equilibrium equation into the modal coordinates,
obtains the impulse response matrix in the discrete-time
by the Duhamel integral, calculates the modal force
acting on the structure, and finally solves the ill-posed
problem by regularization method [11] or iteration
method [12]. The second type [13—15] adopts the
expression of the state-space equation to estimate the
input and optimize the estimated force by various
approaches [16]. Gillijns and de Moor [17] firstly
proposed a method of unbiased determination of system
input with mathematical proof [18] when the dimension
of the observation vector is equal to the DOFs. Also in
complement, Hsieh [19] proposed an input estimation
method when the dimension of the observation vector is
less than the DOFs.

Since the state space expression has a similar expre-
ssion with the Kalman filter theory, it has been widely
used in input estimation. The extended Kalman filter [20],
and robust Kalman filter [21], have been developed to
identify both the Ilinear system and the input
simultaneously [22]. Besides, the updated Kalman filter
applied to non-white noise [23] is proposed for load
estimation [24,25] and damage identification [26,27]. The
unbiased load estimation method under the modal
coordinates and orthogonal decomposition [28] has also
been developed.

In structural dynamic analysis, the harmonic load is an
important load type but lacks study. It usually results in
overly large vibration, such as vortex-induced resonance,
and a structure tends to damage more under the harmonic
input. Therefore, the focus of this study is the harmonic
load.

In the former research of the authors [29,30], a static
load estimation and deformation reconstruction method
was proposed. This paper extends the method to the
dynamic scope. The full-field response is computed using
FEM and the estimated input.In addition, the estimated

Fig. 1
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load can localize the structural damages based on the
concept of the equivalent damage load.

1.2 Static equivalent damage load

Sun et al. [29,31] proposed the concept of the static
equivalent damage load [32,33] to identify damage in
beam-like structures. The mechanism is shown in Fig. 1.
Under identical static load ¢(x), the deflection curves of
the undamaged and damaged beam are w' and wP,
respectively. The magnitude of w" is greater than w"
because the stiffness decreases due to damage. The
equivalent damage load g(x) is computed from the
difference between w” and w" and it is a virtual load. The
deflection of the undamaged beam under the action g(x)
is equal to w°—w". Theoretical deductions demonstrate
that the equivalent damage load exists merely in the
damaged area, and thus, the equivalent damage load is a
good damage indicator.

Inspired by the static equivalent damage load, this
paper extends it to the dynamic scope using the dynamic
stiffness theory. The theoretical basis of the dynamic
stiffness theory is the Fourier transform, by which the
dynamic equilibrium equation is transferred to an
equivalent static equation in the frequency domain. As
the governing equation in the frequency domain is similar
to the static one, the static mechanics-based equivalent
damage load applies to the dynamic scope as well.

The paper is arranged as follows. Section 2 is the
theoretical basis where the basic assumptions, the
dynamic stiffness theory, and the solution of the under-
determined equation are introduced. Section 3 represents
the response reconstruction process using a three-span
continuous beam bridge model. Section 4 shows how to
localize the damage using the proposed framework.
Section 5 is the conclusion. It should be noted that the
proposed method merely applies to the linear beam-like
structures subjected to harmonic load.

2 Theoretical basis
2.1 Procedures and assumptions of the algorithm

This paper aims to obtain the position, frequency, and
amplitude of the harmonic loads using a small number of
sensors. With the estimated force and FEM, the full-field
response is easy to calculate. The specific steps are listed
as follows.

The concept of the static equivalent damage load.



450

1) Convert the dynamic equilibrium equation into the
frequency domain by the Fourier transform.

2) Form an under-determined equation about the un-
known input.

3) Adopt the principal component analysis to solve the
under-determined equation and estimate the equivalent
nodal force in the frequency domain.

4) Use the inverse Fourier transform to transfer the
equivalent nodal force back to the time domain.

5) Localize the damage from the estimated force in the
time domain.

6) Apply the estimated force to the FEM and calculate
the full-field responses.

Basic assumptions of the proposed algorithm include:

1) the position, frequency, and amplitude of the input
do not change;

2) the FEM without damage is known;

3) the studied structure is linear.

For different structures, difficulty in satisfying the
above assumptions varies. For civil structures, the input is
complex and only the artificial exciter satisfies the
assumptions. For mechanical and aerospace equipment,
the basic assumptions are easier to provide.

2.2 Fourier transform

The Fourier transform is an effective tool to analyze the
linear time-invariant system. For completeness, the for-
mulas of the Fourier transform are briefly introduced:

FIO)=F@) = [ foetar, (1)

1 joo )
FUF@I=f0= 5 [ Fddw, @

where j = (=1)"?. Equations (1) and (2) are rewritten as:

{T[f(t)] =F(w), 3)
FF ()] = f(0).

If f(¢) in Eq. (1) is the derivative with respect to time,
there is:

o)

o “4)

[0

Equation (4) indicates that the Fourier transform can
transfer the differential calculation in the time domain to
the multiplication in the frequency domain. It is noted
that the Eq. (4) is satisfied only with a zero-initial
condition, i.e., f{0) = 0. For engineering problems, it is
difficult to provide a zero-initial condition. With the non-
zero initial condition, Eq. (4) becomes:

T[w} = jwF(w) - f(0).

& )
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With the non-zero initial condition, the expression of
the Fourier transform for the second-order derivative
becomes:

o0

?_[dzf(t)] _ @
d

dr

©df(®) i,
) wL & edr

= =f(0) +jwljwF (jw) - f(0)]
=~ F(w) = jwf(0) - f(0). (6)

The displacement, velocity, and acceleration can
convert to each other by the Fourier transform. In
practice, the fast Fourier transform (FFT) has high
computational efficiency and is widely used for
numerical computations.

2.3 Dynamic stiffness theory

For a linear mechanical system, the governing equation
is:

Mi+Cx + Kx = p(t), (7
where M, C, and K €R,,, are the mass, damping, and
stiffness matrices, respectively. 7 is the number of DOFs.
p(H) €R,,, is the nodal force vector at time moment 7.
With the zero-initial condition, the velocity and
acceleration after the Fourier transform can be expressed
as:

X =F(x),

X= .iT(X),
Jw

X= 7. ®)
—W

where XeC,,, is the displacement vector in the
frequency domain. The dynamic equilibrium equation is
converted to an equivalent static equilibrium equation:

(—w’M +jwC + K)X = P, 9)

where P = F[p(¢)]. In Eq. (9), (~w’M +jwC +K) € C,,, is
the dynamic stiffness D(w):

D(w) = -w’M +jwC +K. (10)

Under the non-zero initial condition, Equation (8) is not
provided. Considering the relationship in Equations (5)
and (6), the expressions in Eq. (9) become:

M[-w’X — jwx(0) - x'(0)] + C[jwX — x(0)] + KX = P.
(11

Equation (11) has lost the conciseness compared to
Eq. (9). Define:

P = P+jwMx(0) + Mx'(0) + Cx(0). (12)
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Equation (11) can be rewrriten as:

(~w*M +jwC + K)X = P. (13)

Equation (13) is an equivalent static equilibrium
equation with the non-zero-initial condition. When
merely the velocity or acceleration is available, Equation
(13) becomes:

1 -
(jwM+C+ ,—K)X1 =P, (14)
Jw
1 1 ~
(M+.—C+—2K)X2:P, (15)
jw —w

where X, and X, € C,,, are the velocity and acceleration
vectors in the frequency domain, respectively.

2.4 Solution of the under-determined equation

The Fourier transform transfers the dynamic equilibrium
equation to an equivalent static one in the frequency
domain:

D(w)X(w) = P(w). (16)

The inverse matrix of the dynamic stiffness D is the
dynamic flexibility matrix F € C,,,. F is also known as
the transfer function in system identification researches.
Equation (16) is rewritten as:

X(w) = F(w)P(w). (17)

X(w) is an nx 1 vector, and whereas, the known
elements of X(w) are at the DOFs equipped with sensors.
In SHM, the dimension of observation is far less than the
DOFs. Assuming the number of the measured displace-
ments is N, the rows corresponding to unknown elements
of X(w) are eliminated. Then, Eq. (17) becomes:

Xysi(w) = Fy (W) P,y (W), (18)

where X is a vector of the knowns and P is the vector of
unknowns. Since the dimension of knowns is far less than
the unknowns, Eq. (18) is an under-determined equation
that cannot be solved directly. The principal component
analysis is adopted to calculate the external nodal force
P(w) for each frequency w.

The principal component analysis (PCA) can
“condense” the unknowns. The column number # of Fy,,
is greater than the row number N. Thus, the columns of
Fy,, are linear correlated. Firstly, the columns of Fy,, are
normalized to provide consistency in the magnitudes.
Then, the PCA [34,35] is adopted to calculate the
maximal independent columns of the dynamic flexural
matrix Fyy,:
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RNXp = FNXnTnva (19)
RNX]) = [rl$r2"'-’rp]’ (20)

where p is the number of principal components (p < N ),
T is the transferring matrix for computing the principal
components, and r; is the ith principal component
column. The matrix R involves the first pth principal
components. With Eq. (19), there is:

F=RT'[TT"]". 2}
Substitute Eq. (21) into Eq. (18):
X =RT'[TT"]"'P. (22)
Record TT[TTT]*IP as P'. There is:
Xyxi = Ry, Py (23)

Equation (23) is an over-determined equation when
N>p and P can be determined by the least square
estimation. Finally, the equivalent nodal force P is
calculated by:

P=TP. (24)

As matrix F is previously normalized, P should be
scaled back based on the normalization factors. It should
be noted that P, (w) is the equivalent nodal force
calculated from the displacement Xy,, in the frequency
domain, and P, (w) is not perfectly identical to the real
load P(w). However, the structural displacement Xy, is
provided to be identical under P(w) and P(w), and the
distribution of P(w) is similar to that of P(w) for the
undamaged structure. Thus, we call P(w) as the
equivalent nodal force in the frequency domain. The
inverse Fourier transform in Eq. (2) is then used to
calculate p(?), i.e., the equivalent nodal force in the time
domain.

It should be noted that F is a complex matrix and the
PCA cannot directly tackle it. The damping matrix C is
assumed as zero and F(w) becomes a real matrix. Then,
the real and imaginary components of P(w) can be
separately estimated based on the PCA approach.

When the external input is unknown, p(¢) can directly
indicate the real input’s basic characteristics, including its
frequency, amplitude, and position. The complete
structural responses, such as deflection, inclination, and
strain, can be reconstructed by applying the equivalent
nodal force to the FEM. If the velocity and acceleration
of the structure are required, the sampling frequency
should be increased to provide accuracy.

2.5 Damage localization

If the structure is damaged, its static and dynamic
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stiffness decreases, and its dynamic response is greater
than the intact structure under identical input. When
estimating the input, the stiffness matrix is extracted from
the intact FEM because the damage detail is unknown,
and thus, the intact FEM-estimated input differs from the
real input. The estimated equivalent nodal force p(r)
involves two components: the real input ¢(f) and the
equivalent damage load g(?):

p(t) = q(0) + g(2). (25)

The spatial distribution of ¢(#) keeps consistent with the
real external load p(¢). In the damaged area, p(r) differs
from p(¢) since the equivalent damage load g(¢) exists.
Thus, the distribution of p(f) can indicate the damage
position by observing where g(¢) exists. In some cases,
such as the in-field experiment, the input position is
known and it is easy to detect the existence of g(f). In
other conditions, the input position is unknown. The next
step is to distinguish g(¢) from ¢(f) with unknown input
position.

The deflection, inclination, and strain can reflect the
deformation of a structure from varied scales. The
inclination is the integration of strain, and the deflection
is the integration of inclination. Therefore, the deflection
and inclination measurements are global measurements,
while the strain merely contains the local stiffness
information. The difference in information between the
deflection (or inclination) and the strain can be used to
localize the damage. The inclination, rather than the
deflection, is chosen as the measurement in this paper
because it is easier to measure and is free of a reference
point.

First, with N inclinometers, the unknown input p () is
estimated and recorded as p(?),.

When identifying the damage, totally NV, strain gauges
have been equipped on the bridge. At each sampling
moment, the governing equation is:

&(t) = Sp(1),

where ¢ € Ry, 18 the vector of the strain measurement,
S € Ry, is the influence line matrix of strain, and p is the
generalized force vector involving the inertial, damping,
and external forces.

In practice, the strain gauge number is smaller than the
FEM-DOFs, and therefore, Eq. (26) is an under-
determined equation about p(¢). Since the form of Eq.
(26) is identical to Eq. (18), the proposed PCA-based
approach can estimate the unknown generalized p(7) at
each sampling moment #. The generalized input estimated

(26)
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by strain is recorded as p(¢)’. By multiplying p(¢)’ with the
influence line matrix of the inclination (which is extracted
from the undamaged FEM), the inclination of the whole
bridge can be calculated at each sampling moment. With
the strain-estimated inclination, the algorithm in Section
2.4 can work again and the calculated equivalent nodal
force is recorded as p(?),. It should be noted that p(), is
merely based on the strain measurement. When the strain
gauges are not equipped exactly on the damage position
(which is the focus of this paper because the damage is
easy to find when a strain gauge is exactly situated on it),
the damage information is not recorded by the strain
gauges. Then, the damage indicator is obtained:

Ap = p(0), = p(1),. 27

Ap involves the information of both the inclination and
strain. Merely the inclination involves the damage
information when the strain gauges were not equipped at
the damage. This means p(¢), merely contains the input
information, and whereas, p(#), contains both the input
and damage information. The computing formula of Ap
eliminates the input information in p(#); and only the
damage information is retained in Ap.

3 Response reconstruction

3.1 Introduction of the numerical model

This study adopts a three-span continuous beam bridge as
the numerical model (see Fig. 2). The bending stiffness of
the cross-section is 1.24 x 10’ N-mz, and the linear
density is 75 kg/m. The cross-section is rectangular
whose width and height are 1.2 and 0.28 m, respectively.
The bearings are all hinged. The bridge is divided into 44
elements with a total of 45 nodes. The element number
and node number increase from left to right. Considering
merely in-plane deformation, the total DOFs is 130.
Figure 3 is the first two modes. The Rayleigh damping is
assumed for the bridge, and the first two damping ratios
are 1% and 2%, respectively.

This study uses rotations as “measurement”. The deflec-
tion and inclination are translational and rotational displa-
cements. However, the inclination has some advantages
over deflection. 1) The inclination is the derivative of
deflection, and thus, it is more sensitive to damages than
deflection. 2) Inclination is easier to measure than deflec-
tion because it is free of a reference point. There are
fifteen inclinometers equipped on the bridge (see Fig. 2).

9-12 1 13-16 [ 17-20 |

21-24 ]

25-28

o 14 T /58 ]
g element number

inclinometers

[ 29-32 | 33-36 [ 37-40 | 41-44

f 6 m }

10 m | 6 m |

Fig.2 Layout of the FEM and sensor arrangement.
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This section involves different loading conditions to
validate the applicability of the algorithm for reconstruc-
ting structural responses. It should be noted that when
reconstructing the responses, the bridge is undamaged.

3.2 Load estimation and response reconstruction

To excite the responses of more modes, a concentrated
harmonic load is applied to node No. 18. The input ampli-
tude and frequency are 1000 N and 15 Hz. The dynamic
inclinations at sensor-DOFs are calculated as “measure-
ment”. The sampling frequency is 1000 Hz. For impro-
ving the computational efficiency of FFT, the data length
is 16384.

The bridge response at the beginning two seconds
contains the impulse response component (see Fig. 7) and
is unstable. Thus, merely the data during the steady
response stage (after 2 s) is used to estimate the input.
With the estimated input, the corresponding responses
can be calculated from the FEM. The reconstructed
responses involve both the impulse and steady responses.
For the studied model bridge, the vertical load is domi-
nant. Thus, the columns corresponding to the rotational
and horizontal DOFs are eliminated in the dynamic
flexibility matrix in Eq. (17), and the calculated nodal
force is merely in the vertical direction.

Figure 4 is the map of the estimated nodal force vectors
p (). The distribution of p(#) on the bridge is similar to
the real load. Values of p(¢) are greater near node No. 18
and smaller at other positions. Figure 5 is the distribution
of p(t=2.52s) when it reaches a peak over time. The
maximum of p in Fig. 5 appears near node No. 18 (the
real loading position), while the values at other nodes are

P

N
\ / “u’

’ — Model 1 --- Model 2

1 5 9 13 17 21 25 29 33 37 41 45
node number

Fig.3 The first two modal shapes (f; =9.458 Hz, &, =1%;
f>=20.202 Hz, &, =2%).

300 ,’\

150 <y ™

0 o
-150
-300

nodal force (N)

9’\6\<

,(/">45
time (s) 72125 29333741

3\« _’(,(«I«l-
node number

Fig. 4 Time and spatial distribution of equivalent nodal force
(the real external harmonic load is at node No. 18).
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smaller. Negative forces appear at nodes Nos.22-26
which is the inherent limitation of the algorithm because
the equivalent force p is estimated from deficient measure-
ments. The resultant force between node No. 14 and
No. 26 is 997 N, which is close to the real load amplitude
of 1000 N. Therefore, the bridge responses under the real
and estimated loads are identical. One can notice that the
estimated force is the smoothness of the real load longi-
tudinally. The erroneous forces have a slight influence on
the reconstructed response since they are smaller in value.
Figure 6 is the frequency spectrum of the nodal force at
node No. 18, which accurately retains the frequency
characteristics of real input.

By applying the nodal force p(¢) to the FEM, the full-
field responses are reconstructed. Figure 7 shows the
reconstructed deflections at the bridge center, and Fig. 8
is the deflection curve when the deflection reaches the

300 —————————————————
%
1
~ 200 *
z $
3 !
& 100 *
o} * \
SO veclolpeeilk ¥
;'Sn*
7100 1 1 L 1 1 1 1 1 1 1
1 5 9 13 17 21 25 29 33 37 41 45

node number

Fig. 5 Equivalent nodal force at 2.52 s.

relative value

0 A
0 10 20 30 40 50
frequency (Hz)

Fig. 6 Frequency spectrum of the nodal force at node No. 18.

fmmmmmmm— N

3 1
| i 1]
[ A i 1
A 1
| 1
| |

l L-- _JL ————————— '— FEM calculation- - - reconstruction
I

5

displacement (mm)

Fig.7 The estimated deflection at the bridge center.
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peak in the steady response stage. Obviously, the
reconstructed deflection is accurate over both time and
space. The minor phase error in Fig. 7 can be eliminated
by moving the time axis, which does not affect other
works in SHM.

3.3 Performance under complex harmonic load

The input can be complex for the in-field bridges when
the frequency components at different positions are
varied. In this section, a more complex loading condition
is adopted. Two concentrated harmonic forces are applied
to nodes No. 7 and No. 18 with frequencies of 5 and 15 Hz,
respectively. The amplitudes of both of them are 500 N.

Figures 9 to 12 are the estimated nodal force and the
reconstructed responses. In Fig. 9, the positions of the
two concentrated forces are easy to find where two peaks
appear near nodes No. 7 and No. 18. Intuitively, one can
deduce that the load is applied to these positions. Besides,
the estimated force accurately retains the frequency
information of the real external load. The frequency of
the estimated force accords well with the real forces at
nodes No. 7 and No. 18 (see Fig. 10). By applying the
estimated force to the FEM, the complete responses can
be obtained (see Figs. 11 and 12) where the maximum
errors are 4.2% and 3.6%, respectively. The reconstructed
response is accurate over time and space, regardless of
the complex input condition.

* Strain reconstruction

Strain is important in SHM because damage always
relates to the over-large strain responses. However, the
number of strain gauges is seriously deficient because of

ol — FEM calculation
- -- reconstruction p

displacement (mm)
S

_4 1 1

1 5 9 13 17 21 25 29 33 37 41 45
node number

Fig. 8 Deflection of the bridge.

200

nodal force (N)
(=)

—200

. \6\\\\ 1

time () 3 ‘0\_\7«4\/73«;7(21 55 29 33 37 4145
9

15 node number

Fig. 9 Time and spatial distribution of equivalent nodal force.
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financial limitations or inaccessibility. The proposed
framework can also calculate the dynamic strain response
by applying the estimated nodal force p(f) to the FEM.
Figures 13 and 14 are the reconstructed strain response,
which accords well with the “measurement”, i.e., the
FEM calculation. The maximum relative errors in of them
are 8.7% and 7.1%, respectively. During the harmonic
vibration of a bridge, it is more prone to damage. With
the reconstructed full-field deflection, inclination, and
strain, a structure can be better assessed.

3.4 Influence of noise

As many factors can affect the in-situ measurement, the
monitored data inevitably contains noise. There are two
noise sources: 1) uncertainty of the input; 2) measurement

1 T T T T

|—Node7 — Node 18]

relative value

I

0 10 20 30 40 50
frequency (Hz)

Fig. 10 Frequency spectrum of the nodal forces.

T T T

~ 05 ]

= f

8

5

£ 0.0

Q

]

&

T 054 in 1

i | — FEMcalculation --- reconstruction |
2 4 6 8 10
time (s)

Fig. 11 The estimated deflection at node No. 23 (bridge
center).
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— FEM calculation - -- reconstruction |

0.4+

02+

displacement (mm)

I 1 1 I 1 I 1

17 21 25 29 33 37 41 45
node number

02 L
1 5

9 13

Fig. 12 Deflection of the bridge at 6 s.
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noise. No matter which type of noise, the noise is
reflected in the measurements. In this section, the
dynamic load is evenly acting on the whole bridge
(different loading scenario with the former sections), the
amplitude of each nodal force is 1000/45 N, and the
frequency is 15 Hz. 10% Gaussian noise is added to the
FEM-calculated results, and the equivalent nodal force is
calculated from the polluted data. Figure 15 is the
estimated force map, where the measurement noise
affects the calculated equivalent nodal force p(r). How-
ever, p(?) accurately retains the frequency characteristics
of the real input even though the frequency spectrum is
polluted (see Fig. 16). By applying p(¢) to the FEM, the
complete responses can be reconstructed. The reconstruc-
ted deflection accords well with the FEM-calculated one
in Fig. 17. The maximum relative error is 12% that is
slightly larger than the noise level. Thus, the proposed
approach is robust to measurement noise.

x107°

strain
(=)

[ — FEM calculation - -- reconstruction |

_2 1 1 1 L
2 4 6 8 10

time (s)

Fig. 13  Strain response at the bridge center.

%107
T

T T T T T T T T T

strain

— FEM calculation
-2 - - -- reconstruction .

13 17 21 25 29 33 37 41 45
node number

Fig. 14  Strain distribution at 6 s.

nodal force (N)

time (s) 0 1

node number

Fig. 15 The estimated nodal force with measurement noise.
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Fig. 16 Frequency spectrum of the nodal force at the bridge
center.
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Fig. 17 Dynamic deflection history at the bridge center.

4 Damage identification

4.1 The procedure to localize the damage

In the former section, the bridge is undamaged, where the
map of the estimated nodal force p(r) can reflect the
position, frequency, and amplitude of the real external
load. For the damaged structure, p(z) can indicate the
damage position only when the position of the real
external load is known, which is easy to implement for
in-field tests. On the other hand, the map of Ap can
localize the damage without knowing the input position.
Compared with p(t), Ap is superior to p(¢) when there is
no prior information about the input. Thus, Ap is
principally discussed in the following.

Many factors influence the performance of the damage
indicator Ap, including the damage position, damage
severity, loading position, and input frequency. This
section adopts numerical simulations to discuss their
influence. Figure 18 is the damage and loading condi-
tions. A 10 Hz and 1000 N concentrated harmonic force
is applied to node No. 18. The elastic modulus of element
No.6 is reduced by 30%.

Figures 19(a) and 19(b) are the computed p(¢) and Ap,
respectively. In Fig. 19(a), the estimated nodal force p(r)
deviates from the real load that merely acts on node
No. 18. The estimated forces near node No. 18
correspond to the real external load ¢(¢) in Eq. (25) and
they are greater than other positions. However, the nodal
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Fig. 18 The loading and damage conditions.

strain gauges

forces on the left side span (between nodes No. 1 and
No. 13) are great too, where there is no load. This is
because the stiffness of the left side span decreases, and
its deformation increases. p(f) is computed by the intact
FEM. The equivalent damage load g(f) appears in the
damaged area to provide that the dynamic deformation of
the intact FEM keeps consistent with the damaged
structure. The absolute equivalent damage load at node
No.6 is maximal that can localize the damaged element. It
should be noted that the loading position is required when
adopting p(?) to localize the damage.

Figure 19(b) is the map of Ap, the expression of which
is in Eq. (27). Since Ap is calculated from the difference
of the inclination-estimated and strain-estimated nodal
forces, the nodal force corresponding to the external force
q(®) is eliminated in Ap. Compared with p(¢), the
amplitude of Ap decreases near node No. 18, which
indicates that merely the damage information is retained
in Ap while the loading information is eliminated. The
amplitude of Ap is maximum at the damage position.
Therefore, Ap can localize the damage without knowing
the loading position. In addition, the amplitudes of the
applied load and Ap at node No. 6 are 1000 and 234 N,
respectively, which indicates Ap is sensitive to damage.

The maps of p(¢) and Ap can localize the damage with
and without the loading position. Therefore, the following
sections only discuss Ap. Varied damage scenarios and
loading conditions are discussed in detail.

4.2 Input frequency

The structural response relates to the input frequency. If
the input frequency is close to the natural frequency, the
response is greater and involves fewer orders of modes.
With varied input frequencies, the dominant mode is
different. This section discusses the influence of the input
frequency on the damage indicator Ap.

The damage and loading scenarios are still those in
Fig. 18. The only difference is the input frequency. As the
first two-order natural frequencies of the bridge are 9.46
and 20.2 Hz, this section set the input frequencies as 7, 9,
11, 15, 20, and 25 Hz, respectively. The input frequencies
of 9 and 20 Hz are close to the first two natural
frequencies. Using the varied input frequencies, the maps
of Ap are calculated. Similar to Fig. 19, they are three-
dimensional. The peaks of Ap are close to a constant by
observing Fig. 19. For a better comparison between the
maps of Ap, the spatial distribution of Ap is extracted
when it reaches a peak over time. Besides, Ap is
normalized according to the applied external load (1000
N in this section). The normalized damage indicator Ap is

plotted in Fig. 20.

The normalized Ap shows that the input frequency has
a significant influence. When the input frequency is close
to the natural frequencies (9 and 20 Hz), the values of Ap
near the damage are great and the absolute value of Ap at
element No. 6 is maximum. Thus, Ap can localize the
damage with high accuracy. In Fig. 20(a), the maximal
absolute value of Ap is 0.085, not equal to zero for the
non-damaged condition, which indicates that Ap is not
zero when the structure is undamaged. Thus, a threshold

400
~ 200
Z 0
R -200
—400
\\\ S
time (s) 3 \0(1”‘9"‘] 25 33 414
node number
(a)
500
z
g 0
&
=500
6
time (s) * T 9 17 25 B A4
node number
(b)
Fig. 19 The maps of (a) p and (b) Ap.
[-e— no damage 9 Hz-#-- 7 Hz 9Hz & 11 Hz
% 0.5 1
e
(5]
N
=
£
Q
=
_0'5 1 Il L 1 L 1 1 1 1 L ]
1 5 9 13 17 21 25 29 33 37 41 45
node number
(a)
s 05 |-~ no damage 9 Hz-#--15 Hz 20 Hz & 25 Hz
50
e
(5]
N
=
£
=]
=

13 17 21 25 29 33 37 41 45
node number

(b)

1 5 9

Fig. 20 The normalized Ap under different input frequencies.
(a) 7,9, and 11 Hz; (b) 15, 20, and 25 Hz.



Yixian LI et al. Dynamic stiffness for harmonic in-output estimate

is required to determine the damage. For the bridge in this
paper, the threshold for damage is chosen as 0.1. Besides,
the distribution of Ap is smooth along the whole bridge
without damage.

With damage, sharp peaks appear in the damaged area.
When the input frequency deviates from the natural
frequencies within £2 Hz, Ap can still localize the
damage. However, the sensitivity of Ap decreases. When
the input frequency is remote from the natural frequen-
cies, Ap cannot localize the damage. Comparison of Ap
with 9 and 20 Hz inputs shows that Ap is more sensitive
when the input is 20 Hz. This phenomenon relates to the
modal shape. In Fig. 3, the magnitude of the second
modal shape is greater at element No. 6 (the damaged
element). Thus, Ap can better localize the damage when
the input frequency is close to the second natural
frequency.

This section shows that the proposed algorithm can
localize the damage with higher sensitivity when the
input frequency is close to the structural natural
frequency. The position of the damage also influences the
performance of Ap.

4.3 Damage severity

Regarding damage identification, the damage indicators
are more sensitive to severe damages. The more minor
damage is usually difficult to identify, and thus, it is
important to discuss the influence of damage severity.
The sensor placement and damage position are identical
to the former two sections. The only difference in this
section is the damage severity. The damage percentage of
element No. 6 ranges from 10% to 25% with a step of 5%.
The natural frequency of the damaged structure is smaller
than the intact structure. In this section, the maximum
elastic modulus reduction of element No. 6 is 25%, and
the corresponding first natural frequency becomes 9.44
Hz, which is close to the natural frequency of the
undamaged FEM, 9.46 Hz. Section 4.2 shows that Ap can
localize the damage better when the input frequency is
close to the structural natural frequencies. Thus, the input
frequency is still 10 Hz, and the amplitude is 1000 N.
Figure 21 is the normalized Ap with different damage
percentages. For 10% damage, Ap cannot localize the
damage since normalized Ap is smaller than the threshold

0.4
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Fig. 21 The normalized Ap with varied damage percentage.
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0.1. For 15% to 25% damage, the damage is localized by
Ap. Ap in the damaged area has sharp peaks. Ap between
node No. 14 and No.21 is non-zero because Ap is
calculated from deficient measurement and it cannot
provide 100% accuracy. Ap between node No.21 and
No. 45 is close to zero, indicating no damage or no
external load exists in this area. The distribution of Ap
shows that the damage is in the left side span. At node
No. 6 (the damaged element), the absolute value of Ap is
maximum, indicating the absolute value of Ap can
accurately localize the damage.

4.4 Damage and loading positions

In the previous simulations, the load and damage are at
different spans. Different damage and loading positions
are combined in this section to verify the proposed
approach. When the damage and the dynamic load are at
an identical position, Ap cannot indicate the damage
position, because the non-zero values of ¢(z) and g(?)
overlap with each other. When the damage and the
dynamic load are near each other but not overlapped, Ap
can localize the damage. Many numerical simulations
show that the method can identify the damages at
different positions. This section only illustrates the results
of one damage scenario with varied loading positions.
There are three conditions, as listed in Table 1, where the
damage conditions are identical and the difference is
merely the input.

The sensitivity of Ap is different in Fig. 22 under varied
loads. For condition (a), the harmonic load is at node
No. 8 on the left side span. The normalized Ap is lower
than the threshold 0.1 along the whole bridge, and
therefore, the damage cannot be detected in this
condition. The reason for this failure is that the response
of the whole bridge is small under such loading. For
conditions (b) and (c), the loads are acting on the middle
span at nodes No.23 and No. 28, respectively. The
corresponding bridge responses are greater than condition
(a). The normalized Ap in (b) and (c) both indicate the
damaged area between nodes No. 17 and No. 18. The
sensitivity of (b) is higher than (c) for two reasons. First,
the damage is at element No. 17 where the displacement
in modal shape is greater for the first mode (see Fig. 3)
and the first mode is dominant in condition (b) where the
applied force is 10 Hz. The second reason is that the
applied force for condition (c) is more remote from the
damage than (b).

Table 1 The damage and loading conditions

condition damaged damage loading input

number element  percentage (%) position frequency
(node number) (Hz)

(a) 17 30 8 10

(b) 17 30 23 10

(© 17 30 28 19
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In practice, the damage position is unknown and the
optimal input frequency and position cannot be determi-
ned. Then, the averaged Ap can be a damage indicator, as
shown in Fig. 23. The averaged Ap is calculated by
averaging the three normalized Ap in Fig. 22. With the
averaged Ap, the damage can also be localized at node
No. 17.

4.5 Influence of noise

Noise exists in both input and measurement. Section 3.4
demonstrates that the framework is robust to noise when
reconstructing responses. When localizing the damage,
the influence of noise becomes greater. The difference in
structural response due to damage is usually very minor,
and therefore, it is important to discuss the algorithm with
measurement noise.

The loading and damage conditions in this section are
identical to those in Table 1. When detecting the dama-
ges, inclination and strain measurements are used. The
inclination measurement contains the damage information
while the strain does not. Thus, the inclination measure-
ment is less robust to noise. Adding 1% and 10% root
mean square Gaussian noise to the inclination and strain
measurements, respectively, the corresponding maps of
Ap are calculated. It is found that the maps of Ap cannot
localize the damage. To eliminate the influence of noise,
the numerical simulation is conducted by ten times with
identical loading and noise level (dividing measurements
of one test into ten parts works as well). The maps of Ap
from the ten “tests” are averaged and shown in Fig. 24.
With a greater number of tests, the influence of noise can
be eliminated. Under loading (b) and (c), the normalized
Ap indicates that the damage is at node No.17 where the
absolute Ap is maximum and above the threshold of
damage. Thus, the method can localize damages under
the noise environment. The distributions of Ap are similar
in Figs. 22 and 24 while the magnitude of Ap is greater in
Fig. 24, because the noise measurement has higher power
and the corresponding estimated force is greater.

The three curves (a), (b), (c) in Fig. 24 are also added
and averaged in Fig. 25. The averaged Ap can localize the
damage and it is more stable than a single result when the
damage position is unknown.

All the numerical simulations demonstrate that the
proposed framework can reconstruct the structural
response and localize the damage with high accuracy. For
practice, the algorithm requires high sampling frequency
sensors to provide calculation accuracy. For reconstruc-
ting responses, the accuracy of sensors is not strictly
required, but the inclinometers with high accuracy are
necessary when localizing the damage. The algorithm is
not only applicable to bridges, but also to cables,
mechanical machines, and other structures. This study
merely adopts a continuous beam bridge to validate it.
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5 Conclusions

This paper proposes a dynamic stiffness-based framework
for estimating the harmonic input, reconstructing
structural responses, and localizing damage(s). The work
efforts in the paper can be separated into response
reconstruction and damage identification, as they are
separately investigated. For an undamaged structure, the
estimated nodal force can accurately reflect the spatial
and frequency information of the real input. Applying the
estimated force to the FEM, the full-field responses,
including deflection, rotation, and strain, can be well
reconstructed under complex inputs. In addition, the
reconstructed response is robust to the measurement
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noise. Therefore, the proposed method can reconstruct the
full-field responses of the in-field structures under
harmonic load.

During the damage detection stage, the estimated force-
based damage indicator Ap can localize the damage since
Ap reaches a maximum at the damage position where
there is no external input. Ap can better localize the
damage when the input frequency is close to the
structural natural frequency and the bridge response is
great. The threshold 0.1 is selected for the normalized Ap
to determine the existence of damage. Exclusively Ap can
detect the damage when the loss of stiffness is more than
10%. The required accuracy of inclination is higher than
strain, and because it contains damage information,
therefore, the inclination is less robust to noise.

Except for its advantages, the proposed framework still
has some limitations. Above all, the harmonic loading
condition is relatively critical to conduct since artificial
loading is necessary. Importantly, the accuracy of damage
detection decreases when the loading condition is
inappropriate. Though this problem can be settled by
multi-loadings, the whole approach becomes laborious.
Lastly, the laboratory or in-field test is absent. The
framework feasibility requires further validation.
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