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e Summary of positive and negative effects of
MNDMs on algae.

* MNMs adversely affect algal gene expression,
metabolite, and growth.
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ABSTRACT

The wide application of manufactured nanomaterials (MNMs) has resulted in the inevitable release of
MNMs into the aquatic environment along their life cycle. As the primary producer in aquatic
ecosystems, algae play a critical role in maintaining the balance of ecosystems’ energy flow, material
circulation and information transmission. Thus, thoroughly understanding the biological effects of
MNMs on algae as well as the underlying mechanisms is of vital importance. We conducted a
comprehensive review on both positive and negative effects of MNMs on algae and thoroughly
discussed the underlying mechanisms. In general, exposure to MNMs may adversely affect algae’s
gene expression, metabolites, photosynthesis, nitrogen fixation and growth rate. The major
mechanisms of MNMs-induced inhibition are attributed to oxidative stress, mechanical damages,
released metal ions and light-shielding effects. Meanwhile, the rational application of MNMs-algae
interactions would promote valuable bioactive substances production as well as control biological and
chemical pollutants. Our review could provide a better understanding of the biological effects of
MNDMs on algae and narrow the knowledge gaps on the underlying mechanisms. It would shed light
on the investigation of environmental implications and applications of MNMs-algae interactions and
meet the increasing demand for sustainable nanotechnology development.

© The Author(s) 2022. This article is published with open access at link.springer.com and

journal.hep.com.cn

1 Introduction

24 Corresponding author
E-mail: zhu.xiaoshan@sz.tsinghua.edu.cn

Manufactured nanomaterials (MNMs) refer to materials
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with a critical dimension of less than 100 nm on at least
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one geometric surface and high homogeneity, particularly
manufactured products for application purposes, which
are different from natural nanomaterials (e.g., protein
molecules, viral particles, raw magnetite and ultrafine
particles) (Lopez-Alonso et al., 2020). Based on the
composition, MNMs can be divided into carbonaceous
MNMs, metal/metal oxide MNMs, quantum dots and
organic polymers (Haque and Ward, 2018). MNMs
display unique physical and chemical properties at the
nanoscale, such as high surface area, nanoscale size
effects and quantum effects, etc. Given these unique
properties, nanomaterials have been widely used in
diverse applications, including agriculture, electronics,
aerogels, aerospace, automotive, medicine, cosmetics and
textiles (Zhang et al., 2020; Jiang et al., 2022). MNMs are
estimated to be components of more than 2,000
commercial products, and this number is expected to
grow significantly in the forthcoming years (Wang et al.,
2021a). However, during the production, transportation,
use and disposal of these products, MNMs are inevitably
released into the environment (Keller et al., 2013).

The aquatic environment is the ultimate destination of
almost all pollutants, including MNMs (Zhang et al.,
2018a). MNMs can enter the aquatic environment
through industrial wastewater, domestic sewage, and
coastal recreation actives (e.g., swimming, diving) (Cede-
rvall et al., 2012; Yue et al., 2017; Huang et al., 2021). In
addition, MNMs are widely used to treat groundwater and
other water bodies, which would be inevitably left in the
water environment (Zhang and Elliott, 2006; Yang et al.,
2021). Taking the global production of about 309000 tons
of MNMs in 2010 as an example, it is estimated that
0.4%—7% of the nano-products eventually enter the water
environment (Keller et al., 2013). The risk of MNMs to
the aquatic ecosystem has been an increasing concern
(Haque and Ward, 2018).

Algae is the primary producer in aquatic ecosystems, as
it could produce oxygen for aquatic organisms via
photosynthesis. In addition, algae are the key fundame-
ntal part of the food chain as they would generate organic
carbon and biomass to supply as food sources for the
aquatic ecosystems. Thus, the change of algal species
composition and community structure would directly
affect the aquatic ecosystems’ energy flow, material
circulation and information transmission, which plays an
essential role in maintaining the balance of aquatic
ecosystems (Rai et al., 2016; Li et al., 2020b; Grigoriev
etal., 2021). Numerous studies have demonstrated that
the exposure of MNMs induces adverse biological effects
onto algae, which may further affect algae’s gene
expression, metabolism, photosynthesis, nitrogen fixation,
and growth (Chen et al., 2019). Hence, investigations into
the MNMs’ effects on algae as well as the underlying
mechanisms are critical in the ecological risk evaluation
of MNMs. On the other hand, the biological interaction
between MNMs and algae as well as the consequential

effects may exhibit beneficial applications (e.g., hazard
remediation(Guleri et al., 2020;Mohsenpour et al., 2021)),
biomass production (Kartik et al., 2021), which has been
overlooked in the previous reviews. Therefore, the
current review aims to provide a full picture of the
biological effects of MNMs on algae, including both
negative implications and positive applications, which
would provide a better understanding of mechanisms of
MNMs’ biological effects and help to meet the increasing
demand in the sustainable development of nanotechnology.

2 Effects of MNMs on algae

MNMs would induce adverse biological effects onto
algae, affecting algae’s gene expression, metabolism,
photosynthesis, nitrogen fixation, and growth.

2.1 MNMs affect algae’s gene expression

MNMs induce biological effects onto algae’s gene
expression, particularly, the gene expression related to
antioxidant synthesis, lipid synthesis, cell division and
photosynthesis (Fig. 1). Middepogu et al. reported that
nano-TiO, disrupted material and energy metabolisms in
algal photosynthesis at the molecular level (Middepogu
etal., 2018). The expression of genes related to lipid
synthesis (gdat), carbohydrate synthesis (cah2) and cell
division (zdsH) were all down-regulated, indicating that
nano-TiO, suppressed the lipid and carbohydrate biosyn-
thesis and cell division at the gene expression level.
Similar results were reported in the Chlorella pyreno-
idosa’s gene expression change to oxidized multi-walled
carbon nanotubes (0-MWCNTSs), as remarkable down-
regulated were observed on the algal carbon fixation and
photosynthesis-related genes (e.g., CAH2 and rbcl)
(Zhang et al., 2018b).

Furthermore, advances in “omics” technologies (e.g.,
transcriptomics, proteomics and metabolomics) facilitate
the comprehensive analysis of stressor effects at subce-
llular levels (Lauritano et al., 2019; Balbi et al., 2021).
Particularly, transcriptomics and proteomics could pro-
vide a better understanding of the stress effects and
mechanisms of toxic action by analyzing the expression
of genes and proteins within an organism. Pillai et al.
investigated the effects of nano-Ag onto Chlamydomonas
reinhardtii at the transcriptome and proteome levels,
revealing an oxidative stress response at subcellular
levels, even though no lipid peroxidation was observed at
the biochemical level (Pillai et al., 2014).

2.2 MNDMs affect algae’s metabolism
As shown in Fig. I, MNMs would affect the metabolic

processes of algal cells by causing oxidative stress in
algae, affecting the activity of enzymes involved in
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Fig. 1 MNMs affect algae’s gene expression and metabolism.

metabolic processes, or affecting the expression of related
genes, which would further induce the changes in levels
or concentrations of macromolecules and metabolites
(e.g., lipids, fatty acids, carotenoids, amino acids, polysa-
ccharides) as well as the ratio of carbon, nitrogen and
phosphorous in algal cells (Manier et al., 2013; Cherchi
etal, 2015; Lietal., 2015a; Praveenkumar et al., 2015;
Rhiem et al., 2015; Lietal., 2016; Zhang et al., 2016b).
Cherchi et al. reported changes in Cyanobacteria Anaba-
ena’s intracellular C:N, C:P and N:P stoichiometries after
exposure to nano-TiO, at varying dose concentrations
(0-1 mg/L) and exposure duration (96 h-21 d) (Cherchi
et al., 2015). Notably, the relative ratio of amide II, lipids,
nucleic acids and carbohydrates to the cellular protein
content (quantified as amide I stretch) changed signifi-
cantly within the initial 96 h exposure.

Similar to transcriptome and proteomics, metabolomics
is also helpful to evaluate the effects of nanomaterials on
algae at the molecular level, and has been gradually
applied in the field of ecotoxicology (Huang et al., 2018;
Huang et al., 2019; Grigoriev et al., 2021). Taylor et al.
investigated the potential toxicity of tightly constrained
nano-CeO, to the unicellular green algae by using the
metabolomics approach (Taylor et al., 2016). According
to principal components analysis (PCA) of the mass
spectrometry-based metabolomics data, there was a
significant perturbation of metabolic function within
the algal cells when exposed to nano-CeO, at supra-
environmental concentrations.

2.3 MNDMs affect algae’s photosynthesis and nitrogen
fixation

Photosynthesis activity is an important indicator for
evaluating the MNMs’ effects on algae. Chlorophyll
content, the maximal electron transport rate (ETR,,,) and
primary light energy conversion efficiency of photosy-
stem II (PSII) have been widely used as indicators of the
external stressor’s effects on the algal photosystem (Pillai
et al., 2014; Masojidek et al., 2021). Several studies have
shown that a higher concentration of MNMs ( > 10 mg/L)

can inhibit photosynthesis of algae by reducing chlorophyll
content or affecting photoelectron transfer (Saison et al.,
2010; Wei et al., 2010a; Sadiq et al., 2011a; Oukarroum
etal., 2012; Pillai et al., 2014). Saison et al. investigated
the change of Chlamydomonas reinhardtii’s PSII after
exposure to nano-CuO, and reported that both the content
of chlorophyll and PSII electron transport rate
significantly decreased, indicating strong inhibition of the
PSII photochemistry (Saison et al., 2010). Likewise, it
was reported that contents of chlorophyll decreased in
Haematococcus pluvialis after the exposure to nano-Cu
(Babazadeh et al., 2021).

Though most studies have demonstrated that MNMs
could inhibit the photosynthesis of algae, there are
exceptions. Some studies have found that MNMs can
enhance photosynthetic performance of microalgae (Rodea-
Palomares et al., 2012; Serag et al., 2013; Giraldo et al.,
2014; Xuetal., 2018). Rodea-Palomares et al. reported
that low concentrations (0.01-0.1 mg/L) of nano-CeO,
increased the photosynthetic electron transport and
chlorophyll a content in the freshwater alga Pseudoki-
rchneriella subcapitata (Rodea-Palomares et al., 2012).
Similarly, carbon nanotubes (CNTs) exhibited high effi-
ciency in light energy capture, owing to the broader
absorption spectrum than the chloroplast antenna pigm-
ents (Hagen and Hertel, 2003). It has been reported that
CNTs could promote photosynthetic electron transport
both ex vivo and in vivo (Lambreva et al., 2015) and incre-
ase photosynthetic activity (Giraldo et al., 2014). The
underlying mechanisms of MNMs’ positive effects on the
photosynthetic activity might attribute to their widened
spectral region for energy capturing (Lambreva et al.,
2015) and higher chlorophyll content under the MNMs-
induced stress (Chen and Smith, 2012). However, the
presence of MNMs even at low concentrations (<0.1 mg/L)
would induce oxidative stress to algal organisms (Rodea-
Palomares et al., 2012), which would further cause lipid
peroxidation and cell death. In addition, to long-term
effect of algae exposed to MNMs should be thoroughly
studied to maximize the positive contribution of MNMs
to algal photosynthetic performance and biomass accu-
mulation (Giraldo et al., 2014).

In addition to affecting photosynthesis, MNMs would
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affect the algal nitrogen fixation ability (Cherchi and Gu,
2010; Kumar et al., 2016). After exposure to nano-TiO,,
both the occurrence and intracellular levels of the
nitrogen-rich cyanophycin grana proteins (CGPs) in
cyanobacteria Anabaena variabilis increased with the
increasing concentration and time of nano-TiO, exposure,
indicating inhabitation in nitrogen fixation activity
(Cherchi and Gu, 2010). Likewise, it was reported that
nano-hexaconazole, a nanoscale polymer carrier for
pesticides, caused inhibition in blue-green algae’s activity
of nitrogen assimilating enzymes (Kumar et al., 2016).
On the other hand, the biological effects of MNMs to
algae also vary under different nitrogen conditions. For
example, the exposure to nano-TiO, under replete nitro-
gen conditions would decrease the growth and biomass of
Chlorella vulgaris, while the exposure to nano-TiO,
under limited nitrogen would lead to a more severe drop
of the algal growth and biomass (Dauda et al., 2017).
MNMs would induce negative effects on algal nutrient
cycling and nitrogen fixation, which deserves more in-
depth investigation.

2.4 MNMs affect algae’s growth

As discussed above, the exposure to MNMs would affect
algae’s gene expression, metabolism, photosynthesis, and
nitrogen fixation, which would eventually affect the
growth of algal cells (Wangetal.,, 2011; Hazani et al.,
2013; Nogueira et al., 2015; Sohn et al., 2015). We have
summarized the adverse effects and mechanisms of
MNMs on algae in Table 1. Generally, the inhibition of
algae growth by MNMs is usually evaluated by the
median effective concentration (£Cs,), which may vary
significantly with the MNMs type, exposure time or
concentration, testing organisms, and algae age. For
instance, the ECy, of metal quantum dots (QDs) was
significantly higher than that of carbon QDs on Chlorella
pyrenoidosa (Xiao et al., 2016). Besides, £Cs, of MNMs
on “mid-age” algae is usually lower than that of “young”
and “old” algae (Metzleretal., 2011). Metzler et al.
studied the effect of nano-TiO, on Pseudokirchneriella
subcapitata and reported that as the algal age increased,
there was an increase in ECs, from that in 3-5 d algae to
8-d algae, but a decrease of ECy, in 12-14 d algae
(Metzler et al., 2011). Moreover, ECy, usually increases
with exposure time. For example, EC,, of nano-TiO,
inhibiting Chlamydomonas reinhardtii growth was 10 and
100 mg/L for 3-d and 10-d exposure, respectively
(Gunawan et al., 2013).

In general, the higher exposure concentration of MNMs
would induce stronger inhibition of algae growth (Schwab
etal., 2011; Sohn et al., 2015). Wei (Wei etal.,2014) et al.
reported that the growth inhibition of Scenedesmus
obliquus were 6.27%, 11.2%, and 20.7% after 96-h
exposure of 50, 100, 200 mg/L nano-SiO,. Meanwhile,
low-dosage MNMs exposure may also suppress algae
growth, for example, the growth of Chlorella kessleri was
hindered by up to 91.9% after the exposure to 26.7 mg/L

C¢o fullerene, which was only 70.2% when exposed to
40 mg/L Cg, fullerene (Kubatova et al., 2013).

On the other hand, the exposure to low concentrations
of MNMs may promote the growth of algae (Sohn et al.,
2015; Tyne et al., 2015; Chen et al., 2019; Vargas-Estrada
et al., 2020). For instance, Sohn et al. reported that the
biomass of Raphidocelis subcapitata was elevated 1.47
times after 72-hour exposure of 12 mg/L single-walled
carbon nanotubes (SWCNTs), which was attributed to
hormesis (Sohn et al., 2015).

3 Mechanisms of MNMs’ effect on algae

MNMs affect algae mainly by inducing mechanical
damage and light-shielding effects in algae as well as
releasing metal ions in water, and which could directly or
indirectly induce oxidative stress in algae.

3.1 Mechanical damage

Owing to MNMs’ high surface/interface potential, strong
interaction between MNMs and algal cells (e.g., MNMs
being adsorbed on the surface of algal cells, encapsulated
algal cells) would induce mechanical damages (e.g.,
MNDMs penetrate algal cells with a sharp edge and corner)
(Chen et al., 2015; Zhang et al., 2016a; Zhao et al., 2017;
Middepogu et al., 2018). Two-dimension MNMs, for
example, reduced graphene oxide (rGO) and multi-layer
graphene (MG) were reported to destroy membrane
integrity of Chlorella pyrenoidosa, due to the direct
contact of the edges of tGO and MG with algal cells
(Zhao et al., 2017).

Moreover, MNMs were reported to enter the algal cells
and destroy the subcellular structure (Dalai et al., 2013;
Manier et al., 2013; Lietal., 2015a; Zhang et al., 2016a;
Wang et al., 2021b). Iswarya et al. assessed the damage
of anatase and rutile nano-TiO, to the membrane and
subcellular structures of Chlorella vulgaris, and sugge-
sted that anatase nano-TiO, would damage algal cells’
nucleus and cell membrane while rutile nano-TiO, would
cause chloroplast and internal organelle damages (Iswarya
etal., 2015). However, it is not always the case that
MNMs would enter the algal cells, for instance, QDs
were observed adsorbed on the surface of Phaeodactylum
tricornutum and Dunaliella salinaonly, while no QDs
were observed inside the algal cells (Morelli et al., 2013).

3.2 MNMs induced light-shielding effect

The interactions between MNMs and algal cells (e.g.,
heteroaggregation) may result in the attachment to the
surface of the algal cells to absorb or block part of the
light, inducing a light-shielding effect. The light-shielding
effect of MNMs would further affect the photosynthesis
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of algae, which directly or indirectly affects the growth
and reproduction of algae (Schwab et al., 2011; Hazeem
et al., 2020; Thiagarajan et al., 2021; Wang et al., 2021b).
Sadiq et al. reported that the existence of nano-Al,O, had
a certain light-shielding effect on Scenedesmus sp. and
Chlorella sp., inhibiting the synthesis of photosynthetic
pigments and thus suppressing algae growth (Sadiq et al.,
2011b). Similarly, graphene oxide (GO) was reported to
exhibit a light-shielding effect onto Chlorella vulgaris
(Zhao et al., 2016), while CNT was also demonstrated to
inhibit the growth of Chlorella vulgaris due to the light-
shielding effect (Schwab et al., 2011).

However, there have been debates on the role of the
light-shielding effect in MNMs induced toxicity (Saison
etal., 2010; Wangetal., 2011). Aruoja et al. found no
significant growth inhibition when using nano-TiO, to
block the light source (Aruoja et al., 2009). Likewise, the
light-shielding effect was not observed in the toxicity
study of nano-TiO, on Scenedesmus obliquus (Li et al.,
2020a). The MNMs induced shading effects may depend
on the properties of MNMs, for example, the black flake-
like MNMs (e.g., GO) may have a stronger light-shielding
effect.

3.3 MNDMs released metal ions

Metal-containing MNMs, especially nano-Ag, nano-ZnO,
nano-PbS, nano-Cu,O, etc., would gradually release
metal ions along the environmental process (Gunasekaran
etal., 2020; Ahmed et al., 2021; Kong et al., 2021; Xiong
et al., 2021b), which may also induce biological effects to
algae. Particularly, some researchers suggested that the
toxicity of MNMs to algae is dominated by MNMs-
induce dissolved metal ions (Franklin et al., 2007; Wong
et al., 2010). Franklin et al. reported that the toxicity of
nano-ZnO to Pseudokirchneriella subcapitata was stati-
stically similar to that of ZnCl,, suggesting Zn>" released
by the dissolution of nano-ZnO lead to the major toxic
effect (Franklin et al., 2007). Likewise, Li et al. reported
less toxicity on alga Euglena gracilis exposed to nano-
Ag, compared to AgNO, (Lietal., 2015b). The prote-
inaceous pellicle of algae could effectively inhibit the
uptake of MNMs, while the dissolved ions could mitigate
into algal cells and induce biological effects (e.g.,
suppress the photosynthetic yield).

On the contrary, compared to the released metal ions,
some researchers considered the role of MNMs is more
critical in causing the biological effects onto algae
(Navarro et al., 2008; Manzo et al., 2013). Manzo et al.
reported that nano-ZnO induced significantly higher than
that of bulk ZnO, though similar amount of Zn?" was
detected in both exposures, demonstrating the critical role
of MNMs in the toxicity effect on algae (Manzo et al.,
2013). Similarly, it’s reported that nano-ZnO exhibited
higher toxicity to green algae Chlorella sp compared to
the bulk-ZnO and Zn2*, which was attributed to the fact
that nano-ZnO entrapped and wrapped the algal cells and

may contribute to the algal growth inhibition (Ji et al.,
2011). Thus, the MNMs released metal ions should not be
considered as the sole reason for MNMs’ negative effects
to algae, while the “nano-effect” of MNMs (e.g., light-
shielding effect, mechanical damage) might be dominant
contributors (Chen et al., 2019).

3.4 MNMs induced ROS generation

Oxidative stress has been widely considered as one of the
dominant mechanisms in the toxic effect of MNMs on
algae (Xiao et al., 2016; Santschi et al., 2017; Chen et al.,
2019). MNMs have unique physicochemical properties
(e.g., photocatalytic, oxidative capability), which may
trigger reactive oxygen species (ROS) formation in algal
cells via direct and indirect chemical reactions (Ouabadi
et al., 2013; von Moos and Slaveykova, 2014).

Generally, the intracellular ROS could be generated via
directly contact-mediated approach, or indirectly through
dissolved ions. The direct MNMs-mitochondria contacts
could compromise the organelle membrane integrity,
which would release of Ca2" ions from interior stores and
further activate the ROS-generating Ca2"/calmodulin-
dependent enzymes (Santschi et al., 2017). Additional dir-
ect pathways may associate with the interactions between
MNMs and membrane-bound enzymes to trigger ROS
formation (Navarro et al., 2008). Meanwhile, the indirect
pathways are involved in the interactions between algae
and leached MNM constituents such as metals and
organics, which further engage in redox cycling that yield
ROS (e.g., H,0,, 0>, OH") production (Ouabadi et al.,
2013). Studies have revealed that the amount of MNMs
generated ROS exhibited linear correlations with their
toxicity to biological organisms (Lietal., 2012). For
example, the exposure of nano-Ag had increased the ROS
generation in Chlorella vulgaris, and resulted in stronger
toxic effects (Hazeem et al., 2019). The exceeded intrace-
llular ROS would engage in unrestricted oxidation of
biological molecules and cellular components (e.g., lipid
peroxidation), and eventually result in losing cell function
and apoptosis (Rocha et al., 2015; Glomstad et al., 2016;
Liu et al., 2018).

4 Implications and applications of MNMs’
on algae

The effects of MNMs on algae could be either positive or
negative, as posing ecological risks (e.g., intracellular
biochemical composition change, metabolism alteration,
nitrogen-fixation inhibition, photosynthesis suppression,
growth reduction) and potential applications (e.g., enha-
nced production of valuable bioactive substances, control
of biological and chemical pollutants).

4.1 Implications of MNMs on algae

As discussed above, MNMs would induce manifold
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biological effects on algae, including intracellular bioche-
mical composition change, metabolism alteration, nitro-
gen-fixation inhibition, photosynthesis suppression, and
growth reduction. Due to the long-term exposure of
MNMs at environmentally relevant concentrations, the
alteration of algae’s photosynthesis, nitrogen fixation and
the ratio of C, N, P may further influence the general
biogeochemical processes (e.g., carbon and nitrogen
cycling) (Cherchi and Gu, 2010; Cherchi et al., 2015).
Furthermore, MNMs-engaged biomass change of algae
would break the balance of interspecies equilibriums and
community dynamics in aquatic ecosystems (Oukarroum
et al., 2012; Cherchi et al., 2015).

On the other hand, as the major primary producers in
aquatic ecosystems, algae may promote the bioaccumu-
lation of MNMs via the food chain due to the algae-
MNMs interaction (e.g., adsorption, internalization)
(Rhiem et al., 2015; Xin et al., 2021). It has been proved
that MNMs can be transferred from low to high trophic
levels along the food chain, and further accumulated in
high trophic organisms (Zhao and Wang, 2010; Campos
etal., 2013; Bhuvaneshwari et al., 2018). For example,
Bouldin et al. fed Ceriodaphnia dubia with CdSe QDs
exposed Pseudokirchneriella subcapitata, and found the
existence of CdSe QDs in the Ceriodaphnia dubia
(Bouldin et al., 2008). In addition, studies have shown
that the bio-enrichment of MNMs via the food web is
significantly greater than that through water (Zhao and
Wang, 2010; Campos et al., 2013). It’s reported that more
than 70% of nano-Ag accumulated in the Daphnia magna
was through ingestion of algae (Zhao and Wang, 2010).
The trophic transfer, bioaccumulation and bio-enrichment
of MNMs via the food web would eventually pose a great
threat to the ecosystem and public health.

4.2 Applications of MNMs’ effect on algae

4.2.1 Enhance the production of valuable bioactive
substances

As shown in Fig. 2, algae could produce a variety of
bioactive substances (e.g., fatty acids, steroids, carote-
noids, polysaccharides, lectins, mycoplasma-like amino
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acids, halogenated compounds) through different meta-
bolic pathways (Almendinger et al., 2021), which also
serves as the adaption to the environmental change. As
discussed above, the exposure of MNMs would alter the
metabolism of algae, which may tune certain metabolic
pathways to enhance the production of valuable bioactive
substances. As a high-value antioxidant, astaxanthin (AXT)
has been widely used in cosmetics, health care products,
medical and other industries (Du et al., 2021). AXT could
be produced by Haematococcus pluvialis, however, the
yield is very limited. Recently, nano-Au was innovatively
used to stimulate Haematococcus pluvialis to produce
AXT at a single cell level, providing a successful MNMs-
enhanced biorefinery process (Praveenkumar et al., 2015).

On the other hand, algae is considered as a unique
feedstock to produce biofuel (Saber etal., 2016; Yap
etal., 2021), while the efficiency and cost-reduction of
the cultivation and harvesting steps remain key obstacles
(Jones and Mayfieldt, 2012; Kim et al., 2013; Fazal et al.,
2021). Due to the MNMs-algae interactions, the biofuel
production could be promoted via the induction of
intracellular lipid accumulation by nutrient competition
and/or stress environments (Farooqetal.,2016; Kim
etal., 2016; Liuetal.,2016; Heetal., 2017), enhance-
ment of cell growth and/or pigment by light scattering
(Torkamani et al., 2010; Pattarkine and Pattarkine, 2012;
Eroglu et al., 2013), increased cell separation efficiency
and processing time in culture media (Borlido et al.,
2013; Hu et al., 2013), and integrated one-pot harvest/cell
division (Lee et al., 2014).

4.2.2 Control of biological pollutants

Though algae are an important part of the ecosystem,
however, they would also generate biological pollutants
(e.g., eutrophication and biofouling). Since MNMs could
inhibit the growth of algal cells, which would be
beneficial to control eutrophication or inhibit biofouling
(Fig. 2).

Due to the excellent aggregation and sedimentation

Biofuel

® ©

Antifouling

Fig. 2 Potential applications of MNMs’ effect on algae.
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properties in aqueous suspension (Hartmann et al., 2010;
Campos et al., 2013; Chowdhury et al., 2013) as well as
photocatalytic potential (Metzler et al., 2012), MNMs
have been increasingly used to eliminate the bloom algae
via surface-mediated reactions and adsorption (Wang
etal., 2015; da Silva et al., 2016). Particularly, nano-TiO,
and iron-containing MNMs are considered the most
effective MNMs for the control of red tide algae (Wang
etal., 2015; da Silvaetal., 2016; Fanetal., 2018; Song
et al., 2021). However, MNMs may also adversely affect
other species in the ecosystem when treating algae bloom.
Da Silva et al. investigated the performance of nano-TiO,
on remediating eutrophic waters under a microcosm
experiment, and had eliminated the algal blooms (da Silva
et al., 2016). Meanwhile, Silva et al. also reported that
Daphnia magna, Lemna minor and Chironomus riparius
exhibited significant inhibition, suggesting more attention
should be paid to assessing the potential impact of MNMs
on the entire ecosystem.

Moreover, studies have revealed that the engagement of
MNMs (e.g., nano-TiO,, nano-CuO, nano-Ag) could
effectively control the biofouling induced by algae
(Fonseca et al., 2010; Graziani et al., 2013; Verma et al.,
2014). Biofilms would form along with the algal
colonization, causing the biofouling on the surface of
marine vessels and infrastructure (e.g., bridge), which
may further induce decay and damage to materials
(Scheerer et al., 2009).

4.2.3 Enhanced remediation of chemical pollutants

Algal photolysis has been proved as a promising alter-
native way to remove aquatic environmental contami-
nants (Wang et al., 2017; Samara Sanchez-Sandoval et al.,
2021; Xiong et al., 2021a), which can produce photoge-
nerated reactive radicals to accelerate the degradation of
pollutants (Sun et al., 2020; Premnath et al., 2021; Wei
et al., 2021). Similarly, photocatalytic MNMs have been
widely applied for environmental remediation (Tan et al.,
2020; Chenetal., 2021; Dingetal.,2021). Thus, the
remediation efficiency could be significantly enhanced
via the synergistic effect by combining MNMs and algae
(Caietal,2017; Wangetal,2017; Chenetal., 2018;
Jing et al., 2018; Chang and Wu, 2019).

Researchers have fixed the MNMs together with algal
cells on engineered templates (e.g., fibers mat) to promote
the degradation of pollutants. For example, algae-TiO,/Ag
bio-nano hybrid material was developed by loading algal
cells on the ultrafine TiO,/Ag chitosan hybrid nanofiber
mat, which has significantly improved the photo-removal
of Cr(VI) under visible light irradiation (Wang et al.,
2017). The organic substances released by algae
could consume photo-excited holes and -OH efficiently,
which attenuated the electron-hole recombination and
enhanced the photocatalytic reduction of Cr(VI) on TiO,.
Meanwhile, the release of intracellular substances

(chlorophylls, carboxylate acids) could be served as
photosensitizers to improve the generation of ROS, which
enhanced the photoreduction of Cr(VI) in the system.

Likewise, algae could act as carriers to have MNMs
fixed onto the algae biological templates (Tu et al., 2012).
Cai et al. immobilized nano-TiO, on Chlorella vulgaris
cells via the hydrothermal method, and sensitization of
the photosynthesis pigment boosted nano-TiO,’s photode-
gradation efficiency under the visible light (Cai et al.,
2017).

5 Conclusion and perspectives

Being widely applied in multiple fields, MNMs could be
released into the aquatic environments along the life
cycle, inducing critical effects on algae. We conducted a
comprehensive review on both positive and negative im-
pacts of MNMs on algae and thoroughly discussed the
underlying mechanisms. In general, exposure to MNMs
may adversely affect algae’s gene expression, metabolism,
photosynthesis, nitrogen fixation and growth rate. The
major mechanisms of MNMs-induced inhibition are
attributed to oxidative stress, mechanical damages, relea-
sed metal ions and light-shielding effects.

On the other hand, rational utilization of the MNMs-
induced effects would promote the production of valuable
bioactive substances as well as control biological and
chemical pollutants. MNMs could be used to stimulate
algae to produce useful bioactive substances (e.g., antio-
xidants, biofuel), while the MNMs-algae interaction
could effectively enhance the efficiency of environmental
remediation process (e.g., degradation of contaminants,
control of eutrophication and biofouling.

However, there are still knowledge gaps that need to be
addressed to gain a comprehensive understanding of the
effect of MNMs on algae as well as the associated impli-
cations and applications. The risks of MNMs on algae in
the natural ecosystem should be thoroughly assessed prior
to the applications. Particularly, MNMs would be invo-
lved in environmental processes, which may induce
weathering and aging effects on MNMs, further changing
the physicochemical properties and effective concentra-
tion of MNMs. More in-depth investigations should be
conducted to address the migration, transformation, and
aging of MNMs under realistic environmental conditions.
It also poses huge demand on the quantitative information
of the environmental background concentration of MNMs
in aquatic ecosystems, which is still missing. It is an
urgent need to advance analytical instruments and proto-
cols to quantitatively analyze the actual environmental
concentrations and size distributions of MNMs.

Meanwhile, the toxicity assessment of MNMs on algae
should be evaluated under environmentally relevant condi-
tions, which should fully consider the heterogeneous joint
toxicity effect of MNMs and other environmental factors,
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including hypoxia, acidification, temperature, heavy metal,
persistent organic pollutants and micro-plastics (Liu and
Wang, 2020; Liu et al., 2022). In addition, the biological
effects of MNMs on algae should be carried out in real or
simulated ecosystems with certain complexity and
biodiversity, which is essential to improve the rationality
and effectiveness of the data to obtain the whole picture
of MNMSs’ ecological risks.
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