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H I G H L I G H T S G R A P H I C   A B S T R A C T

●  A  database  of  municipal  solid  waste  (MSW)
generation in China was established.

●  An accurate MSW generation prediction model
(WGMod) was constructed.

●  Key  factors  affecting  MSW  generation  were
identified.

●  MSW trends generation in Beijing and Shenzhen
in the near future are projected.
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A B S T R A C T

Integrated  management  of  municipal  solid  waste  (MSW)  is  a  major  environmental  challenge
encountered by many countries. To support waste treatment/management and national macroeconomic
policy development, it is essential to develop a prediction model. With this motivation, a database of
MSW generation and feature variables covering 130 cities across China is constructed. Based on the
database, advanced machine learning (gradient boost regression tree) algorithm is adopted to build the
waste  generation  prediction  model,  i.e.,  WGMod.  In  the  model  development  process,  the  main
influencing factors on MSW generation are identified by weight analysis. The selected key influencing
factors are annual precipitation, population density and annual mean temperature with the weights of
13%,  11% and  10%,  respectively.  The  WGMod  shows  good  performance  with R2 =  0.939.  Model
prediction  on  MSW  generation  in  Beijing  and  Shenzhen  indicates  that  waste  generation  in  Beijing
would increase gradually in the next 3–5 years, while that in Shenzhen would grow rapidly in the next
3 years. The difference between the two is predominately driven by the different trends of population
growth.
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1    Introduction

Ever  increasing  solid  waste  production  has  been  threa-
tening  natural  environment  and  human  safety  in  recent
years. With increasing urbanization worldwide, Municipal
Solid Waste (MSW; the solid waste generated in the daily
life  of  urban  residents  or  in  the  process  of  serving  daily
life)  has  increased  significantly  (Iyamu et al., 2020).  To
tackle this challenge, various measures including reduction
and resource  recovery have been widely  implemented to

achieve  better  integrated  solid  waste  management  (Pires
et al., 2011; Mukherjee et al., 2020).  Notably,  accurate
prediction  of  MSW  generation  can  greatly  influence
waste management system (Cherian and Jacob, 2012; Ghi-
nea et al., 2016).  It  can  directly  affect  the  selection  of
subsequent  treatment  technology;  the  design of  transport
means,  frequency  and  route;  and  the  planning  of
treatment  facilities.  These  would  lay  the  foundation  for
the  planning,  implementation  and  optimization  of  the
whole  management  system  (Kumar et al., 2011).  The
prediction  of  MSW  generation  is  a  complex  problem
which requires a lot of historical data and various related
factors  (Kannangara et al., 2018).  The  commonly  used
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prediction models include multi-variable linear regression
model  (Buenrostro et al., 2001; Mohammad Ali Abdoli,
2011; Azadi and Karimi-Jashni, 2016), time-series analysis
model  (Navarro-Esbrí  et  al.,  2002; Marandi and Ghomi,
2016), gray system model (Huang et al., 1995; Chang and
Pires, 2015)  and  system  dynamics  model  (Eleyan et al.,
2013).  Although  these  traditional  models  are  mature
using  simple  methods  (Abbasi and El Hanandeh, 2016),
they  usually  choose  a  mathematical  basic  model  in
advance, which could limit the ability to truly reflect the
characteristics of MSW (Abbasi et al., 2013).

Machine  learning  prediction  models  are  increasingly
used in solid waste management systems due to their high
accuracy and ability to obtain new complex data and mine
them  in  depth  (Noori et al., 2010; Shahabi et al., 2012;
Abbasi and El Hanandeh, 2016;  Kontokosta  et al., 2018).
In  addition,  machine  learning  models  can  be  broadly
applied to short-,  medium- and long-term predictions for
MSW generation (Zade and Noori, 2008; Ali Abdoli et al.,
2012; Abbasi et al., 2013).  Machine  learning  algorithms
such  as  artificial  neural  network  (ANN)  (Noori et al.,
2010; Azadi and Karimi-Jashni, 2016),  support  vector
machine  (SVM)  (Abbasi and El Hanandeh, 2016)  and
gradient  boost  regression  tree  (GBRT)  (Johnson et al.,
2017; Kontokosta et al., 2018)  have  been  adopted  for
MSW generation forecasting. Relative to other algorithms,
GBRT  shows  the  following  advantages.  First,  various
types  of  data  can  be  flexibly  processed,  including  conti-
nuous  values  and  discrete  values.  Second,  in  the  case  of
relatively  short  tuning  time,  the  accuracy  of  prediction
can  be  relatively  high.  Third,  the  usage  of  some  robust
loss functions can be robust to outliers. The accuracy and
practicability  of  model  prediction  are  often  conditioned
by  the  selection  and  identification  of  feature  variables
(Ordóñez-Ponce et al., 2006; Adeogba et al., 2019). While a
model simulation in Vietnam obtained an R2 value > 0.96,
that  study  merely  used  63  detailed  data  sets  to  conduct
machine learning and geographic distribution (Nguyen et al.,
2021).  Leave-one-out  or  K-fold  cross-validation  can
improve  model  accuracy  especially  for  small  data
analysis. Cross-validation is a method of model selection,
using  part  of  the  data  set  to  test  the  model  validity.
However, only 12% of studies in a recent review on ANN
studies have applied this method indicating its importance
needs  further  attention  (Xu et al., 2021).  Extensive  and
comprehensive  feature  variables  can  further  improve  the
model accuracy (Sun and Chungpaibulpatana, 2017). How-
ever,  few  studies  have  established  the  MSW  generation
model  through  multi-level  feature  variables  (e.g.,  socio-
economic  factors,  natural  conditions  and  internal  condi-
tions). Less than 10% of the published works on machine
learning  contained  more  than 1000 data  in  a  report  (Xu
et al., 2021). In addition, in existing research, small scale
data  collection  for  most  models  aimed  at  the  city  level

(Noori et al., 2010; Abbasi et al., 2014; Abbasi and El
Hanandeh, 2016; Azadi and Karimi-Jashni, 2016; Johnson
et al., 2017; Kannangara et al., 2018; Kontokosta et al.,
2018; Wu et al., 2020),  which  limited  the  broad  appli-
cability  of  the  model  to  a  certain  extent.  Therefore,  it  is
critical to develop a high-accuracy model based on large-
scale  data  collection  and  wide  range  of  influence
variables that can be broadly applied to the prediction of
MSW production.

To  meet  the  needs  of  large-scale  comprehensive  trea-
tment  and  realize  the  short-term  MSW  generation
prediction, this study uses a wide range of data (country-
wide city-based) from 130 cities across China and multi-
level feature variables (e.g., socioeconomic factors, natu-
ral  conditions  and  internal  conditions)  to  establish  a
machine  learning  multi-city  model  of  MSW  generation
with  high  accuracy.  It  is  applied  to  analyze  and  explore
the  waste  management  modes  of  two  typical  large  cities
in China. 

2    Materials and methods 

2.1    Process for waste generation model development

To  develop,  test  and  optimize  the  waste  generation
model, the following steps are taken (Fig. 1):

1)  Construction  of  database  of  MSW  generation  and
feature  variables  (socioeconomic  and  natural)  through
large-scale  city-level  data  collection  and  analysis  across
China.

2) Application of the Machine learning Gradient Boost
Regression  Tree  (GBRT)  algorithm  to  develop  the
prediction model upon the database established.

3)  Identification  of  the  main  influential  factors  for
MSW generation based on weight.

4) Optimization of the algorithm through iterations.
 

 
Fig. 1    Model construction method.

 

2 Front. Environ. Sci. Eng. 2022, 16(9): 119



5)  Model  training  through  multiple  epochs  to  obtain
high testing accuracy. 

2.2    Data screening and database construction

Here  the  data  were  screened  and  collected  from  various
sources,  e.g.,  urban  statistical  yearbook  retrieval  for
socioeconomic data; National Meteorological Information
Center for meteorological data; and literature for internal
data.  A  sum  of 2250 data  sets  (including  MSW  genera-
tion,  economic,  sociological  and  natural  conditions)  for
312  cities  in  China  was  acquired.  To  perform  data
pretreatment,  the  following  processes  are  conducted:  1)
Missing  value  processing  (delete  data  sets  that  are
missing  a  certain  characteristic  value)  and  2)  abnormal
value processing (delete data sets with large errors caused
by  external  factors,  e.g.,  operational  errors).  After  data
screening,  a  total  of 1012 complete  data  sets  involving
130 cities were obtained. A complete data set includes 27

feature variables of a city, and the actual amount of MSW
generation  in  2000–2017.  The  27  feature  variables  (see
Table 1) consist of three categories: direct socioeconomic
factors,  indirect  socioeconomic  factors  and  natural
factors. Direct socioeconomic factors refer to population,
urban  construction  level,  economy  and  other  factors
directly  related  to  the  amount  of  MSW  generation  (Al-
Salem et al., 2018). In the database of this study, there are
10 direct socioeconomic factors, e.g., population, built-up
area and GDP. Indirect socioeconomic factors refer to the
socioeconomic  factors  with  some  impact  on  the  MSW
generation  (yet  are  not  directly  related);  eight  variables
are  included,  e.g.,  registered  unemployment  rate  and
vegetable  yield  (Bashir and Goswami, 2016; Zoroufchi
Benis et al., 2019).  The  database  also  includes  nine
natural  factors  (e.g.,  geographical  location  and  tempe-
rature)  which  can  affect  the  MSW  generation  to  certain
extend (Kontokosta et al., 2018).

The  finalized  database  covers  31  provincial-level
administrative regions with 130 cities (the corresponding
locations are marked on the map in Fig. 2(a)). Due to the
differences in economic development of different regions
in  China,  the  obtained  data  are  mostly  from  the  more
developed regions,  especially the south-east coastal  area.
Since  the  number  of  cities  in  the  western  region  is  less
(than that in the eastern region), hence there are less data
from  the  western  region.  Nevertheless,  the  data  set  in
general  covers  a  wide  range  and  has  a  good  overall
representation in the country.

Cities in China are classified into five categories (Table 2):
super-mega city (more than 10 million people), mega city
(5 to 10 million people), large city (1 to 5 million people),
medium  city  (0.5  to  1  million  people)  and  small  city
(<  0.5  million  people).  According  to  the  classification
criteria  (above),  the  data  of  130  cities  are  statistically
analyzed.  From  the  city  size  perspective,  it  shows  a
centralized  trend  in  geographical  distribution  (Fig. 2(b)).
Nevertheless,  all  five  categories  of  cities  are  covered
because  each  category  constitutes  at  least  10% of  all
cities. Since the database covers a wide area and contains
large differences, it  can ensure that the machine learning
models trained using the database have the advantages of
strong generality and applicability to various categories of
cities. 

2.3    Construction of machine learning model 

2.3.1    Training and testing data sets

yi

xi

The  machine  learning  model  of  MSW  generation  is
developed  based  on  the  aforementioned  database.  By
taking  the  annual  MSW  generation  of  the  city  as  the
dependent  variable  and  27  feature  variables  as  inde-
pendent  variables ,  their  relationship  can  be  expressed
as Eq. (1):
 

xi = (x(1)
i ,x

(2)
i , . . . ,x

(27)
i ), (1)

xk
iwhere i is the ith group of data;  is the kth feature value

Table 1    Feature variables related to MSW generation
Factor type Feature variables Unit

Internal factors Population Ten thousand
people

Built-up area Square kilometer

Resident population density Person per square
kilometer

Gross domestic product (GDP) Billion

Per capita GDP Yuan

Local fiscal revenue Billion

Household consumption level –

Per capita disposable income Yuan

Average salary Yuan

Base year distance Years

Socioeconomic
factors

Urban residents' vegetable
consumption expenditure

Yuan

Registered unemployment rate %

Vegetable yield Ton

Poultry meat production Ton

Land utilization %

Cleaning street area Square kilometer

Higher education ratio %

Tourism activity income Ten thousand yuan

Natural factors Geographic location (South/North) –

Geographic location (East/West) –

The annual average temperature Celsius

Annual precipitation Millimeter

Annual average wind speed Meter/second

Average pressure Hapa

Windy days Day

Rainy days Day

Climate type –
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of xi.
In  model  development  process,  the  data  are  randomly

divided into 80:20, i.e.,  the model randomly selects 80%
of the entire data (1012) as training set and its remaining
20% as testing set. 

2.3.2    Model parameters determination

The maximum number of iterations is the most important
parameter of decision tree. When the number of iterations
is  too  small,  underfitting  is  likely  to  occur;  when  it  is
too  large,  overfitting  will  occur  (Miller et al., 2016).
According  to  the  empirical  method,  the  best  number  of

iterations  in  the  gradient  boost  regression  tree  is  100
when the  sample  size  is  <  2000.  Besides,  a  higher  itera-
tions number can achieve a better  fitting result  when the
sample  size  is  larger  than  this  number.  Since  there  are
1012 data  sets  in  this  study,  the  number  for  iterations  is
set to 100.

Another  important  parameter  of  the  model  is  the
maximum depth of the decision tree. Since the number of
independent variables (i.e., feature variables) in this study
is 27 and the data size is 1012, none of them are too large.
Thus, the depth of a single decision tree is not limited for
this mode.

In  addition,  the  maximum number  of  feature  variables
used  by  each  tree  is  also  a  parameter  to  be  considered
during  model  construction.  For  Gradient  Boost  Regre-
ssion Tree algorithm, in general, if the number of feature
variables is not large (e.g., less than 50 in this model), the
maximum  number  of  features  should  not  be  limited.  At
the same time, since the factors that affect the amount of
MSW  generated  in  real  world  are  much  more  compli-
cated,  the  maximum  number  of  feature  variables  in  the
model should not be limited in order to fully account for
the impact of various factors on MSW generation. 

 

 
Fig. 2    Coverage of the city-level data in terms of city composition and geographical distribution (a) and proportion of cities with
various sizes (b).

 

Table 2    Prediction results of the WGMod for different categories of
cities

City category Population Proportion R2WGMod-

Mega-cities > 5 million 29% 0.893

Large cities 1–5 million 29% 0.943

Medium cities 500000–1 million 32% 0.961

Small cities < 500000 10% 0.958
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2.3.3    Iterative framework for the model

As aforementioned, the total 1012 sets of data of machine
learning model are divided into training and testing sets at
the ratio of 80:20. Hence, the total number of samples in
the training set is 817.

The  input  equation  of  the  training  set  in  the  model  is
(Eq. (2)):
 

T = {(x1,y1) , (x2,y2) , . . . , (x817,y817)} , xi ⊆ Rn,yi ∈ R, (2)
xi = (x(1)

i ,x
(2)
i , . . . ,x

(27)
i )

yi

where x is the feature variables and ;
 is the annual MSW generation of the city; R is the set

of real numbers; and n is the number of features.

fm (x)
When the  prediction  result  of  a  single  decision  tree  in

iteration m is ,  the  framework  of  the  model  is  as
follows:

f0 (x) = 01) Initialize .
2)  Each  iteration  of  decision  tree  the  residual  is

calculated by Eq. (3):
 

rmi = yi− fm−1 (xi) , (3)
m ∈ [1,2, . . . ,100]

i ∈ [1,2, . . . ,817]
where rmi is  the  residual;  is  the  itera-
tion; and  is the training data.

rmi

T (x;Θm)

Θm

3)  Fit  the  residual  and  feature  variables  in  training
set to obtain a regression tree, which is noted as ,
where T is the abstract function of the regression tree; x is
the  feature  variable  in  the  training  set;  and  indicates
the characters of regression tree in iteration m.

fm (x) = fm−1 (x)+
T (x;Θm)

4)  Update  the  regression  model  to 
.

5) Repeat steps 2), 3) and 4) until the iteration reaches
to 100.

6)  Set  up  the  final  gradient  boost  regression  tree  after
100 iterations (Eq. (4)):
 

fM (x) =
∑100

m=1
T (x;Θm) . (4)

 

2.4    Analysis of the model results

In  this  study,  Spyder  3.3.1  is  used  as  the  development
environment  of  Python  (III)  to  construct  the  MSW
generation  model.  Its  built-in  algorithm  is  used  to
evaluate  the  model  accuracy  and  analyze  the  weights  of
the feature variables. The coefficient of determination R2

is used to evaluate the testing accuracy of the model, and
the  weights  of  different  feature  variables  are  used  to
evaluate their importance to MSW generation. 

2.5    Model prediction for typical large cities in China

Based on the influencing factors, the model is applied to
predict  the  MSW  generation  of  typical  cities  in  China.
Two  cities,  Beijing  and  Shenzhen,  are  selected  as  the
simulation targets. To predict the MSW generation in the
two  cities,  the  data  set  of  27  feature  variables  of  the
WGMod  were  first  gathered  from  the  city  statistical
yearbooks of  Shenzhen (period:  2006–2017) and Beijing
(period:  2000–2017).  They  are  inserted  into  the  mathe-

matical  regression  model  to  predict  the  values  of
these variables in 2018–2022 (see detailed data in Supple-
mentary Information).  The new variables  are  subsequen-
tly  inserted  into  the  established  model  for  predicting
MSW generation. 

3    Results and discussion 

3.1    Model training and iteration process

The MSW generation prediction model,  i.e.,  WGMod, is
an iterative  optimization process  based on the  prediction
results of each decision tree. As shown in Fig. 3, the total
error of the WGMod on the training and testing data sets
decreases  with  the  number  of  iterations.  When  the
number  of  iterations  reaches  100,  the  total  error  value
stabilizes. The result confirms that the reasonable limit is
100  iterations  and  there  is  no  overfitting  in  the  model
prediction  process  (Miller et al., 2016).  The  blue  line
shows  the  model  iteration  process  of  the  training  data
sets. After model training, the total error (i.e., between the
predicted and true values) is less than 5. In the testing set
(red  line),  the  total  error  is  less  than  10  after  100  itera-
tions,  indicating  the  continuous  model  improvement
through  iterative  training.  Basic  model  parameters  were
shown Table S1. 

3.2    Identification of main influential factors of municipal
solid waste generation

WGMod  is  used  for  identifying  the  main  influencing
factors  of  MSW  generation  through  weight  analysis.  By
accumulating  and  analyzing  the  feature  weights  of  the
100  decision  trees  during  iterative  process  in  the  model,
the weight distribution bar can be obtained (refer to Fig. 4).
In  the  process  of  analyzing  the  decisive  role  of  the
factors,  the  variables  with  weight  below  0.01  are
excluded.  Among  the  27  feature  variables,  the  natural
variable  of “annual  precipitation” has  the  highest  weight
 

 
Fig. 3    Variance  of  prediction  results  of  the  WGMod  as  affected  by
the number of iterations.
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of  13%.  The  annual  precipitation  is  one  of  the  most
important factors affecting the amount of municipal waste
because  of  two  key  reasons.  One  reason  is  that  precipi-
tation affects the mass weight of MSW by increasing their
moisture  content  because  there  were  fewer  covers,
shadings  in  storage  and  collection  devices  in  the  past.
Another reason is that the annual precipitation (as one of
the climate variables) affects the output of vegetables and
vegetable consumption in the region, hence influences the
composition  of  MSW.  Therefore,  the  mass  weight  of
MSW  increases  with  the  input  of  vegetable  waste.  The
internal  variable  of  population  density  ranks  the  second,
with  a  weight  of  11%.  Obviously,  when  the  per  capita
output of MSW is relatively stable, the population density
is  positively  related  to  the  total  output  of  MSW
(Khajevand and Tehrani, 2019).  The  third  influencing
factor is the natural variable of annual mean temperature
with  a  weight  of  10%.  People’s  consumption  habits  can
vary  greatly  in  different  regions  (related  to  different
climate  type,  temperature  or  season),  because  the
differences  in  composition  and  quantity  of  products  can
result in different amounts of MSW (Purcell and Magette,
2009; Mohammad Ali Abdoli, 2011).  Moreover,  the
output  of  garden  waste  can  vary  significantly  with  tem-
perature variation (Boldrin and Christensen, 2010).

In addition,  some variables  (i.e.,  population,  registered
unemployment rate, built-up area, vegetable yield, house-
hold  consumption  level,  GDP  per  capita,  local  fiscal
revenue) all contribute to the model, and their weights are
all greater than 5%. The remaining feature variables con-
tribute 17% of the weight in total,  indicating their  relati-
vely small  influence on the amount  of  MSW generation.
Three  categories  of  feature  variables  (i.e.,  direct  socio-
economic variables, indirect socioeconomic variables and
natural  variables)  in  the  WGMod  all  have  considerable
weights  (i.e.,  57%,  20% and  23%,  respectively) (Fig. 4).
The  weight  analysis  suggests  that  the  population  and
built-up  area  driven  by  urbanization  are  the  most
important  socio-economic  influencing  factors  of  MSW
generation.  While  rainfall  and  temperature  are  the  major
natural  influencing  factors,  indicating  some  effect  of
urban  climate  on  MSW  generation.  Therefore,  the  key
factors with weight > 1% are selected for predicting MSW
generation. 

3.3    Accuracy analysis of the WGMod

Following  previous  studies,  a  total  of 1012 sets  of  data
were divided randomly into training set and testing set at
the  ratio  of  80:20  for  WGMod  processing  (Park et al.,
2018; Roh et al., 2018; Xu et al., 2021).  Therefore,  195
sets of data were used each time for testing the accuracy
of  WGMod.  The coefficient  of  determination R2 (Fig. 5)
is  used  for  judging  the  accuracy.  The  result  shows  the
coefficient of determination R2 of 0.9390, reflecting good
performance  of  the  WGMod. Table 3 presents  the R2

values of different models of MSW generation developed
using  machine  learning  algorithms  (Abbasi and El Hana-
ndeh, 2016;  Kontokosta et al., 2018; Wu et al., 2020). Ade-
ogba et al. developed a model for food and garden waste
prediction  in  UK  using  GBRT  method  (Adeogba et al.,
2019). Although a high-accuracy machine learning model
(R2 >  0.96)  was  developed  for  major  cities  in  Vietnam,
the applied data sets were relatively small (Nguyen et al.,
2021).  In  the  current  study,  more  feature  variables  and
larger  coverage  area  (multi-cities  and  cities  of  different
sizes)  were  considered.  Besides,  few  multi-city  models

 

 
Fig. 4    Influencing factors of MSW generation identified by weight analysis of the WGMod.

 

 

 
Fig. 5    MSW  production  predicted  by  WGMod  versus  actual  MSW
production.
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have been developed for developing countries due to the
slow establishment of the solid waste management system
in  developing  countries  and  limited  data  availability.
Limited  data  from  China’s  lower-level  administrative
units  could  be  a  weak  point  of  WGMod  for  predicting
MSW in those areas.

The model managed to cover all  city types with MSW
generation  ranges  from 100000 t/a  to  12.5  million  t/a.
Due  to  the  geographical  distribution  of  the  original  data
set,  the  testing  data  set  randomly  selected  by  the  model
randomly  were  from cities  located  in  the  eastern  part  of
China.  It  demonstrated  good  dispersion  and  represen-
tatives  with  small  absolute  deviation  of  the  testing  data
set  (0%–10%).  As  aforementioned,  the  130  cities  in  the
database  were  divided  into  four  categories  of  cities,  and
the  prediction  accuracy  of  each  category  was  calculated
(Table 2).  The  result  shows  that  for  mega-cities  (with  a
population size of above 5 million), model accuracy using
the testing set (R2 = 0.893) was the lowest. This might be
related  to  some  complex  factors  (e.g.,  huge  amount  of
mobile  population;  variation  in  economic  index;  and
faster implementation of new policies).

Except  the  city  size,  the  model  accuracy  has  no
significant  correlation  with  the  category  of  the  city  and
the  geographical  distribution  evidenced  by  higher  accu-
racy  and  a  certain  degree  of  randomness.  The  error
distribution of the cases ranged 0.01–0.08, of which error
less than 0.07 accounted for 84% of  the cases,  error less
than 0.03 accounted for 29% of the cases (Figs. 6(a) and
6(b)). 

3.4    Prediction of MSW generation for typical cities of
China

Shenzhen  and  Beijing  are  important  cities  with  strategic
positions  of  socioeconomic  development  in  the  southern
and northern China, respectively. The WGMod is applied
to  analyze  the  trend  of  MSW  generation  in  these  two
cities.

The  model  result  shows  that  the  amount  of  MSW
generated in Shenzhen would continue to rise in the next
three  years,  and  the  projected  annual  growth  rate  is
4.5%–7.1% (Fig. 7(a)). The amount of MSW would reach
7.88 million  tons  by  2022.  In  early  2018,  Shenzhen was
selected  by  the  Chinese  government  as  a  demonstration
city  for “Zero-waste”.  Therefore,  in  addition  to  the
corresponding  expansion  of  the  scale  of  treatment
facilities, especially the biochemical treatment system for
perishable organic waste, minimization strategy of MSW
should be promoted.

For Beijing, the amount of MSW generated in the next
three  years  would  also  continue  to  increase  (Fig. 7(b)).
By 2022, the amount of MSW generated in Beijing would
reach  11.22  million  tons.  However,  the  growth  rate  of
Beijing’s MSW generation would experience a significant
downward trend. Relative to 2021, it would drop by 2.7%
in  2022,  and  the  five-year  average  growth  rate  is  4%,
which  means  that  the  growth  rate  of  MSW  might
gradually decrease.  According to  the trend of  population
decline  in  Beijing  in  2017  and  2018,  the  apparent
decrease in the growth rate of MSW generation might be
related to the decrease in mobile population which caused
a corresponding decline in the total population in the next

   
Table 3    Comparison of different MSW machine learning prediction models

MSW prediction model Algorithm Data Sources Prediction accuracy
R2 Reference

WGMod Gradient boosting regression trees 130 cities in China 0.94 This study

LR model Random forest Czech Republic 0.77 Rosecky et al.,2021

M5Tree Model tree Kahrizak dumpsite, Iran 0.85 Alidoust et al., 2021

DNN Deep neural network Vietnam 0.91 Nguyen et al., 2021

Forecasting model Gradient boosting regression trees 327 UK local authorities 0.65 Adeogba et al., 2019

GBRT model Gradient boosting regression trees New York, USA 0.87 Kontokosta et al., 2018

MSW-Census
(Decision Trees) Classification and Regression Tree Ontario, Canada 0.54 Kannangara et al., 2018

MSW-Census
(Neural Networks)

Single hidden layer feed forward neural
network Ontario, Canada 0.72 Kannangara et al., 2018

GBRT model Gradient boosting regression trees New York, USA 0.88 Johnson et al., 2017

ANFIS Adaptive neuro-fuzzy inference system Logan City Council region in
Queensland, Australia 0.98 Abbasi and El Hanandeh,

2016

kNN K-nearest neighbors Logan City Council region in
Queensland, Australia 0.51 Abbasi and El Hanandeh,

2016

ANN model Artificial neural network Fars province, Iran 0.67–0.86 Azadi and Karimi-Jashni,
2016

GT/PCA/-ANN
models Artificial neural networks Mashhad, Iran 0.73–0.80 Noori et al., 2010
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few  years.  Should  the  economic  and  sociological  data
maintain  a  stable  trend,  the  MSW  generation  in  Beijing
might enter a plateau phase in the next 5–10 years. 

4    Conclusions

Through literature review and data extraction, a database
of MSW generation and feature variables with 1012 data
sets covering 130 cities across China was established. The
waste  generation  predicting  model,  i.e.,  WGMod,  deve-
loped  using  gradient  boost  regression  tree  algorithms
performed  reasonably  well  with  the  coefficient  of  deter-
mination  (R2)  of  0.939.  Annual  precipitation  (13%),
population density (11%) and average temperature (10%)
were  identified  as  the  key  influencing  factors  of  MSW
generation.  The  model  was  applied  to  predict  the  MSW
generation in Beijing and Shenzhen. The results suggested
that  waste  production  in  Beijing  would  grow  slowly  in
the  next  3–5  years,  while  that  in  Shenzhen  would  grow
rapidly with an annual growth rate of 7.1% by 2022. This
study  provided  scientific  methods  and  basic  data  for  a
multi-city  model  development  for  MSW  generation.

Specifically, the WGMod is suitable for predicting MSW
generation  in  China  because  it  was  developed  based  on
Chinese database. Since the impact of variables on MSW
generation  could  be  different  in  different  countries,  it  is
necessary  to  further  investigate/refine  the  influencing
factors  that  meet  the  actual  conditions  of  the  target
country. 
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