RESEARCH ARTICLE

Yuqi LIU^{*}, Yitong LIU^{*}, Yue YU, Chengzhan LIU, Shuangxi XING

Facile route to achieve MoSe₂-Ni₃Se₂ on nickel foam as efficient dual functional electrocatalysts for overall water splitting

© Higher Education Press 2022

Abstract Since the catalytic activity of present nickelbased synthetic selenide is still to be improved, MoSe₂-Ni₃Se₂ was synthesized on nickel foam (NF) (MoSe₂- Ni_3Se_2/NF) by introducing a molybdenum source. After the molybdenum source was introduced, the surface of the catalyst changed from a single-phase structure to a multiphase structure. The catalyst surface with enriched active sites and the synergistic effect of MoSe₂ and Ni₃Se₂ together enhance the hydrogen evolution reactions (HER), the oxygen evolution reactions (OER), and electrocatalytic total water splitting activity of the catalyst. The overpotential of the MoSe₂-Ni₃Se₂/NF electrocatalyst is only 259 mV and 395 mV at a current density of 100 mA/cm² for HER and OER, respectively. MoSe₂-Ni₃Se₂/NF with a two-electrode system attains a current density of 10 mA/cm² at 1.60 V. In addition, the overpotential of HER and OER of MoSe₂-Ni₃Se₂/NF within 80000 s and the decomposition voltage of electrocatalytic total water decomposition hardly changed, showing an extremely strong stability. The improvement of MoSe₂-Ni₃Se₂/NF catalytic activity is attributed to the establishment of the multi-phase structure and the optimized inoculation of the multi-component and multi-interface.

Keywords three-dimensional molybdenum nanomaterials, hydrogen evolution reaction, oxygen evolution reaction, overall water splitting

Received Aug. 13, 2021; accepted Nov. 5, 2021; online Feb. 25, 2022

Yuqi LIU, Yitong LIU, Chengzhan LIU, Shuangxi XING (⊠) Faculty of Chemistry, Northeast Normal University, Changchun 130024, China E-mail: xingsx737@nenu.edu.cn

Yue YU

College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China

*The two authors contribute equally in this work.

1 Introduction

The rapid economic development based on fossil fuels greatly intensifies environmental pollution and energy crises, prompting the exploration of sustainable clean energy [1–4]. As an energy source, hydrogen has the advantages of high energy density, environmental friendliness, and renewability, thus has the potential to replace fossil fuels [5-7]. An effective strategy for hydrogen production is overall water splitting and it is one of the energy conversion methods with a great application potential. Renewable energy such as solar energy can drive overall water splitting [8–13]. Hydrogen production by overall water splitting is resulted from the hydrogen and oxygen evolution reactions (HER, OER), reacting at the cathode and the anode, respectively. The number which shows 1.23 V in decomposition voltage water is theoretical. However, due to the sluggish kinetics and the impact of electrolyte chemistry, the actual decomposition voltage is much larger than 1.23 V [14-16]. Currently, commercialized hydrogen evolution catalysts, such as Pt, and oxygen evolution catalysts, such as RuO₂ with superior performances are low-reserve in nature and expensive, which greatly limits their applications [17,18]. Therefore, research on the low-cost catalyst with a better activity and stability in the improvement of overall water splitting technology is indispensable.

Up to the present, many types of low-cost electrocatalysts with superior performances and good catalytic stabilities have been developed, including molybdenum [19–21], iron [22–24], cobalt [25–28], nickel [29–34], and vanadium-based [35,36] compounds, of which, more attention have been paid to nickel-based compounds in storage and conversion of energy owing to their high abundance in nature, easy access, and low price. The density functional theory results illustrate that Se doping is beneficial for decreasing the kinetic barrier and the free energy of HER. Nickel-based selenide with specific phases has been reported to have a good electrocatalytic activity, but it still needs great improvement in order to meet the practical requirement [37,38]. A variety of strategies have been adopted to develop the electrochemical water splitting activity of nickel-based selenide, including heteroatom doping [39], phase change [40], and combination with conductive substrates [41,42], such as carbon nanotubes, conductive graphene, etc.

In this work, by using nickel foam (NF) as the substrate, MoSe₂-Ni₃Se₂/NF multiphase composite material was prepared by utilizing a one-pot hydrothermal method. As a result, the activity of the modified electrocatalyst was increased significantly for HER and OER. The MoSe₂-Ni₃Se₂/NF electrocatalyst showed an unexceptionable activity with an overpotential of only 259 mV and 395 mV for HER and OER at a current density of 100 mA/cm², respectively. In addition, when assembled in a two-electrode system, the MoSe₂-Ni₃Se₂/NF electrocatalyst could reach a current density of 10 mA/cm² with an overpotential of 1.60 V for overall water splitting.

2 Experimental

2.1 Materials

The selenium powder was purchase from Aladdin. The ammonium heptamolybdate tetrahydrate (AHT), commercial Pt/C (20% (mass ratio)), and RuO₂ were purchased from Tianjin Kaida Chemical Plant, Shanghai Hesen Electric Co., Ltd., and Sigma-Aldrich, respectively. The acetone, hydrazine hydrate solution, and ethanol were purchased from Beijing Chemical Plant. The foam nickel (NF) was purchased from Guangdong Candlelight New Energy Technology Co., Ltd. All experiments were conducted using deionized water (deionized water, 18.25 M Ω ·cm).

2.2 Synthesis of $MoSe_2-Ni_3Se_2/NF$, Ni_3Se_2/NF , Pt/C-NF, and RuO_2-NF

To remove the oxide layer, the NF substrate was soaked in an acetone solution for 24 h. Then, it was taken out, ultrasonically cleaned in ethanol and DI water for 30 min, and dried it in an oven at 50°C overnight. The selenium powder (0.1575 g) was dispersed in 10 mL of hydrazine hydrate solution and stirred for 5 h until the solution turns brown-black. Meanwhile, the AHT (0.1765 g) was dispersed in 50 mL of DI water and stirred for 30 min until the particles were completely dissolved. Under stirring, the selenium solution was slowly added into the AHT solution drop by drop, and then stirred for 30 min. The reaction mixture was shifted to a 100 mL autoclave reactor with a piece of NF (2 cm \times 5 cm). Then, the autoclave was put into an oven and sintered at 200°C for 20 h. After that, the reactor was moved out and cooled down naturally. The resultant NF-supported catalyst was ultrasonically washed with DI water and ethanol, and dried at 50°C overnight. The product which was obtained by the experience was recorded as MoSe₂-Ni₃Se₂/NF. For comparison, the Ni₃Se₂/NF was prepared following the same steps, but without introducing AHT. The Pt/C or RuO₂ loaded samples were prepared by weighing 4 mg of Pt/C and RuO₂ in two sorts of sample tubes, containing 190 µL of isopropanol, 50 µL of naphthol, 380 µL of deionized water, and 380 µL of ethanol. The mixture was kept ultrasonicating for 30 min. Finally, 200 µL of the above ink was evenly smeared on the top layer of NF (1 cm \times 1 cm). The catalyst loading rate on the sample is approximately 0.8 mg/cm².

2.3 Physical characterization

X-ray diffraction (XRD) analysis was performed on Siemens D5005 diffractometer with Cu-K α source ($\lambda =$ 1.5418 Å) at 40 kV and 30 mA, and a scan rate of 5 (°)/ min. Scanning electron microscope (SEM) and (high resolution-) transmission electron microscopy (TEM (100 kV), HR-TEM (200 kV)) pictures were obtained by using the JEOL SM-6360LV field emission scanning electron microscope and the JEOL JSM-2100F driving device electron microscope, respectively. In addition, a field emission transmission electron microscope (Tecnai G2 F-30 S-TWIN) was used to conduct the elemental analysis. X-ray photoelectron spectroscopy (XPS) was performed through the ESCALAB 250 spectrometer by a mono-chromatic Al K α X-ray source (1486.6 eV).

2.4 Electrochemical characterization

All electrochemical experiments were conducted via the CHI660E electrochemical workstation, using the 1.0 mol/L aqueous KOH electrolyte solution. A threeelectrode cell with the catalyst-supported NF (0.5 cm \times 0.5 cm) was used as the working electrode, while the Hg/ HgO electrode and carbon rod were used as the reference and counter electrodes, respectively. Before experiencing the electrocatalytic performance, the electrolyte was filled with nitrogen or oxygen for 30 min. The reference potential of HER and OER was modified by $E_{\rm RHE}$ = $E_{\rm Hg/HgO}$ + 0.059 pH + 0.099 V. The polarization curve (LSV) was recorded at a scan rate of 5 mV/s, and each electrode was iR (85%) corrected to eliminate the effect of the internal obstruction of the solution. The cyclic voltammetry (CV) was performed at a sweep speed of 20, 40, 60, 80, and 100 mV/s. The electrochemical impedance spectroscopy (EIS) was evaluated in the frequency range of 100 kHz to 0.1 Hz. The stability tests were performed by chronopotentiometry at an invariable current of 10 mA/cm² for HER, OER, and total water splitting (80000 s). The electrocatalytic water splitting experiment was conducted in a two-electrode battery, with

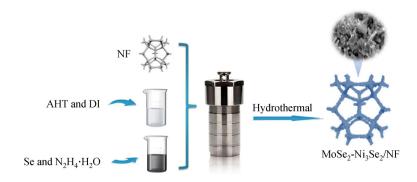


Fig. 1 Synthesis process of MoSe₂-Ni₃Se₂/NF.

 $MoSe_2\text{-}Ni_3Se_2\text{/NF}$ (0.5 cm \times 0.5 cm) as the cathode and anode.

The Faraday efficiency (FE) is calculated by

$$FE(\%) = n_{\rm Exp}/n_{\rm Theo},\tag{1}$$

where n_{Exp} means the total number of moles of the collected H₂ and O₂ gases and $n_{\text{Theo}} = 3Q/(4F)$ (*Q* is the charge passing through the electrodes and *F* is Faraday constant).

3 Results and discussion

MoSe₂-Ni₃Se₂/NF synthesized by the method is shown in Fig. 1, while the XRD patterns of Ni₃Se₂/NF and MoSe₂-Ni₃Se₂/NF are demonstrated in Fig. 2. The characteristic peaks of the nickel matrix correspond to three strong diffraction peaks at 44.58°, 51.96°, and 76.43° [43]. The main diffraction peaks at 21.09°, 29.65°, 36.78°, 37.25°, 42.76°, 47.80°, 48.38°, 52.75°, 53.60°, 61.67°, 62.63°, 69.96°, 70.61° correspond to the characteristic peaks of Ni₃Se₂ (JCPDS No.19-0841) [42]. Upon addition of AHT, the crystalline phase of MoSe₂ appears with the main diffraction peaks at 30.98°, 34.01°, 38.67°, 46.65°, 55.11°,

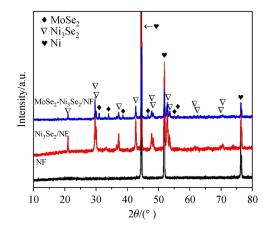
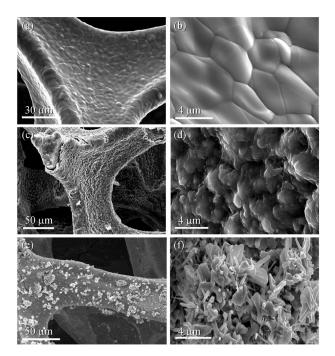



Fig. 2 XRD patterns of NF, Ni₃Se₂/NF, MoSe₂-Ni₃Se₂/NF.

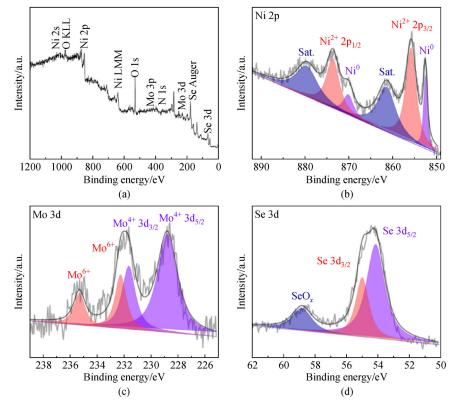
and 56.26°, corresponding to the characteristic peaks of $MoSe_2$ (JCPDS No.29-0914) [44].

Figures 3(a) and 3(b) illustrate the smooth surface of NF after pretreatment. Upon addition of the selenium powder, the obtained Ni_3Se_2/NF gives a uniform single-phase structure (Figs. 3(c) and 3(d)). However, if the selenium powder and ammonium molybdate tetrahydrate are simultaneously introduced, the NF surface generate a multiphase structure (Figs. 3(e) and 3(f)). The formation of the MoSe₂-Ni₃Se₂/NF composite structure leads to an increase in the specific surface area of the electrocatalyst, which supplies more active sites and accelerates the electron transport.

The morphology of the $MoSe_2-Ni_3Se_2/NF$ is further investigated via TEM which suggests that the composite has a non-uniform nanosheet structure (Fig. 4(a)). In the corresponding HRTEM image, the (002) crystal plane of

Fig. 3 SEM images at different resolutions. (a, b) NF; (c, d) Ni₃Se₂/NF; (e, f) MoSe₂-Ni₃Se₂/NF.

(a) (b) d = 0.71 nm $MoSe_2 (002)$ (c) Mo $20 \mu m$ Ni Se 5 nm


Fig. 4 TEM images at different resolutions. (a) TEM images of MoSe₂-Ni₃Se₂/NF; (b) HRTEM images of MoSe₂-Ni₃Se₂/NF; (c) corresponding elemental mapping of MoSe₂-Ni₃Se₂/NF.

 Ni_3Se_2 can get lattice fringes with a pitch of about 0.28 nm [45], and the (012) crystal plane of $MoSe_2$ can get lattice fringes with a pitch of about 0.71 nm [44]. In addition, the element map in Fig. 4(c) manifests that Ni, Se, and Mo are uniformly distributed on the surface of $MoSe_2$ -Ni₃Se₂/NF.

The energy dispersive spectroscopy spectra of the sample and the corresponding images are given in Electronic Supplementary Material (Fig. S1). The content of Mo, Ni, and Se are 6.48%, 75.29%, 18.23% respectively, which reveals the even distribution of Ni, Se and Mo on the surface of MoSe₂-Ni₃Se₂/NF.

The surface chemical state and electronic properties of MoSe₂-Ni₃Se₂/NF electrocatalysts were evaluated by XPS. Figure 5(a) exhibits that the main elements of the MoSe₂-Ni₃Se₂/NF electrocatalyst are Ni, Mo, and Se (Fig. 5(a)) [46]. In Fig. 5(b), after deconvolution of Ni 2p, the six peaks at 852.34, 855.60, 861.25, 869.30, 873.30, and 879.34 eV correspond to Ni^0 , $Ni^{2+} 2p_{3/2}$, satellite peak, Ni⁰, Ni²⁺ 2p_{1/2}, and satellite peak, respectively [21]. The peaks at 228.60 eV and 231.67 eV correspond to 3d_{5/2} and $3d_{3/2}$ of Mo⁴⁺, respectively. The peaks at 232.09 eV and 235.07 eV correspond to Mo^{6+} . The presence of the peak of Mo⁶⁺ on the surface of the electrocatalyst may be due to the slight oxidation of air (Fig. 5(c)) [46]. The peaks at 54.05 eV and 55.15 eV correspond to Se $3d_{5/2}$ and $3d_{3/2}$, respectively. In addition, a strong peak at 58.72 eV corresponding to SeO_x is observed, which may be caused by the air exposure [21] (Fig. 5(d)).

Figure 6(a) displays the electrocatalytic activity of the samples in the 1.0 mol/L KOH solution. When voltage is applied to the cathode, the LSV curve of $MoSe_2-Ni_3Se_2/NF$ indicates that the current density is increasing sharply.

Fig. 5 XPS total spectrum. (a) MoSe₂-Ni₃Se₂/NF; (b) Ni 2p; (c) Mo 3d; (d) Se 3d high-resolution XPS spectra.

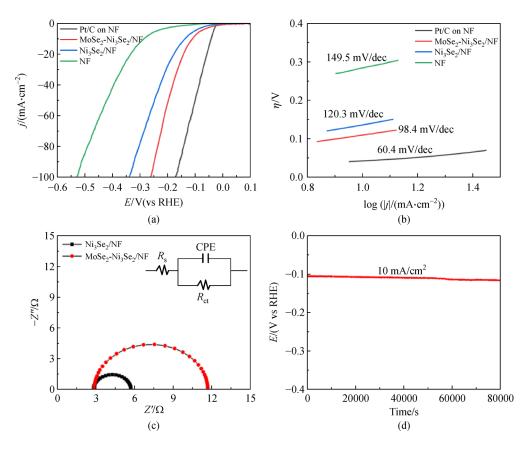


Fig. 6 Electrochemical characterization of HER.

(a) LSV curves; (b) Tafel plots of MoSe₂-Ni₃Se₂/NF, Ni₃Se₂/NF, NF and Pt/C for HER; (c) Nyquist plots (at $\eta = 100$ mV, the equivalent circuit of the EIS fitting result is based on inline image); (d) chronoamperometry response at $\eta = 10$ mA/cm² (MoSe₂-Ni₃Se₂/NF) for HER in a 1.0 mol/L KOH.

The overpotential at 10 and 100 mA/cm² is only 106 and 259 mV, respectively. For comparison, the LSV curve of the Pt/C-NF exhibits a lowest overpotential ($\eta_{10} = 45$ mV and $\eta_{100} = 169$ mV). On the contrary, the commercial NF and Ni₃Se₂/NF demonstrate an overpotential of 285 and 136 mV at 10 mA/cm², respectively, which confirms the advantage of introducing AHT. Another important basis to evaluate the catalytic performance of an electrocatalyst is the Tafel slope. As the HER catalytic activity of a sample improves, the Tafel slope decreases [47–49]. At present, the HER electron reflection model has been generally mentioned as

Volmer reaction:

$$H_2O(aq) + e^- + * \rightarrow H^* + OH^-(aq),$$
 (2)

Heyrovsky reaction:

$$H^* + H_2O (aq) + e^{-} \rightarrow H_2 + OH^{-}(aq) + *, \quad (3)$$

Tafel reaction: $H^* + H^* \rightarrow H_2 + 2^*$. (4)

The Tafel slopes of commercial NF, Ni₃Se₂/NF, MoSe₂-Ni₃Se₂/NF and commercial Pt/C on NF are 149.5, 120.3,

98.4, and 60.4 mV/dec (Fig. 6(b)), revealing the excellent HER performance of MoSe₂-Ni₃Se₂/NF. The electrocatalytic active surface area of the electrocatalyst was evaluated by measuring the electric double layer capacitance of the sample. As the electric double layer capacitance value increases, the number of active groups on the catalyst surface increases, too [50,51]. The C_{dl} value of MoSe₂-Ni₃Se₂/NF is 38.8 mF/cm² (Fig. S2(a), S2(b)), while the C_{dl} value of Ni₃Se₂/NF is only 7.9 mF/cm² (Figs. S2(c), S2(d)) [52]. The EIS of the sample was further measured to analyze the HER kinetic process of the electrocatalyst. The R_{ct} value is inversely proportional to the HER kinetic rate and electron transfer rate [53,54]. As shown in Fig. 6(c), the R_{ct} value of MoSe₂-Ni₃Se₂/NF is much smaller than that of Ni₃Se₂/NF, which may be attributed to the improved electron transfer efficiency of MoSe₂-Ni₃Se₂/NF with a multiphase surface structure, in contrast to the single-phase structure of Ni₃Se₂/NF.

In the long term stability test, the overpotential of the $MoSe_2-Ni_3Se_2/NF$ composite material hardly changes within 80000 s (Fig. 6(d)), which, therefore, demonstrates the satisfactory durability of the $MoSe_2-Ni_3Se_2/NF$ composite.

The OER activity of MoSe₂-Ni₃Se₂/NF, Ni₃Se₂/NF and

commercial RuO₂-NF and NF was evaluated in the 1.0 mol/L KOH solution. The overpotential of MoSe₂-Ni₃Se₂/NF at 100 mA/cm² is 395 mV, comparable to the activity of commercial RuO₂-NF with an overpotential of 341 mV. However, the overpotential of Ni₃Se₂/NF and NF at 100 mA/cm² is 455 and 500 mV, respectively (Fig. 7(a)). The OER activity of the catalyst was also evaluated by Tafel plot. The OER reaction process is more complicated. The currently recognized reaction process is shown as

$$^{*} + OH^{-} \rightarrow OH^{*} + e^{-}, \tag{5}$$

$$OH^* + OH^- \rightarrow H_2O~(l) + O^* + e^-,$$
 (6)

$$O^* + OH^- \rightarrow OOH^* + e^-, \tag{7}$$

$$OOH^* + OH^- \rightarrow H_2O(l) + O_2^* + e^-, \qquad (8)$$

$$O_2^* \to * + O_2. \tag{9}$$

The Tafel slopes of MoSe₂-Ni₃Se₂/NF, Ni₃Se₂/NF, and RuO₂-NF and NF are 62.3, 87.6, 42.4, and 102.6 mV/dec, respectively (Fig. 7(b)). In Fig. 7(c), the EIS test reveals that MoSe₂-Ni₃Se₂/NF has a lower R_{ct} value than

Ni₃Se₂/NF.

In addition, the stability of $MoSe_2-Ni_3Se_2/NF$ is also implemented by chronoamperometry, which almost does not change in the overpotential of $MoSe_2-Ni_3Se_2/NF$ at 10 mA/cm² within 80000 s (Fig. 7(d)). Thus, the $MoSe_2-Ni_3Se_2/NF$ has a satisfactory catalytic durability under alkaline conditions.

There are two reasons for improving the performance of HER and OER. The first reason is that introduction of the molybdenum source leads to the surface reconstruction of the catalyst (transformation from a single-phase structure to a multi-phase structure), which supply more active sites and speeds up the electron transfer efficiency. The second reason is that with the introduction of molybdenum source, a multi-component multi-interface electrocatalyst is formed, which may lead to an increase in the electrocatalytic activity.

Based on the excellent HER and OER activities of $MoSe_2-Ni_3Se_2/NF$, two electrode cells are assembled for total water splitting. The result shows that the required full water decomposition voltage is only 1.60 V at 10 mA/cm² (Fig. 8(a)). In contrast, the electrocatalytic water splitting voltage of Pt/C-NF|RuO₂-NF and Ni₃Se₂/NF is 1.53 and 1.66 V at a current density of 10 mA/cm², respectively.

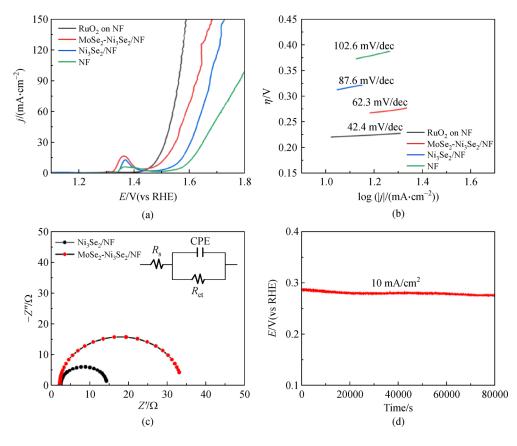


Fig. 7 Electrochemical characterization of OER.

(a) LSV response curves; (b) Tafel plots of MoSe₂-Ni₃Se₂/NF, Ni₃Se₂/NF, NF and Pt/C for OER; (c) Nyquist plots (at $\eta = -0.2$ V versus RHE, the equivalent circuit of the EIS fitting result is based on inline image); (d) long-term durability tests at $\eta = 10$ mA/cm² (MoSe₂-Ni₃Se₂/NF) for OER in a 1.0 mol/L KOH electrolyte.

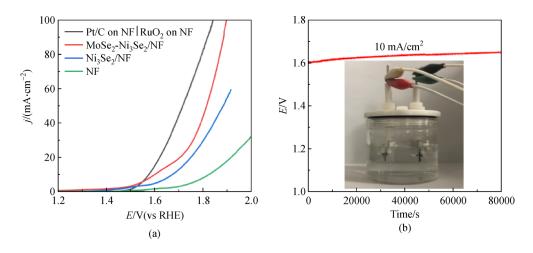


Fig. 8 Electrochemical characterization of overall water splitting. (a) Polarization curves; (b) long-term durability tests at 1.60 V of MoSe₂-Ni₃Se₂/NF for total water splitting in a 1.0 mol/L KOH solution.

In addition, the durability of MoSe₂-Ni₃Se₂/NF for electrocatalytic water splitting was also evaluated by chronoamperometry at 10 mA/cm². After 80000 s, the overall water splitting voltage of MoSe2-Ni3Se2/NF hardly changed, indicating its good potential in practical application (Fig. 8(b)). Meanwhile, under the condition of 10 mA/cm², the total water decomposition activity of MoSe₂-Ni₃Se₂/NF in lake water (our school lake water) was tested. At 10 mA/cm², the overpotential of the sample is 1.62 V (Fig. (9)), close to the overpotential in deionized water, indicating that it has a great practical application value. Through testing and calculation, the Faraday efficiency of HER and OER of the electrocatalyst is provided in Electronic Supplementary Material; the calculation results show that the Faraday efficiency of the catalyst is up to 93% (Fig. S3). After the durability test of the electrocatalyst for overall water splitting, the XRD, SEM, XPS, and EDS of MoSe₂-Ni₃Se₂/NF were tested. The results show that the structure and the surface morphology of the electrocatalyst roughly maintain the

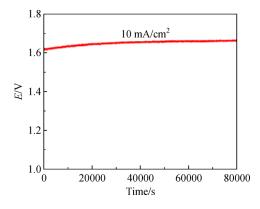


Fig. 9 Durability tests at 10 mA/cm² of $MoSe_2-Ni_3Se_2/NF$ for total water splitting in lake water.

original characteristics (Figs. S4-S7).

4 Conclusions

The MoSe₂-Ni₃Se₂/NF heterogeneous composite was fabricated by utilizing a one-pot hydrothermal method. The MoSe₂-Ni₃Se₂/NF heterogeneous composite demonstrated an excellent electrocatalytic activity and a longterm stability for HER, OER, and total water splitting. When the sample was used as a bifunctional electrocatalyst to drive the electrocatalytic total water splitting, an overpotential of only 1.60 V is required at 10 mA/cm². Meanwhile, the catalyst demonstrated a satisfactory durability and an almost unchanged overpotential after a durability test of 80000 s. The increase in the catalytic activity of the electrocatalyst can be attributed to the fact that the introduction of the molybdenum source has caused the surface of the electrocatalyst to be reconstructed to form a heterogeneous structure, which increases the active sites on the electrocatalyst surface and accelerates the electron transport speed, thereby improving the electrocatalytic activity. In addition, with the introduction of the molybdenum source, a multi-component multi-interface electrocatalyst is formed, which may lead to an increase in the electrocatalytic activity. It is hoped that this work may provide a direction for the surface regulation of nanomaterials and the development of efficient dual-functional electrocatalysts.

Acknowledgements This work was supported by the Scientific Research Projects of Jilin Provincial Department of Education (Grant No. JJKH20211285KJ) and Jilin Provincial Science and Technology Development Foundation (Grant No. 20200201090JC).

Electronic Supplementary Material Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11708-022-0813-0 and is accessible for authorized users.

References

- Bodhankar P M, Sarawade P B, Singh G, et al. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9(6): 3180– 3208
- Wang P, Jia T, Wang B. A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting. Journal of Power Sources, 2020, 474: 228621
- Zhao D, Zhuang Z, Cao X, et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chemical Society Reviews, 2020, 49(7): 2215–2264
- Han N, Liu P, Jiang J, et al. Recent advances in nanostructured metal nitrides for water splitting. Journal of Materials Chemistry A, 2018, 6(41): 19912–19933
- Li S, Hao X, Abudula A, et al. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. Journal of Materials Chemistry A, 2019, 7(32): 18674–18707
- Li Z, Ge R, Su J, et al. Recent progress in low Pt content electrocatalysts for hydrogen evolution reaction. Advanced Materials Interfaces, 2020, 7(14): 2000396
- Weng C, Ren J, Yuan Z. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. ChemSusChem, 2020, 13(13): 3357–3375
- Yang Z, Zhao C, Qu Y, et al. Trifunctional self-supporting cobaltembedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Advanced Materials, 2019, 31(12): 1808043
- Wang H, Fu W, Yang X, et al. Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2020, 8(15): 6926–6956
- Ding W, Cao Y, Liu H, et al. *In situ* growth of NiSe@Co_{0.85}Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Metals, 2021, 40(6): 1373–1382
- Tang Y, Liu Q, Dong L, et al. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Applied Catalysis B: Environmental, 2020, 266: 118627
- Hua W, Sun H, Xu F, et al. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Metals, 2020, 39(4): 335–351
- Yan P, Liu Q, Zhang H, et al. Deeply reconstructed hierarchical and defective NiOOH/FeOOH nanoboxes with accelerated kinetics for the oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9(28): 15586–15594
- Sun H, Yan Z, Liu F, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Advanced Materials, 2020, 32(3): 1806326
- Yao Q, Huang B, Zhang N, et al. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angewandte Chemie International Edition, 2019, 58(39): 13983–13988
- 16. Tiwari A P, Kim D, Kim Y, et al. Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution

reaction. Nano Energy, 2016, 28: 366-372

- Du H, Kong R, Guo X, et al. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale, 2018, 10(46): 21617–21624
- Ibraheem S, Li X, Shah S S A, et al. Tellurium triggered formation of Te/Fe-NiOOH nanocubes as an efficient bifunctional electrocatalyst for overall water splitting. ACS Applied Materials & Interfaces, 2021, 13(9): 10972–10978
- Kim D, Qin X, Yan B, et al. Sprout-shaped Mo-doped CoP with maximized hydrophilicity and gas bubble release for highperformance water splitting catalyst. Chemical Engineering Journal, 2021, 408: 127331
- Feng X, Shi Y, Shi J, et al. Superhydrophilic 3D peony flower-like Mo-doped Ni₂S₃@NiFe LDH heterostructure electrocatalyst for accelerating water splitting. International Journal of Hydrogen Energy, 2021, 46(7): 5169–5180
- Tian Y, Xue X, Gu Y, et al. Electrodeposition of Ni₃Se₂/MoSe_x as a bifunctional electrocatalyst towards highly-efficient overall water splitting. Nanoscale, 2020, 12(45): 23125–23133
- Badrnezhad R, Nasri F, Pourfarzad H, et al. Effect of iron on Ni– Mo–Fe composite as a low-cost bifunctional electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2021, 46(5): 3821–3832
- Zhang R, Wang G, Wei Z, et al. A Fe–Ni₅P₄/Fe–Ni₂P heterojunction electrocatalyst for highly efficient solar-to-hydrogen generation. Journal of Materials Chemistry A, 2021, 9(2): 1221–1229
- 24. Barati Darband G, Aliofkhazraei M, Hyun S, et al. Pulse electrodeposition of a superhydrophilic and binder-free Ni–Fe–P nanostructure as highly active and durable electrocatalyst for both hydrogen and oxygen evolution reactions. ACS Applied Materials & Interfaces, 2020, 12(48): 53719–53730
- 25. Jeghan S M N, Kim J, Lee G. Hierarchically designed CoMo marigold flower-like 3D nano-heterostructure as an efficient electrocatalyst for oxygen and hydrogen evolution reactions. Applied Surface Science, 2021, 546: 149072
- 26. Zhao Y, Zhang J, Xie Y, et al. Constructing atomic heterometallic sites in ultrathin nickel-incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting. Nano Letters, 2021, 21(1): 823–832
- 27. Lv X, Xiao Z, Wang H, et al. *In situ* construction of Co/N/C-based heterojunction on biomass-derived hierarchical porous carbon with stable active sites using a Co-N protective strategy for high-efficiency ORR, OER and HER trifunctional electrocatalysts. Journal of Energy Chemistry, 2021, 54: 626–638
- Ma X, Li K, Zhang X, et al. The surface engineering of cobalt carbide spheres through N, B co-doping achieved by roomtemperature *in situ* anchoring effects for active and durable multifunctional electrocatalysts. Journal of Materials Chemistry A, 2019, 7(24): 14904–14915
- Geng B, Yan F, Liu L, et al. Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting. Chemical Engineering Journal, 2021, 406: 126815
- Hu E, Yao Y, Chen Y, et al. Boosting hydrogen generation by anodic oxidation of iodide over Ni–Co(OH)₂ nanosheet arrays. Nanoscale Advances, 2021, 3(2): 604–610

- Rajesh J A, Jo I R, Kang S H, et al. Potentiostatically deposited bimetallic cobalt-nickel selenide nanostructures on nickel foam for highly efficient overall water splitting. International Journal of Hydrogen Energy, 2021, 46(10): 7297–7308
- 32. Yan H, Xie Y, Wu A, et al. Anion-modulated HER and OER activities of 3D Ni–V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Advanced Materials, 2019, 31(23): 1901174
- Liu L, Yan F, Li K, et al. Ultrasmall FeNi₃N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts. Journal of Materials Chemistry A, 2019, 7(3): 1083–1091
- Zhu C, Yin Z, Lai W, et al. Fe-Ni-Mo nitride porous nanotubes for full water splitting and Zn-air batteries. Advanced Energy Materials, 2018, 8(36): 1802327
- Wang Y, Liu J, Liao Y, et al. Hetero-structured V-Ni₃S₂@NiOOH core-shell nanorods from an electrochemical anodization for water splitting. Journal of Alloys and Compounds, 2021, 856: 158219
- Li Z, Yang J, Chen Z, et al. V "bridged" Co–O to eliminate charge transfer barriers and drive lattice oxygen oxidation during watersplitting. Advanced Functional Materials, 2021, 31(9): 2008822
- Jamesh M I. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. Journal of Power Sources, 2016, 333: 213–236
- D'Olimpio G, Nappini S, Vorokhta M, et al. Enhanced electrocatalytic activity in GaSe and InSe nanosheets: the role of surface oxides. Advanced Functional Materials, 2020, 30(43): 2005466
- Yi X, He X, Yin F, et al. Amorphous Ni-Fe-Se hollow nanospheres electrodeposited on nickel foam as a highly active and bifunctional catalyst for alkaline water splitting. Dalton Transactions (Cambridge, England), 2020, 49(20): 6764–6775
- He L, Cui B, Hu B, et al. Mesoporous nanostructured CoFe–Se–P composite derived from a Prussian blue analogue as a superior electrocatalyst for efficient overall water splitting. ACS Applied Energy Materials, 2018, 1(8): 3915–3928
- Zhang Y, Qiu Y, Ji X, et al. Direct growth of CNTs@CoS_xSe_{2(1-x)} on carbon cloth for overall water splitting. ChemSusChem, 2019, 12 (16): 3792–3800
- Zhu J, Ni Y. Phase-controlled synthesis and the phase-dependent HER and OER performances of nickel selenide nanosheets prepared by an electrochemical deposition route. CrystEngComm, 2018, 20 (24): 3344–3352

- Yang Y, Zhang K, Lin H, et al. MoS₂–Ni₃S₂ heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catalysis, 2017, 7(4): 2357–2366
- Yang Y, Zhao X, Mao H, et al. Nickel-doped MoSe₂ nanosheets with Ni–Se bond for alkaline electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45(18): 10724– 10728
- 45. Zhong Y, Chang B, Shao Y, et al. Regulating phase conversion from Ni₃Se₂ into NiSe in a bifunctional electrocatalyst for overall watersplitting enhancement. ChemSusChem, 2019, 12(9): 2008–2014
- Liu N, Yang L, Wang S, et al. Ultrathin MoS₂ nanosheets growing within an *in-situ*-formed template as efficient electrocatalysts for hydrogen evolution. Journal of Power Sources, 2015, 275: 588–594
- Liu W, Yu L, Yin R, et al. Non-3d metal modulation of a 2D Ni–Co heterostructure array as multifunctional electrocatalyst for portable overall water splitting. Small, 2020, 16(10): 1906775
- Zhang B, Xiao C, Xie S, et al. Iron–Nickel nitride nanostructures *in-situ* grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting. Chemistry of Materials, 2016, 28(19): 6934–6941
- Feng L L, Yu G, Wu Y, et al. High-index faceted Ni₃S₂ nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. Journal of the American Chemical Society, 2015, 137(44): 14023–14026
- 50. Shit S, Chhetri S, Jang W, et al. Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application. ACS Applied Materials & Interfaces, 2018, 10(33): 27712–27722
- Liu J, Zhu D, Ling T, et al. S-NiFe₂O₄ ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy, 2017, 40: 264–273
- 52. Li J, Wei G, Zhu Y, et al. Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5(28): 14828–14837
- Chen T, Tan Y. Hierarchical CoNiSe₂ nano-architecture as a highperformance electrocatalyst for water splitting. Nano Research, 2018, 11(3): 1331–1344
- Wang H, Sun Y, Ma F, et al. Se molarity tuned composition and configuration of Ni₃Se₂/NiSe core-shell nanowire heterostructures for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 819: 153056