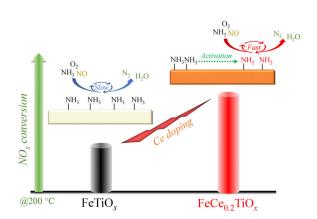
RESEARCH ARTICLE

CeO_2 doping boosted low-temperature NH_3 -SCR activity of $FeTiO_x$ catalyst: A microstructure analysis and reaction mechanistic study

Wei Tan^{1,2}, Shaohua Xie¹, Wenpo Shan^{3,4}, Zhihua Lian^{3,4}, Lijuan Xie³, Annai Liu⁵, Fei Gao², Lin Dong², Hong He^{3,4}, Fudong Liu (⋈)¹

- 1 Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL32816, USA
- 2 Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210023, China
- 3 State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
 - 4 Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China 5 Institute of Engineering Technology, Sinopec Catalyst Co. Ltd., Sinopec Group, Beijing 101111, China

HIGHLIGHTS


- CeO₂ doping significantly improved low-temperature NH₃-SCR activity on FeTiO_x.
- The crystallinity of $FeTiO_x$ was decreased dramatically after CeO_2 doping.
- Unique Ce-O-Fe structure in $FeCe_{0.2}TiO_x$ accounted for its superior redox property.
- Facile activation of NH₃ to -NH₂ on FeCe_{0.2}TiO_x promoted the DeNO_x efficiency.

ARTICLE INFO

Article history:
Received 3 November 2021
Revised 19 December 2021
Accepted 21 December 2021
Available online 26 January 2022

Keywords: NH₃-SCR CeO₂ doping Low-temperature NO_x removal Improved redox property In situ XAFS analysis

GRAPHIC ABSTRACT

ABSTRACT

FeTiO $_x$ has been recognized as an environmental-friendly and cost-effective catalyst for selective catalytic reduction (SCR) of NO $_x$ with NH $_3$. Aimed at further improving the low-temperature DeNO $_x$ efficiency of FeTiO $_x$ catalyst, a simple strategy of CeO $_2$ doping was proposed. The low-temperature (< 250 °C) NH $_3$ -SCR activity of FeTiO $_x$ catalyst could be dramatically enhanced by CeO $_2$ doping, and the optimal composition of the catalyst was confirmed as FeCe $_0.2$ TiO $_x$, which performed a NO $_x$ conversion of 90% at ca. 200°C. According to X-ray diffraction (XRD), Raman spectra and X-ray absorption fine structure spectroscopy (XAFS) analysis, FeCe $_0.2$ TiO $_x$ showed low crystallinity, with Fe and Ce species well mixed with each other. Based on the fitting results of extended X-ray absorption fine structure (EXAFS), a unique Ce-O-Fe structure was formed in FeCe $_0.2$ TiO $_x$ catalyst. The well improved specific surface area and the newly formed Ce-O-Fe structure dramatically contributed to the improvement of the redox property of FeCe $_0.2$ TiO $_x$ catalyst, which was well confirmed by H $_2$ -temperature-programmed reduction (H $_2$ -TPR) and $in\ situ\ XAFS$ experiments. Such enhanced redox capability could benefit the activation of NO and NH $_3$ at low temperatures for NO $_x$ removal. The detailed reaction mechanism study further suggested that the facile oxidative dehydrogenation of NH $_3$ to highly reactive -NH $_2$ played a key role in enhancing the low-temperature NH $_3$ -SCR performance of FeCe $_0.2$ TiO $_x$ catalyst.

© Higher Education Press 2022

1 Introduction

Nitrogen oxides (NO_r) have been recognized as major air pollutants, which can lead to various environmental problems (He et al., 2002; Gan et al., 2021). It has been widely reported that selective catalytic reduction (SCR) of NO_x with NH₃ was one of the most effective technologies for NO_x elimination (Han et al., 2019; Chen et al., 2021). The toxicity and the poor low-temperature $DeNO_x$ efficiency for the commercial V₂O₅-WO₃ (MoO₃)/TiO₂ catalysts, and the high cost of zeolite catalysts have made it urgent to develop an efficient and non-toxic metal oxide SCR catalyst. In our previous studies, an environmentalfriendly iron titanate (FeTiO_x) catalyst exhibiting excellent NH₃-SCR activity as well as satisfactory resistance to SO₂/ H₂O poisoning in the medium-temperature range was developed (Liu et al., 2008; Liu et al., 2010). However, the NO_x elimination performance of such iron titanate catalyst was not satisfactory for the NO_x removal in the lowtemperature range (e.g., below 200 °C) especially under the increasingly tightening NO_x emission standards.

Recently, many efforts have been devoted to developing new NH₃-SCR catalysts for low-temperature NO_x removal (Inomata et al., 2021; Ji et al., 2021; Kwon et al., 2021; Tan et al., 2021c; Zhang et al., 2021b). Using CeO₂ as active species, promoter or even support for low-temperature NH₃-SCR catalysts was one of the most popular strategies, due to the excellent redox property, relatively abundant reserves and low price of CeO₂ (Tang et al., 2016). Lee et al. prepared a CeO₂ promoted Sb-V₂O₅/TiO₂ catalysts, which exhibited enhanced low-temperature NH₃-SCR performance and satisfactory resistance to H₂O and SO₂ (Lee et al., 2013). It was reported that the addition of CeO₂ had a promotion effect as well on Cu-zeolite catalysts for improving low-temperature NO_x elimination efficiency and hydrothermal stability (Wang et al., 2016; Wang et al., 2020a). Mixed oxide materials containing CeO₂ (e.g., CeO₂-MnO₂, CeO₂-SiO₂, CeO₂-TiO₂, etc.) could also be used as efficient NH₃-SCR catalysts (Qi and Yang, 2003; Li et al., 2017; Tan et al., 2021a; Zeng et al., 2021). In these works, the addition of CeO₂ promoted the redox capacity at low-temperature range notably and well modified the surface acidity, which were vital for the enhancement of the low-temperature DeNO_x efficiency.

In our previous work, CeO_2 doping was proved to be a simple but effective strategy to enhance the low-temperature NO elimination efficiency of $FeTiO_x$ catalyst, and the increased NO_x removal efficiency at low temperature mainly resulted from the enhanced dispersion of FeO_x and TiO_x species due to Ce addition, which then facilitated the adsorption/activation of NO_x and NH_3 simultaneously (Zhang et al., 2020). In present work, we investigated the CeO_2 promoted $FeTiO_x$ catalysts for NH_3 -SCR of NO_x within a broader Ce doping range, focusing on the elucidation of local microstructure and redox property as well as the SCR mechanism using a series of *ex situ* and

in situ advanced characterization techniques. The newly formed Ce-O-Fe structure was clearly demonstrated by ex situ X-ray absorption fine structure spectroscopy (XAFS) and the significant improvement of redox property of CeO₂ doped FeTiO_x catalyst was well confirmed by H₂-temperature-programmed reduction (H₂-TPR) and in situ XAFS experiments. Detailed reaction mechanism study showed that the more facile oxidative dehydrogenation of NH₃ to form highly reactive -NH₂ species on CeO₂ doped FeTiO_x was crucial for the promotion of its low-temperature NO_x elimination efficiency.

2 Materials and methods

2.1 Catalyst preparation

Fe-Ce-TiO_x catalysts were prepared by a homogeneous co-precipitation method, and Fe(NO₃)₃·9H₂O, Ce(NO₃)₃ ·6H₂O and Ti(SO₄)₂ were used as precursors. The Fe-Ti and Fe-Ce molar ratios were set at 1:1 and 1:a (a = 0.1, 0.2,0.6, 1 and 1.6), respectively. The calculated amount of $Fe(NO_3)_3 \cdot 9H_2O$, $Ce(NO_3)_3 \cdot 6H_2O$ and $Ti(SO_4)_2$ was first dissolved into deionized water. Excessive urea dissolved in deionized water was used as a precipitator. After that, the mixture was heated to 90 °C and kept there for 12 h under stirring. Then, the mixture was filtered and the obtained precipitate cake was washed with distilled water several times, followed by the desiccation at 100 °C for 12 h. Finally, the solid was calcined in air at 500 °C for 3 h. The prepared samples were named as FeCe_aTiO_r. Before the catalytic performance evaluation, all samples were pressed into tablets and then sieved into 40–60 mesh. All chemicals used in this work were purchased from Sinopharm Chemical Reagent Co., Ltd., China, and were of analytical grade without further purification.

2.2 Characterizations

The specific surface areas of the prepared catalysts were measured on a Quantachrome Quadrasorb SI-MP instrument (USA), using N_2 adsorption-desorption isotherms at $-196~^{\circ}\text{C}$ by the Brunauer-Emmett-Teller (BET) method. The partial pressure range used for the calculation was 0.05-0.35. Prior to the test, the catalysts were degassed in vacuum at 300 $^{\circ}\text{C}$ for 4 h.

Powder X-ray diffraction (XRD) patterns were obtained from a PANalytical X'Pert Pro Diffractometer instrument (Netherlands), equipped with a Cu K α radiation (λ = 0.15406 nm) source. The 2θ ranged from 10° to 80°, and the scanning speed was 7°/min. The step size was determined as 0.07°.

Raman spectroscopy experiment was conducted on a Spex 1877 D triplemate spectrograph (USA), which used a DPSS diode-pump solid semiconductor laser ($\lambda = 532 \text{ nm}$) as the excitation source, and the output power was set at

40 mW.

The ex situ XAFS of Fe K-edge and Ce K-edge in FeTiO_x and FeCe_aTiO_x catalysts (a = 0.1, 0.2, 0.6, 1 and 1.6) were collected in transmission mode on BL-7C and NW10A beamlines, respectively, Photon Factory, High Energy Accelerator Research Organization (KEK), Japan. Pure Fe₂O₃ and CeO₂ were used as reference samples. The in situ XAFS of Fe K-edge in FeTiO_x and FeCe_{0.2}TiO_x catalysts during the H2-temperature-programmed reduction (H₂-TPR) process were recorded in transmission mode by a quick XAFS (QXAFS) method on BL-12C beamline, Photon Factory, KEK, Japan. During the H₂-TPR process, samples were exposed to a flow of 5 vol.% H₂/He, heated from room temperature to 900 °C. REX2000 program (Rigaku Co., Japan) was applied to analyze the XAFS data. XANES were normalized based on edge height. EXAFS oscillation $\gamma(k)$ was extracted using spline smoothing with a Cook-Sayers criterion (Cook and Sayers, 1981), and the filtered k^3 -weighted $\gamma(k)$ was Fourier transformed into R space in the k range of 2.0–13.0 Å⁻¹ for Fe-K edge and $2.0-14.0 \text{ Å}^{-1}$ for Ce-K edge. During the curve fitting process, FEFF8.4 code was used to calculate the possible backscattering amplitude and phase shift (Ankudinov et al., 1998).

X-ray Photoelectron Spectroscopy (XPS) experiments were carried out on Scanning X-ray Microprobe (PHI Quantera, ULVAC-PHI, Inc., Japan), using a monochromatic Al K radiation source (1486.7 eV). C 1s line at 284.6 eV was used to calibrate the binding energies (BE) of all the elements.

H₂-TPR experiments were carried out on an AutoChem 2920 Chemisorption Analyzer (Micromeritics, USA). Before the measurement, catalysts were first pretreated in flowing air (50 mL/min) at 300 °C for 1 h. Then, the treated catalysts were cooled down to room temperature. Afterwards, the catalysts were exposed to a flow of 10 vol.% H₂/Ar (50 mL/min) and heated from 40 to 1000 °C linearly. The ramping rate was set at 10 °C/min. The signal of H₂ was monitored by a thermal conductivity detector (TCD).

NH₃-temperature-programmed desorption (NH₃-TPD) experiments were performed on a fixed-bed quartz tube reactor, using an online mass spectrometer (HPR20, Hiden Analytical Ltd., UK) as a detector. Prior to the test, samples were pretreated in a flow of 20 vol.% O_2 /He (30 mL/min) at 300 °C for 30 min and then cooled to room temperature. After the pretreatment, samples were exposed to a flow with 2500 ppm NH₃/Ar to saturation. Afterwards, the samples were purged by N_2 flow for 30 min. Finally, the samples were heated to 600 °C, and the ramping rate was 10 °C/min. The m/z of 15 was used to identify NH₃.

An FTIR spectrometer (Nicolet Nexus 670, USA) equipped with an MCT/A detector was employed to conduct *in situ* diffuse reflectance infrared Fourier transform spectroscopy (*in situ* DRIFTS) experiments. Prior to the test, samples loaded in the DRIFTS cell were pretreated with air flow at 400 °C for 30 min. Then, the

sample was cooled and kept at 150 °C, at which the background samples were also collected. The background spectra were subtracted from the recorded spectra automatically. The feeding gas was composed of 500 ppm NO (when used), 500 ppm NH₃ (when used) and 5 vol.% O_2 (when used), with a total flow rate of 300 min (N_2 balance). The range of all spectra was 400–4000 cm⁻¹ and the spectral resolution was 4 cm⁻¹.

2.3 Catalytic performance evaluation

A fixed-bed reactor was used to evaluate the NH₃-SCR activity and NH₃/NO oxidation activity on the prepared samples. The feed gas contained 500 ppm NO/NH₃ (when used), 100 ppm SO₂ (when used), 5 vol.% O₂ and 5% H₂O (when used), N₂ in balanced. In each test, 0.6 mL catalyst (40–60 mesh) was loaded in a quartz tube. To achieve the gas hourly space velocity (GHSV) of 10000, 25000, 50000 and 100000 h⁻¹, the total flow rate was controlled at 100, 250, 500 and 1000 mL/min, respectively. An FTIR spectrometer (Nicolet Nexus 670, USA) with a multiplepath gas cell (2 m) was employed to measure the concentrations of NO, NO₂, N₂O and NH₃ in the outlet gas. The NO_x conversion in NH₃-SCR reaction was calculated according to the equation attached below (Eq. (1)):

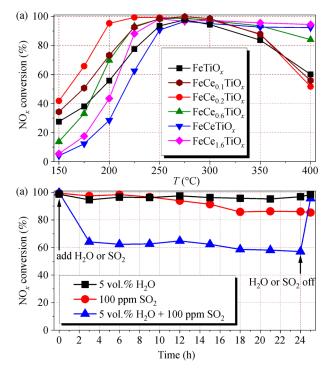
$$NO_x$$
 conversion (%)
= {([NO]_{in} - [NO]_{out} - [NO₂]_{out})/[NO]_{in}} × 100% (1)

The NH₃ conversion in NH₃ oxidation reaction was determined by the following equation (Eq. (2)):

NH₃ conversion (%)
=
$$\{([NH_3]_{in} - [NH_3]_{out})/[NH_3]_{in}\} \times 100\%$$
 (2)

The NO conversion in NO oxidation reaction was determined by the following equation (Eq. (3)):

NO conversion (%)
=
$$\{([NO]_{in} - [NO]_{out})/[NO]_{in}\} \times 100\%$$
 (3)


3 Results and discussion

3.1 Catalytic activity

The catalytic activity on FeCe_aTiO_x catalysts (a = 0.1, 0.2, 0.5, 1 and 1.6) in NH₃-SCR reaction was evaluated first. As the CeO₂ doping amount increased, the low-temperature (<250 °C) NH₃-SCR activity on FeCe_aTiO_x catalysts initially increased and then decreased (Fig. 1(a)). In this study, FeCe_{0.2}TiO_x catalyst showed the best NH₃-SCR activity in the low-temperature range (150–250 °C), with a T₉₀ (at which the NO_x conversion reached 90%) of 195 °C which was much lower than that on FeTiO_x catalyst (T_{90} =

245 °C). It can be concluded that the doping of proper amount of CeO_2 could significantly boost the $DeNO_x$ efficiency of $FeTiO_x$ catalyst below 250 °C. Moreover, $FeCe_{0.2}TiO_x$ still exhibited a broad operation temperature window from 200 to 350 °C under higher GHSV such as $100000 \, h^{-1}$ (Fig. S1).

The deactivation of catalysts caused by SO_2 and H_2O in the flue gas is a bottleneck in industrial application of NH_3 -SCR catalysts (Wang et al., 2020b). Here, the catalytic performance of $FeCe_{0.2}TiO_x$ with H_2O and/or SO_2 added to feed gas was evaluated. As illustrated in Fig. 1(b), water

Fig. 1 (a) The NH₃-SCR activity over FeTiO_x and FeCe_aTiO_x catalysts (a = 0.1, 0.2, 0.6, 1 and 1.6) under GHSV of 50000 h⁻¹. (b) The NO_x conversion as a function of reaction time in NH₃-SCR reaction over FeCe_{0.2}TiO_x catalyst in the presence of 100 ppm SO₂ or/and 5% H₂O at 250 °C under the GHSV of 50000 h⁻¹.

vapor (5 vol.%) in the reaction flow had no impact on the NH₃-SCR activity of FeCe_{0.2}TiO_x catalyst. Only a slight decline in the NH₃-SCR activity was observed on FeCe_{0.2}TiO_x after being exposed to 100 ppm SO₂ for 24 h, indicating the good SO₂ resistance of FeCe_{0.2}TiO_x catalyst. Although the NO_x conversion on FeCe_{0.2}TiO_x decreased with the addition of 5 vol.% H₂O and 100 ppm SO₂ to the reaction flow at the same time, which might result from the deposition and accumulation of ammonium bisulfate (ABS) on the catalyst surface that covered the active sites (Guo et al., 2019; Guo et al., 2021). Interestingly, the NO_x conversion was found to recover to ca. 100% rapidly after switching off SO₂ and H₂O, suggesting that the deactivated FeCe_{0.2}TiO_x catalyst was easy to regenerate.

3.2 Structural information

The XRD patterns for FeCe_aTiO_x catalysts are illustrated in Fig. 2(a). For FeTiO_x catalyst, diffraction peaks ascribed to hematite α-Fe₂O₃ (JCPDS 33-0664), anatase TiO₂ (JCPDS 21-1272) and pseudobrookite Fe₂TiO₅ (JCPDS 41-1432) were observed. After the addition of CeO₂, the intensity of the diffraction peaks attributed to Fe₂O₃, TiO₂ and Fe₂TiO₅ decreased significantly, indicating the much lower crystallinity of Fe and Ti species. Interestingly, no formation of crystalline CeO₂ was observed on FeCe_{0.1}TiO_x and FeCe_{0.2}TiO_x, which indicated that CeO₂ was highly dispersed within these two catalysts. When the CeO₂ doping amount was further increased, FeCe_aTiO_x (a = 0.6, 1, 1.6) mainly showed a cerianite CeO₂ phase (JCPDS 43-1002) with monotonically increased diffraction peak intensity. It was noticeable that the intensity of diffraction peaks for FeCe_{0.2}TiO_r catalyst was the lowest among all the catalysts, which was related to its lowest crystallinity and the smallest particle size. Accordingly, FeCe_{0.2}TiO_x also showed the highest specific surface area (Table S1). FeCe_{0.2}TiO_x catalyst with the smallest crystallite size and highest specific surface area could provide the most fruitful

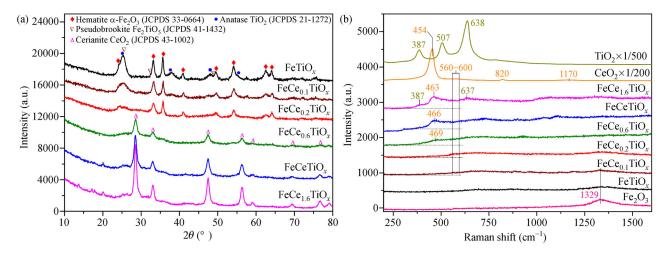


Fig. 2 (a) XRD patterns and (b) Raman spectra for FeTiO_x and FeCe_aTiO_x catalysts with reference oxides.

active sites among the studied catalysts herein to optimally impel the proceeding of the NH₃-SCR reaction.

Raman spectra of FeCe_aTiO_x catalysts were also collected to further explain the catalyst structure (Fig. 2(b)). For TiO₂, three characteristic Raman active modes of anatase with symmetries $B_{1g},\,A_{1g}$ and E_g were observed at 387, 507, and 638 cm⁻¹, respectively (Challagulla et al., 2017). For pure CeO_2 , an intensive band ascribed to the triply degenerated F2g mode of fluorite-type CeO₂ could be observed at ca. 454 cm⁻¹, and the bands at ca. 560-600, 820 and 1170 cm⁻¹ could be attributed to the oxygen defects (D-band, LO), peroxide species (O_2^{2-}) and superoxide species (O_2^{-}) on oxygen defects (2LO, overtone of the LO mode), respectively (Loridant, 2021). The band at ca. 1329 cm⁻¹ on Fe₂O₃ was related to the characteristic signal of α-Fe₂O₃ (Ahmmad et al., 2013). For FeCe_aTiO_x catalysts, the intensity of the Raman bands decreased significantly when compared with pristine Fe₂O₃, TiO₂ and CeO₂ within their respective characteristic Raman shift region, especially for FeCe_{0.2}-TiO_x catalyst on which only a broad band related to oxygen defect (ca. 560 cm⁻¹) was detected. The absence of typical Raman shifts observed for crystalline Fe₂O₃, CeO₂ and TiO_2 on $FeCe_{0.2}TiO_x$ well supported the results of XRD indicating that FeCe_{0.2}TiO_x showed the lowest crystallinity. As reported previously, mixed oxide catalysts such as CeO₂-SiO₂ and FeNbO_x with low crystallinity (or in totally amorphous state) could exhibit higher specific surface area, improved redox property and enhanced surface acidity comparing to one-component crystalline metal oxide, thus providing more active sites. The strong interaction of Ce-O-Si or Fe-O-Nb in such mixed oxides with low crystallinity played a key role in the dramatic improvement of the low-temperature NH₃-SCR activity (Tan et al., 2021a; Zhang et al., 2021a).

3.3 States of Fe and Ce species within $FeCe_aTiO_x$

To better understand the surface chemical states of FeCe_aTiO_x catalysts, XPS measurements were conducted. The surface atomic concentration could be found in Table S2. Fe 2p XPS for Fe_2O_3 , $FeTiO_x$ and $FeCe_{0.2}TiO_x$ are illustrated in Fig. S2(a). The high similarity of the Fe 2p XPS for these three samples indicated that the Fe species in FeTiO_x and FeCe_{0.2}TiO_x were both in the form of Fe³⁺ (Yu et al., 2021a). As demonstrated in Fig. S2(b), the intensity of Ce 3d XPS for $FeCe_{0.2}TiO_x$ was much weaker than that for CeO₂ due to its low Ce content. The surface Ce³⁺ concentration was calculated following the method reported elsewhere (Tan et al., 2020). The concentration of Ce^{3+} on $FeCe_{0.2}TiO_x$ (20.0%) was almost equal to that on CeO₂ (19.8%). The O 1s XPS were also collected and illustrated in Fig. S2(c). The peaks at ca. 534 and 531 eV (O_{α}) could be assigned to surface hydroxyl groups and chemisorbed oxygen species, respectively. The peak at ca. 530 eV (O_B) was related to the lattice oxygen species (Liu et al., 2018; Li et al., 2021). Interestingly, the ratio of surface oxygen species $(O_{\alpha}/(O_{\alpha}+O_{\beta}))$ on FeCe_{0.2}TiO_x (42.8%) was higher than that on FeTiO_x (38.5%), which might result from the higher specific surface area and lower crystallinity of FeCe_{0.2}TiO_x (Table S2).

The XAFS technique (including XANES and EXAFS) was applied to further elucidate the chemical states of Fe and Ce species, as well as the microstructure of FeCe_aTiO_x catalysts in detail. Figure 3(a) illustrated the Fe K-edge XANES of FeCe_aTiO_x and the reference samples. Judging from the pre-edge peak position, it can be concluded that the Fe species in $FeTiO_x$ and $FeCe_aTiO_x$ mainly existed in the form of Fe³⁺, which was well supported by our previous report (Liu et al., 2013) and the Fe 2p XPS results. In XRD and Raman spectra sections, it has been found that CeO₂ and Fe₂O₃ in FeCe_{0.2}TiO_x showed low crystallinity, suggesting that Ce and Fe species were well mixed with each other. According to the EXAFS results (Fig. 3(b)), besides the well-defined Fe-O first coordination shell within Fe_2O_3 , $FeTiO_x$ and $FeCe_aTiO_x$, a second coordination shell of Fe-O-M (M = Fe, Ce, Ti) was also observed on these samples. It was worth noting that the Fe-O coordination intensity on FeCe_{0.2}TiO_x catalyst was the lowest among all Fe containing samples, indicating the formation of the most abundant unsaturated coordination sites for Fe species within this optimal catalyst.

To further investigate the formation of Fe-O-M structure in FeCe_aTiO_x catalysts, Ce K-edge XANES and EXAFS were also collected and illustrated in Figs. 3(c) and 3(d). No significant difference regarding to absorption edge energy was observed for the Ce K-edge XANES of CeO₂ and FeCe_aTiO_x, suggesting that Ce in FeCe_aTiO_x mainly existed in the form of Ce⁴⁺. Interestingly, different from the EXAFS of CeO₂ in R space where well-defined Ce-O and Ce-O-Ce coordination shells were observed, no Ce-O-Ce coordination shell was found on FeCe_{0.1}TiO_x and $FeCe_{0.2}TiO_x$ with relatively low Ce doping. The absence of the Ce-O-Ce coordination environment within FeCe_{0.2}-TiO_x catalyst clearly confirmed that CeO₂ was in a highly dispersed state. Moreover, a new coordination shell of Ce-O-Fe was formed within $FeCe_{0.1}TiO_x$ and $FeCe_{0.2}TiO_x$ as confirmed by curve fitting, suggesting the existence of strong interaction between Ce and Fe species. The electron transfer through such strong interaction within Ce-O-Fe could facilitate the redox cycle of active sites in NH₃-SCR reaction, thus contributing to the improvement of the lowtemperature NH₃-SCR activity.

3.4 Surface acidity and redox property

As widely reported, NH₃-SCR reaction requires two types of active sites, i.e., the redox sites and acid sites, which jointly determine the catalytic performance of a specific NH₃-SCR catalyst (Han et al., 2019; Tan et al., 2021b). In this study, NH₃-TPD was first conducted to explore the surface acidity of FeTiO_x and FeCe_{0.2}TiO_x catalysts. As

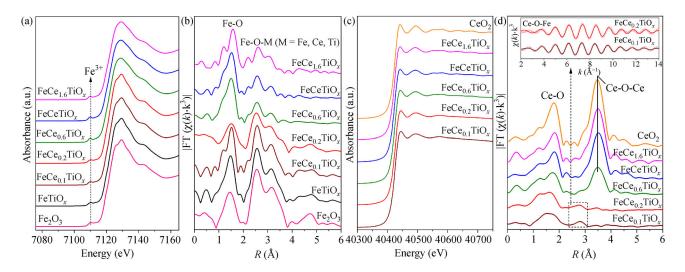


Fig. 3 (a) Normalized XANES spectra of Fe K-edge in Fe_2O_3 , $FeTiO_x$ and $FeCe_aTiO_x$ catalysts, (b) Fourier transforms of filtered EXAFS oscillations $k^3\chi(k)$ into R space for Fe K-edge in Fe_2O_3 , $FeTiO_x$ and $FeCe_aTiO_x$ catalysts. (c) Normalized XANES spectra of Ce K-edge in CeO_2 and $FeCe_aTiO_x$ catalysts, (d) Fourier transforms of filtered EXAFS oscillations $k^3\chi(k)$ into R space for Ce K-edge in CeO_2 and $FeCe_aTiO_x$ catalysts (the inserted figure was the inverse Fourier transformed EXAFS oscillations in $FeCe_{0.1}TiO_x$ and $FeCe_{0.2}TiO_x$ in the R range of Ce_0 and Ce_0 an

illustrated in Fig. 4(a), the NH₃-TPD profile for FeCe_{0.2}-TiO_x showed no significant difference from that for FeTiO_x. Only a slight increase in the NH₃ adsorption amount was observed on FeCe_{0.2}TiO_x, which might be due to its higher specific surface area. *In situ* DRIFTS of NH₃ adsorption was performed to further explore the characteristics of NH₃ adsorption on FeTiO_x and FeCe_{0.2}TiO_x at 150 °C (Fig. 4(b)). IR bands related to NH₃ adsorbed on Lewis acid sites (1184–1192 and 1603 cm⁻¹) and Brønsted acid sites (1446–1462 and 1680 cm⁻¹) were observed on both FeTiO_x and FeCe_{0.2}TiO_x (Yao et al., 2017; Yu et al., 2021b). The IR spectra for NH₃ adsorption on FeTiO_x and FeCe_{0.2}TiO_x were almost the same, indicating that the

surface acidity did not dominate the NH₃-SCR activity difference on these two catalysts. However, interestingly, a weak band assigned to -NH₂ species at 1531 cm⁻¹ was observed on FeCe_{0.2}TiO_x, which was formed by the oxidative dehydrogenation of NH₃ on Lewis acid sites (Liu et al., 2014). The formation of -NH₂ species indicated the better redox property of FeCe_{0.2}TiO_x, which could be a decisive factor for the enhancement of low-temperature NO_x elimination efficiency. The higher NH₃ oxidation activity on FeCe_{0.2}TiO_x comparing to that on FeTiO_x further supported the viewpoint that FeCe_{0.2}TiO_x catalyst could better activate NH₃ (Fig. S3(a)).

To study the redox property and reveal the structural

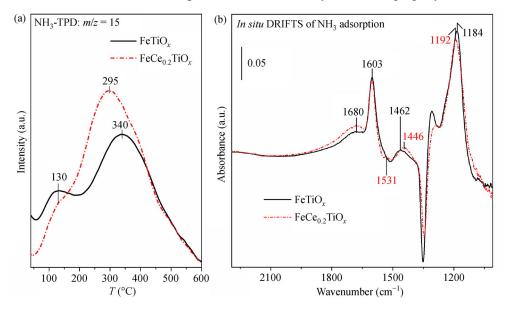


Fig. 4 (a) NH₃-TPD profiles for $FeTiO_x$ and $FeCe_{0.2}TiO_x$ catalysts; (b) In situ DRIFTS of NH₃ adsorption on $FeTiO_x$ and $FeCe_{0.2}TiO_x$ catalysts at 150 °C collected in N₂ flow.

information of the prepared catalysts, H₂-TPR profiles of the prepared samples were collected and further peak deconvolution was conducted (Fig. 5). Three sets of H₂-consumption peaks at ca. 200–350 °C (black), ca. 350-500 °C (red) and ca. 500-900 °C (blue) could be attributed to the reduction of Fe³⁺ (similar to the Fe species in Fe_2O_3) to $Fe^{2+/3+}$ (similar to the Fe species in Fe_3O_4), Fe²⁺ (similar to the Fe species in FeO) and metallic Fe⁰, respectively (Qu et al., 2015). As listed in Table S3, although the total H₂ consumption of FeTiO_x and FeCe_{0.2}TiO_x was much smaller than that of Fe₂O₃, which should be related to the poor reducibility of TiO2, higher ratio of H₂ consumption occurred at low temperatures (200-350 °C) for $\text{FeCe}_{0.2}\text{TiO}_x$ (25.3%) when compared with those for Fe_2O_3 (12.8%) and $FeTiO_x$ (18.1%), suggesting that the reduction of Fe³⁺ to Fe²⁺ was much easier on FeCe_{0.2}TiO_x catalyst. Such improved reducibility suggested the key role of CeO₂ doping in tuning the redox property of $FeCe_{0.2}TiO_x$ catalyst.

To further investigate the reduction process of FeTiO_x and FeCe_{0.2}TiO_x in H₂ flow, in situ Fe-K XAFS during the H₂-TPR experiments were measured using quick XAS method (Fig. 6). As shown by the absorption edge shift (inserted figures in Figs. 6(a) and 6(b)) and the post-edge pattern change in the in situ Fe-K XANES results, during the H₂ reduction process, the Fe species within FeCe_{0,2}-TiO_x catalyst could be gradually reduced into different valence states at much lower temperatures than those within FeTiO_r catalyst. Based on the detailed comparison of Fe-K EXAFS at different reduction temperatures, the reducibility of Fe species within these two catalysts could be clearly differentiated (Figs. 6(c) and 6(d)). For both $FeTiO_x$ and $FeCe_{0.2}TiO_x$ catalysts, the reduction procedure of Fe species could be divided into three steps. Consistent with Fe 2p XPS results, the valence of Fe species in FeTiO_x was +3. When the reduction temperature reached 350 °C, Fe^{3+} species in $FeTiO_x$ were reduced to $Fe^{2+/3+}$ (similar to

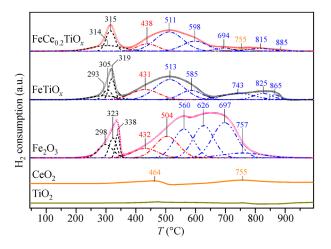


Fig. 5 H₂-TPR profiles for FeTiO_x and FeCe_{0.2}TiO_x catalysts, with TiO₂, CeO₂ and Fe₂O₃ as reference samples.

the Fe species in Fe₃O₄). Afterwards, Fe^{2+/3+} species could be further converted into Fe²⁺ (similar to the Fe species in FeO) and metallic Fe⁰ at ca. 500 °C and 900 °C, respectively. Such three-stage reduction procedure could be represented as $Fe^{3+} \rightarrow Fe^{2+/3+} \rightarrow Fe^{2+} \rightarrow Fe^0$, which further supported the viewpoint proposed in the H₂-TPR section. It should be noted that the Fe³⁺ species within $FeCe_{0.2}TiO_x$ could be reduced into $Fe^{2+/3+}$ at 300 °C, which was much lower than the corresponding required reduction temperature of FeTiO_x (350 °C). Moreover, the in situ formed $Fe^{2+/3+}$ species within $FeCe_{0.2}TiO_x$ could be further reduced into Fe²⁺ at 450 °C, 50 °C lower than that within FeTiO_r as well. The much lower reduction temperature of Fe species on FeCe_{0.2}TiO_x indicated that the Ce doping could effectively improve its redox property at low temperatures. Considering the formation of Ce-O-Fe structure within $FeCe_{0.2}TiO_x$, the better reducibility of Fe^{3+} could facilitate the redox cycle of $Fe^{3+} + Ce^{3+} \leftrightarrow Fe^{2+} +$ Ce⁴⁺, which might boost the NH₃-SCR activity on FeCe_{0.2}TiO_x catalyst, especially in the low-temperature range. Moreover, the enhanced NO oxidation activity on FeCe_{0.2}TiO_r also supported the viewpoint that CeO₂ doping would improve the redox properties of FeTiO_x (Fig. S3(b)).

3.5 Reaction mechanism

Systematic in situ DRIFTS experiments were conducted to explore the NH₃-SCR reaction mechanism on FeTiO_x and $FeCe_{0.2}TiO_x$ catalysts. As illustrated in Fig. 7(a), with the introduction of $NO + O_2$ to the gas cell, NH_3 species pre-adsorbed on both Lewis acid sites (1186, 1603, 3157, 3261 and 3354 cm⁻¹) and Brønsted acid sites (1464 and 1684 cm⁻¹) (Peng et al., 2013; Ma et al., 2016) could be consumed rapidly on FeTiO_x catalyst, indicating that the pre-adsorbed NH₃ species were highly reactive in NH₃-SCR reaction. As the reaction time increased, several new bands assigned to adsorbed NO_x emerged. The bands at ca. 1545 and 1242 cm⁻¹ could be assigned to monodentate nitrate species, and the formation of bridging nitrates (ca. 1606 cm⁻¹) and bidentate nitrates (ca. 1583 cm⁻¹) was also observed (Yao et al., 2017). The negative bands at ca. 1352, 3649, 3691 and 3714 cm⁻¹ were related to the consumption of surface hydroxyl groups (Ma et al., 2015). The reactivity of surface adsorbed NO_x species was also evaluated on FeTiO_x catalyst (Fig. 7(b)). With the introduction of NH₃ to FeTiO_x catalyst pre-adsorbed with NO_x, besides the bands assigned to adsorbed NH₃ species on Lewis acid sites (1196, 1603, 3155, 3261 and 3356 cm⁻¹) or Brønsted acid sites (1471 and 1684 cm⁻¹), several new bands attributed to surface ammonium nitrates (NH₄NO₃) emerged at ca. 1261, 1284 and 1523 cm⁻¹ (Liu and He, 2010). However, no obvious decomposition of the deposited NH₄NO₃ was observed in 60 min, indicating that the reaction between NH₃ and adsorbed NO_x was not the main pathway on FeTiO_x catalysts. When the NH₃-SCR

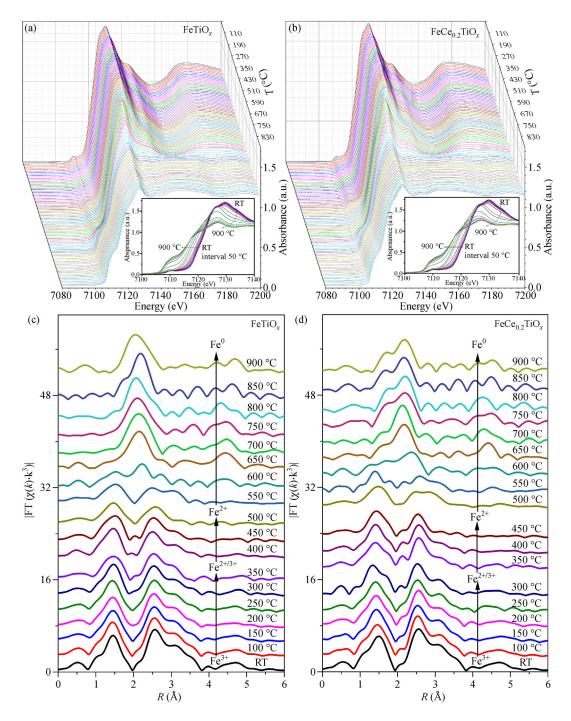


Fig. 6 The normalized *in situ* Fe K-edge XANES for (a) $FeTiO_x$ and (b) $FeCe_{0.2}TiO_x$ catalysts in the H_2 -TPR process from room temperature to 900°C (the inserted figures showed the normalized *in situ* Fe K-edge XANES with an interval of 50°C for better discrimination); *In situ* EXAFS spectra of Fe K-edge for (c) $FeTiO_x$ and (d) $FeCe_{0.2}TiO_x$ catalysts during the H_2 -TPR process.

reaction flow (NH₃ + NO + O₂) was introduced onto FeTiO_x (Fig. 7(c)), the bands assigned to NH₃ species bound to Lewis acid sites and Brønsted acid sites were observed. As for the adsorbed NO_x species, only a weak band at ca. 1572 cm⁻¹ attributed to bidentate nitrates was detected. Moreover, the deposition of NH₄NO₃ was inhibited under the NH₃-SCR reaction condition. It can be concluded that the NH₃-SCR reaction on FeTiO_x catalyst mainly followed an Eley-Rideal (E-R) reaction

pathway at the investigated temperature.

As discussed above, the NH₃ adsorption on FeCe_{0.2}TiO_x was very similar to that on FeTiO_x. When NO + O₂ flow was introduced onto FeCe_{0.2}TiO_x pre-adsorbed with NH₃, adsorbed NH₃ species were consumed by NO + O₂ rapidly, suggesting that the NH₃-SCR reaction on FeCe_{0.2}TiO_x could proceed through the E-R reaction pathway efficiently (Fig. 8(a)). As shown in Fig. 8(b), it was also found that abundant NH₄NO₃ species (1257,

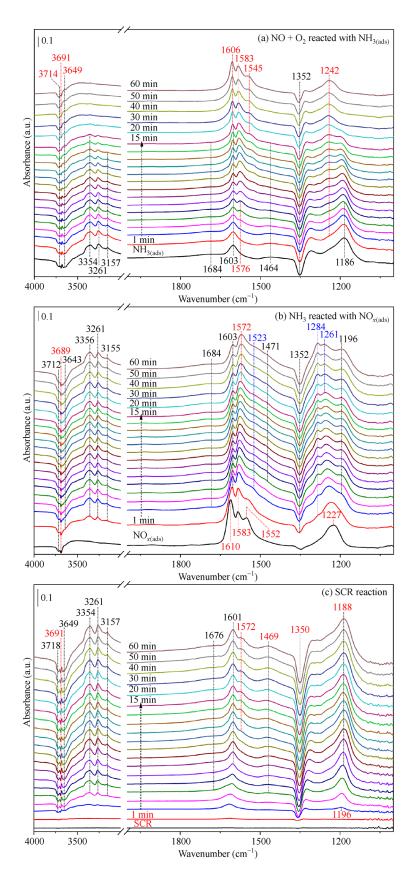


Fig. 7 In situ DRIFTS of (a) NO + O₂ reacting with pre-adsorbed NH₃ species; (b) NH₃ reacting with pre-adsorbed NO_x species; (c) NH₃-SCR reaction at 150 °C over FeTiO_x. The FTIR spectra were collected in varied reactant flow according to the needs of the experiments.

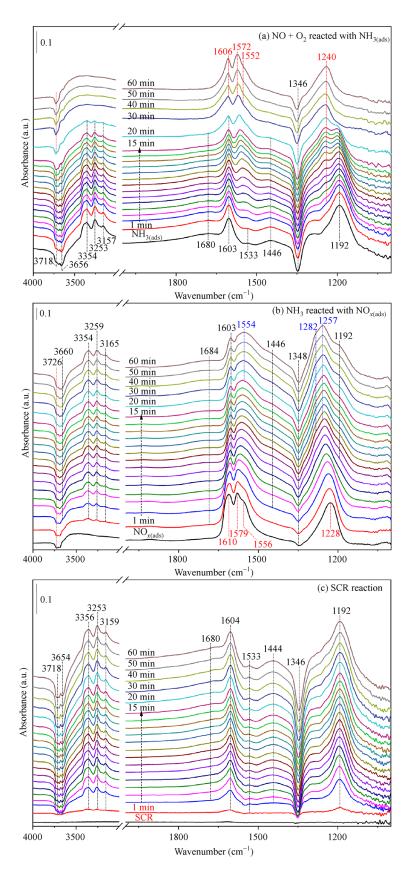


Fig. 8 In situ DRIFTS of (a) NO + O_2 reacting with pre-adsorbed NH₃ species; (b) NH₃ reacting with pre-adsorbed NO_x species; (c) NH₃-SCR reaction at 150 °C over FeCe_{0.2}TiO_x. The FTIR spectra were collected in varied reactant flow according to the needs of the experiments.

1282 and 1554 cm⁻¹) were formed during the reaction between NH₃ and pre-adsorbed NO_x on FeCe_{0.2}TiO_x. The accumulation of NH₄NO₃ species without further decomposition to N₂ and H₂O at the investigated temperature was not the main reason for the improvement of lowtemperature NH₃-SCR activity on FeCe_{0.2}TiO_x catalyst. When the NH₃-SCR reaction flow was introduced to the DRIFTS cell, no obvious bands assigned to nitrate species or NH₄NO₃ species were detected on FeCe_{0.2}TiO_x (Fig. 8(c)). Besides the bands assigned to NH₃ species bound to acid sites and the consumed hydroxyl groups, the additional -NH₂ species (ca. 1533 cm⁻¹) could be detected throughout the NH₃-SCR process. Such -NH₂ species originated from the oxidative dehydrogenation of NH₃ could directly react with gaseous NO forming NH₂NO. The generated NH₂NO could easily decompose into N₂ and H₂O at low temperatures (Li and Li, 2014; Zhu et al., 2017). The facile formation of -NH₂ species on FeCe_{0.2}- TiO_x surface was the main reason for its superior lowtemperature DeNO_x efficiency comparing to FeTiO_x.

To better demonstrate the difference between the surface adsorbed species and their reactivity on FeTiO_x and FeCe_{0.2}TiO_x, the *in situ* DRIFTS results of NH₃-SCR reaction under steady-state on these two catalysts at 150 °C was illustrated comparatively in Fig. 9(a). Although the profiles for *in situ* DRIFTS of NH₃ or NO_x adsorption on FeTiO_x and FeCe_{0.2}TiO_x at 150 °C were similar (Figs. 4(b) and S4), especially for the intensity of the bands assigned to NH₃ bound to surface acid sites, much lower intensity of the bands assigned to the adsorbed NH₃ species on the Lewis acid sites was observed on FeCe_{0.2}TiO_x (1192 and 1604 cm⁻¹) under the steady-state NH₃-SCR reaction

condition. This result clearly suggests that much faster consumption rate of adsorbed NH₃ species could be achieved on FeCe_{0.2}TiO_x catalyst at the low temperature of 150 °C. Significantly, the presence of -NH₂ species (1533 cm⁻¹) indicates again that the facile activation of NH₃ was present on FeCe_{0.2}TiO_x, and the efficient reaction between -NH₂ and gaseous NO was responsible for the boosted NH₃-SCR activity at low temperatures. The reaction pathway on FeTiO_x and FeCe_{0.2}TiO_x was also demonstrated in Fig. 9(b).

4 Conclusions

CeO₂ doping is a simple strategy to promote the lowtemperature DeNO_x efficiency of FeTiO_x catalyst, and a well improved DeNO_x efficiency can be achieved on FeCe_{0.2}TiO_x below 250 °C. FeCe_{0.2}TiO_x catalyst exhibited a much lower crystallinity and higher specific surface area comparing to the FeTiO_x counterpart. The systematic XAFS analysis revealed that the doped CeO₂ in FeCe_{0.2}-TiO_r was well mixed with Fe species, with the formation of abundant Ce-O-Fe microstructures. Such unique Ce-O-Fe microstructure dramatically improved the low-temperature redox property of FeCe_{0.2}TiO_x catalyst, which triggered the facile activation of adsorbed NH₃ to form highly reactive -NH₂ species, thus promoting the low-temperature NH₃-SCR activity significantly. This work deepened the understanding of the origin of low-temperature DeNO_x activity on CeO₂ doped FeTiO_x catalyst and provided new guidance for the design of high-efficiency catalysts for NO_x elimination.

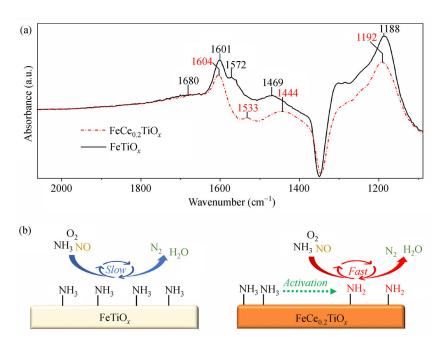


Fig. 9 (a) In situ DRIFTS of NH₃-SCR reaction on FeTiO_x and FeCe_{0.2}TiO_x at 150 °C collected in the NH₃-SCR reaction flow. (b) The scheme of the reaction pathway on FeTiO_x and FeCe_{0.2}TiO_x at 150 °C.

Acknowledgements F. L. acknowledges Startup Fund from the University of Central Florida (UCF) (USA). S. X. acknowledges the support from the Preeminent Postdoctoral Program (P3) at UCF (USA). H. H. acknowledges the support from the Key Project of National Natural Science Foundation of China (No. 21637005). The authors sincerely thank Prof. Kiyotaka Asakura from Hokkaido University (Japan) and Dr. Yasuhiro Niwa from Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK) (Japan) for the generous help in XAS experiments conducted at Photon Factory, KEK, Japan (No. 2012G537).

Electronic Supplementary Material Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-022-1539-2 and is accessible for authorized users.

References

- Ahmmad B, Leonard K, Shariful Islam M, Kurawaki J, Muruganandham M, Ohkubo T, Kuroda Y (2013). Green synthesis of mesoporous hematite (α-Fe₂O₃) nanoparticles and their photocatalytic activity. Advanced Powder Technology, 24(1): 160–167
- Ankudinov A L, Ravel B, Rehr J, Conradson S (1998). Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Physical Review. B, 58(12): 7565–7576
- Challagulla S, Tarafder K, Ganesan R, Roy S (2017). Structure sensitive photocatalytic reduction of nitroarenes over TiO₂. Scientific Reports, 7(1): 8783–8793
- Chen Q, Zhang X, Li B, Niu S, Zhao G, Wang D, Peng Y, Li J, Lu C, Crittenden J (2021). Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NO_x. Frontiers of Environmental Science & Engineering, 15(5): 92
- Cook J W Jr, Sayers D E (1981). Criteria for automatic x ray absorption fine structure background removal. Journal of Applied Physics, 52(8): 5024–5031
- Gan L, Li K, Niu H, Peng Y, Chen J, Huang Y, Li J (2021). Simultaneous removal of NO_x and chlorobenzene on V₂O₅/TiO₂ granular catalyst: Kinetic study and performance prediction. Frontiers of Environmental Science & Engineering, 15(4): 70
- Guo K, Fan G, Gu D, Yu S, Ma K, Liu A, Tan W, Wang J, Du X, Zou W, Tang C, Dong L (2019). Pore size expansion accelerates ammonium bisulfate decomposition for improved sulfur resistance in lowtemperature NH₃-SCR. ACS Applied Materials & Interfaces, 11(5): 4900–4907
- Guo K, Ji J, Song W, Sun J, Tang C, Dong L (2021). Conquering ammonium bisulfate poison over low-temperature NH₃-SCR catalysts: A critical review. Applied Catalysis B: Environmental, 297: 120388–120403
- Han L, Cai S, Gao M, Hasegawa J Y, Wang P, Zhang J, Shi L, Zhang D (2019). Selective catalytic reduction of NO_x with NH_3 by using novel catalysts: State of the art and future prospects. Chemical Reviews, 119(19): 10916-10976
- He K, Huo H, Zhang Q (2002). Urban air pollution in China: Current status, characteristics, and progress. Annual Review of Energy and the Environment, 27(1): 397–431
- Inomata Y, Kubota H, Hata S, Kiyonaga E, Morita K, Yoshida K, Sakaguchi N, Toyao T, Shimizu K I, Ishikawa S, Ueda W, Haruta M, Murayama T (2021). Bulk tungsten-substituted vanadium oxide for

- low-temperature NO_x removal in the presence of water. Nature Communications, 12(1): 557–567
- Ji J, Jing M, Wang X, Tan W, Guo K, Li L, Wang X, Song W, Cheng L, Sun J, Song W, Tang C, Liu J, Dong L (2021). Activating lowtemperature NH₃-SCR catalyst by breaking the strong interface between acid and redox sites: A case of model Ce₂(SO₄)₃-CeO₂ study. Journal of Catalysis, 399: 212–223
- Kwon D W, Kim D H, Lee S, Kim J, Ha H P (2021). A dual catalytic strategy by the nature of the functionalization effect as well as active species on vanadium-based catalyst for enhanced low temperature SCR. Applied Catalysis B: Environmental, 289: 120032–120049
- Lee K J, Kumar P A, Maqbool M S, Rao K N, Song K H, Ha H P (2013). Ceria added Sb-V₂O₅/TiO₂ catalysts for low temperature NH₃-SCR: Physico-chemical properties and catalytic activity. Applied Catalysis B: Environmental, 142–143: 705–717
- Li W, Liu H, Chen Y (2017). Promotion of transition metal oxides on the NH₃-SCR performance of ZrO₂-CeO₂ catalyst. Frontiers of Environmental Science & Engineering, 11(2): 6
- Li X, Li Y (2014). Molybdenum modified CeAlO_x catalyst for the selective catalytic reduction of NO with NH₃. Journal of Molecular Catalysis A Chemical, 386: 69–77
- Li Z, Dai S, Ma L, Qu Z, Yan N, Li J (2021). Synergistic interaction and mechanistic evaluation of NO oxidation catalysis on Pt/Fe₂O₃ cubes. Chemical Engineering Journal, 413: 127447–127455
- Liu F, He H (2010). Selective catalytic reduction of NO with NH $_3$ over manganese substituted iron titanate catalyst: Reaction mechanism and H $_2$ O/SO $_2$ inhibition mechanism study. Catalysis Today, 153(3–4): 70–76
- Liu F, He H, Xie L (2013). XAFS study on the specific deoxidation behavior of iron titanate catalyst for the selective catalytic reduction of NO_x with NH₃. ChemCatChem, 5(12): 3760–3769
- Liu F, He H, Zhang C (2008). Novel iron titanate catalyst for the selective catalytic reduction of NO with NH₃ in the medium temperature range. Chemical Communications, 17: 2043–2045
- Liu F, He H, Zhang C, Feng Z, Zheng L, Xie Y, Hu T (2010). Selective catalytic reduction of NO with NH₃ over iron titanate catalyst:
 Catalytic performance and characterization. Applied Catalysis B:
 Environmental, 96(3–4): 408–420
- Liu F, Shan W, Lian Z, Liu J, He H (2018). The smart surface modification of Fe_2O_3 by WO_x for significantly promoting the selective catalytic reduction of NO_x with NH_3 . Applied Catalysis B: Environmental, 230: 165-176
- Liu Z, Zhang S, Li J, Ma L (2014). Promoting effect of MoO₃ on the NO_x reduction by NH₃ over CeO₂/TiO₂ catalyst studied with *in situ* DRIFTS. Applied Catalysis B: Environmental, 144: 90–95
- Loridant S (2021). Raman spectroscopy as a powerful tool to characterize ceria-based catalysts. Catalysis Today, 373: 98–111
- Ma Z, Wu X, Härelind H, Weng D, Wang B, Si Z (2016). NH₃-SCR reaction mechanisms of NbO_x/Ce_{0.75}Zr_{0.25}O₂ catalyst: DRIFTS and kinetics studies. Journal of Molecular Catalysis A Chemical, 423: 172–180
- Ma Z, Wu X, Si Z, Weng D, Ma J, Xu T (2015). Impacts of niobia loading on active sites and surface acidity in NbO_x/CeO₂-ZrO₂ NH₃-SCR catalysts. Applied Catalysis B: Environmental, 179: 380–394
- Peng Y, Li K, Li J (2013). Identification of the active sites on CeO_2 -WO₃ catalysts for SCR of NO_x with NH_3 : An *in situ* IR and Raman

- spectroscopy study. Applied Catalysis B: Environmental, 140–141: 483–492
- Qi G, Yang R T (2003). Performance and kinetics study for low-temperature SCR of NO with NH₃ over MnO_x-CeO₂ catalyst. Journal of Catalysis, 217(2): 434–441
- Qu Z, Miao L, Wang H, Fu Q (2015). Highly dispersed Fe₂O₃ on carbon nanotubes for low-temperature selective catalytic reduction of NO with NH₃. Chemical Communications, 51(5): 956–958
- Tan W, Liu A, Xie S, Yan Y, Shaw T E, Pu Y, Guo K, Li L, Yu S, Gao F, Liu F, Dong L (2021a). Ce-Si mixed oxide: A high sulfur resistant catalyst in the NH₃-SCR reaction through the mechanism-enhanced process. Environmental Science & Technology, 55(6): 4017–4026
- Tan W, Wang C, Yu S, Li Y, Xie S, Gao F, Dong L, Liu F (2021b). Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO_x removal by NH₃-SCR. Journal of Hazardous Materials, 416: 125826–125836
- Tan W, Wang J, Cai Y, Li L, Xie S, Gao F, Liu F, Dong L (2021c). Molybdenum oxide as an efficient promoter to enhance the NH₃-SCR performance of CeO₂-SiO₂ catalyst for NO_x removal. Catalysis Today, doi: 10.1016/j.cattod.2021.07.007
- Tan W, Wang J, Li L, Liu A, Song G, Guo K, Luo Y, Liu F, Gao F, Dong L (2020). Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO₂ resistant NH₃-SCR catalysts for NO removal. Journal of Hazardous Materials, 388: 121729–121740
- Tang C, Zhang H, Dong L (2016). Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH₃. Catalysis Science & Technology, 6(5): 1248–1264
- Wang J, Peng Z, Qiao H, Yu H, Hu Y, Chang L, Bao W (2016). Ceriumstabilized Cu-SSZ-13 catalyst for the catalytic removal of NO_x by NH₃. Industrial & Engineering Chemistry Research, 55(5): 1174– 1182
- Wang Y, Li G, Zhang S, Zhang X, Zhang X, Hao Z (2020a). Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH₃-SCR reaction: Activity, hydrothermal stability, and mechanism study. Chemical Engineering Journal, 393: 124782–124794
- Wang Y, Yi W, Yu J, Zeng J, Chang H (2020b). Novel methods for

- assessing the SO_2 poisoning effect and thermal regeneration possibility of MO_x - WO_3 / TiO_2 (M = Fe, Mn, Cu, and V) Catalysts for NH₃-SCR. Environmental Science & Technology, 54(19): 12612–12620
- Yao X, Zhao R, Chen L, Du J, Tao C, Yang F, Dong L (2017). Selective catalytic reduction of NO_x by NH₃ over CeO₂ supported on TiO₂: Comparison of anatase, brookite, and rutile. Applied Catalysis B: Environmental, 208: 82–93
- Yu Y, Tan W, An D, Tang C, Zou W, Ge C, Tong Q, Gao F, Sun J, Dong L (2021a). Activity enhancement of WO₃ modified FeTiO_x catalysts for the selective catalytic reduction of NO_x by NH₃. Catalysis Today, 375: 614–622
- Yu Y, Tan W, An D, Wang X, Liu A, Zou W, Tang C, Ge C, Tong Q, Sun J, Dong L (2021b). Insight into the SO₂ resistance mechanism on γ-Fe₂O₃ catalyst in NH₃-SCR reaction: A collaborated experimental and DFT study. Applied Catalysis B: Environmental, 281–291: 119544
- Zeng Y, Haw K G, Wang Y, Zhang S, Wang Z, Zhong Q, Kawi S (2021). Recent progress of CeO₂-TiO₂ based catalysts for selective catalytic reduction of NO_x by NH₃. ChemCatChem, 13(2): 491–505
- Zhang W, Shi X, Shan Y, Liu J, Xu G, Du J, Yan Z, Yu Y, He H (2020). Promotion effect of cerium doping on iron-titanium composite oxide catalysts for selective catalytic reduction of NO_x with NH₃. Catalysis Science & Technology, 10(3): 648–657
- Zhang W, Shi X, Yan Z, Shan Y, Zhu Y, Yu Y, He H (2021a). Design of high-performance iron-niobium composite oxide catalysts for NH₃-SCR: Insights into the interaction between Fe and Nb. ACS Catalysis, 11(15): 9825–9836
- Zhang Z, Li R, Wang M, Li Y, Tong Y, Yang P, Zhu Y (2021b). Two steps synthesis of CeTiO_x oxides nanotube catalyst: Enhanced activity, resistance of SO₂ and H₂O for low temperature NH₃-SCR of NO_x. Applied Catalysis B: Environmental, 282: 119542–119553
- Zhu M, Lai J K, Tumuluri U, Wu Z, Wachs I E (2017). Nature of active sites and surface intermediates during SCR of NO with NH₃ by supported V₂O₅-WO₃/TiO₂ catalysts. Journal of the American Chemical Society, 139(44): 15624–15627