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ABSTRACT The consolidation coefficient of soil (C,) is a crucial parameter used for the design of structures leaned
on soft soi. In general, the C, is determined experimentally in the laboratory. However, the experimental tests are time-
consuming as well as expensive. Therefore, researchers tried several ways to determine C, via other simple soil
parameters. In this study, we developed a hybrid model of Random Forest coupling with a Relief algorithm (RF-RL) to
predict the C, of soil. To conduct this study, a database of soil parameters collected from a case study region in Vietnam
was used for modeling. The gerformance of the proposed models was assessed via statistical indicators, namely
Coefficient of determination (R°), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). The proposal
models were constructed with four sets of soil variables, including 6, 7, 8, and 13 inputs. The results revealed that all
models performed well with a high performance (R* > 0.980). Although the RF-RL model with 13 variables has the
highest prediction accuracy (R* = 0.9869), the difference compared with other models was negligible (i.e., R* = 0.9824,
0.9850, 0.9825 for the cases with 6, 7, 8 inputs, respectively). Thus, it can be concluded that the hybrid model of RF-RL

can be employed to predict C, based on the basic soil parameters.
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1 Introduction

Due to rapid economic growth and urbanization, most
construction structures have to be built on grounds that
often face soft soil conditions. One of the most important
characteristics of soft soil related to the failure of
structures is the settlement. Therefore, in the design stage
of the construction project, the estimation or calculation
of settlement is a crucial task. The settlement of soft soil
(soft clay) is generally related to the consolidation
problem caused by changing of volume due to dissipating
of pore water under changing of the effective stress. The
magnitude and rate of consolidation settlement are
attributed to the compression index (C,), which is
calculated through the consolidation coefficient (C,). The
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C, is defined as a parameter used to denote the degree
where saturated clay experiences consolidation when it is
subjected to an increment of pressure [1]. Thus, the C, is
considered one of the most vital parameters used to
calculate and predict the settlement due to the
consolidation of soft soil [2]. In the laboratory, the
Oedometer Test (one-dimensional consolidation test) is
generally employed to determine the C, [3], while in the
field, the Cone and piezocone penetration test (CPTu) is
used [4,5]. However, the values of C, determined from
these tests have significant variations; besides, these tests
are expensive and time-consuming. From the above
difficulties, many previous researchers have tried to
estimate the C, by establishing the relationship of C, with
other basic soil parameters. For example, some authors
used Atterberg’s limits to estimate the C, [1]. In another
study, the C, was forecasted using void ratio and
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overburden pressure [6]. Besides, simple regression such
as the back analysis method and some empirical models
were employed to estimate the C, [2,7,8]. Nevertheless,
these simple regressions or models have some limitations
and weaknesses, such as could only be applied for a
simple case with only several parameters, or these
methods were based on a partial number of linear or non-
linear equations [9,10].

It is known that machine learning (ML) and artificial
intelligence (AI) have been applied popularly in
engineering problems, particularly in geotechnical engi-
neering to estimate basic parameters of soil and rock such
as shear strength, soil permeability coefficient, compressi-
bility coefficient, and consolidation coefficient of soil
[11-15]. Regarding the prediction of soil shear strength,
many authors have successfully used different ML and Al
techniques for these problems. For example, decision tree
(DT) and artificial neural network (ANN) have been
employed and compared to estimate shear strength, and
results indicated that ANN performed better than DT
[16]. Another author indicated that functional networks
had a higher prediction than ANN but lower than support
vector machine (SVM) [17]. Furthermore, gradient
boosting is a state-of-the-art ML approach applied in
estimating soil parameters. For example, extreme gradient
boosting (XGboost) has been applied successfully in
forecasting soil’s undrained shear strength and
compression index [18,19]. In the problems of estimating
the compression coefficient of soil, many authors have
extensively used various ML and AI techniques for
predicting soil compression coefficient (C,). Pham et al.
[20] compared ANN, ANFIS, and SVM models with
Monte Carlo sensitivity analysis. The authors revealed
that the SVM model was the best in estimating C,
compared to ANN and ANFIS models. By using a hybrid
model of ML such as Harris hawks optimization (HHO-
ANN), grasshopper optimization algorithm (GOA-ANN),
and PSO-MLP, other authors have indicated that these
hybrid models could be potential alternative methods for
estimating C, [21,22].

In the study on estimating the consolidation coefficient
of soil, limited previous studies have used ML and Al
Pham et al. [23] used multi-layer perceptron neural
network-biogeography-based optimization (MLP-BBO)
in comparison with backpropagation multi-layer
perceptron neural networks (Bp-MLP Neural Nets), radial
basis functions neural networks (RBF-Neural Nets),
Gaussian process (GP), M5 Tree, and support vector
regression (SVR) using Atterberg limits, water content,
and clay content. They suggested that MLP-BBO was the
best model for this case. In another study, they evaluated
and compared the performance of ANN-BBO, ANN,
ANFIS, and SVM, they found that all the models have
done well, but, the ANN-BBO model was the best [24].
Besides, the random forest (RF) technique was also firstly
applied to forecast the C, [25]. They reported that RF is a
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good algorithm for estimating this soil parameter. It is
accepted that RF is one of the effective ensemble ML
methods that is popularly used for regression and
classification in geotechnical engineering [26-28],
recently in predicting the shear strength of soil [29].
Besides, to have outstanding RF modeling, it is needed to
use or combine with an optimization algorithm to fine-
tune hyperparameters. Relief is an attribute estimation
algorithm, which has been known as being both non-
parametric [30] and non-myopic [31]. In other words,
Relief evaluates the characteristic of a specified feature
from the perspective of other features, and it does not
need to make an assumption in terms of sample size or
population distribution. Furthermore, it was indicated that
the efficiency of the Relief algorithm had been explained
by the fact that this algorithm does not obviously discover
feature subsets [32].

Based on the above literature, C,’s prediction is vital;
however, there is a limited study using a hybrid model of
ML and Al Thus, in this study, we aimed at developing a
new hybrid ML model of RF coupling with Relief to
accurately estimate the C, of soil using data collected
from a project in Vietnam. In addition, this study can fill
the gap of literature in estimating C, using ML and Al
methods. The hybrid model in this study was a
combination of RF and a Relief algorithm. The soil data
obtained from field and laboratory tests were adopted to
build the datasets for training and testing. The common
criteria, namely MAE, RMSE, and R*> were used to
evaluate the performance of models.

2 Database construction

In this research, soil samples obtained from Hanoi-Hai
Phong expressway project in Vietnam were employed for
modeling. In this study, we used thirteen important inputs
(i.e., variables), including depth of the sample, clay
fraction, moisture content, bulk density, dry density,
specific gravity, void ratio, porosity, degree of saturation,
Atterberg’s limits, and the output is of the model is the
C,. These parameters directly affect the consolidation
coefficient. The consolidation coefficient is strongly
influenced by soil type, saturation degree (i.e., clay
fraction), void ratio, and porosity. In general, the higher
void ratio leads to a higher consolidation, which causes a
greater consolidation settlement. The detail of these
inputs and output can be found in Table 1. The mean
values, standard deviation, and skewness of all inputs
were also described in Table 1. Besides, the multi-
correlation between input and output variables was also
analyzed and presented in Fig. 1. There are strong
correlations among input variables, such as moisture
content versus void ratio, porosity, and liquid limit (R >
0.8). Also, high correlations between void ratio and
porosity versus liquid limit, plastic limit, and plasticity
index are observed. Furthermore, clay fraction also has a
good relationship with moisture content, void ratio, and
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porosity. These high mutual correlations among input
variables can be attributed to the physical relationships
between them, for example, a higher void ratio and
porosity of soil will lead to a higher moisture content of
the soil. From Fig. 1, it can be observed that the highest
multi-correlation between input and output was found for
the bulk and dry density. This may be related to effective
stress, which is one of the most critical parameters
governing soil consolidation. Depth of sample and
liquidity index also has a strong correlation with output.

3 Background of the methods

3.1 Random forest
The RF algorithm was first introduced by Breiman. This

is a non-parametric technique derived from classification
and regression trees (CART) [33]. The RF model works

Table 1 Statistical analysis of the inputs and output in this study
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on the basis of growing more trees, each with a bootstrap
pattern [34]. A randomized process is used to generate a
subset of predictors at each node, also known as each part
of the tree. The mean value of the obtained results is the
output of RF [35]. The RF consists of a classification tree
and a regression tree with the following risk objective or
function [36] (Fig. 2).

ey
CMSE, +
n

Ny ght

min (J(k, tk) = MSEright)’ (1)

n
where MSE,; is the Mean Squared Error of the left
subset; MSE,,, is the Mean Squared Error of the right
subset; n is the sample of the left subset; 7, is the

sample of the right subset.

right

3.2 Relief algorithm—Feature selection

The problem of incomplete data and limited to 2-class

variable task notation range mean St.D.Y SK®
depth of sample (m) input I 1.600-35.700 12.819 7.029 0.715
clay (%) input I, 4.500-47.500 24.588 8.873 -0.315
moisture (%) input I 28.030-67.850 48.501 9.476 —0.487
bulk density (g/cm3) input I, 1.520-1.930 1.708 0.083 0.582
dry density (g/em”) input Is 0.920-1.490 1.158 0.133 0.791
specific gravity input Iy 2.660-2.720 2.689 0.012 0.067
void ratio input I 0.805-1.891 1.351 0.256 —0.396
porosity (%) input Ig 44.600-65.410 56.919 5.022 —0.820
degree saturation (%) input Iy 84.110-99.920 96.461 3.091 -1.463
liquid limit (%) input Ly, 30.110-76.190 52.497 10.984 -0.190
plastic limit (%) input L, 15.060-37.060 27.750 4.611 -0.528
plasticity index (%) input Iy, 9.400-47.150 24.791 7.976 0.283
liquidity index input I3 0.520-1.660 0.853 0.168 1.850
coef. consolidation (cm*/1000 s) output o) 0.310-3.370 1.168 0.742 1.367

Notes: a) St.D. = Standard Deviation; b) SK = Skewness.
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Fig. 1 Multi-correlation graph of input and output parameters employed in this study.
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generates a massive difficulty for prediction algorithms
(Fig.3). To get around this problem, a solution is
proposed, called the Relief [37]. Relief is an attribute
estimation algorithm in the condition of having numerous
unrelated random properties created by two scientists
Kira and Rendell [32,38]. In his research, Ditterrich [39]
argued that this is the most successful preprocessing
algorithm ever, due to its simplicity and effectiveness
[39]. In another research, Sun [40] supported that the key
in the algorithm is the need to distinguish neighboring
samples by repeatedly estimating the feature weights of
the object according to their ability. In each iteration
cycle, the algorithm will select a random sample of y,
then the two closest neighbors of y: y, and y, will be
found. Next, the weight of the ith feature will be updated.

w=w+ " = NMO)|-p?-NHp)|. ()

where w; = P (different value of ith feature/NM) — P
(different value of ith feature/NH); NH is termed the
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nearest hit and NM is termed the nearest miss [41].

The algorithm can handle noise and missing data by
further expanding the Relief.

The pseudocode of the Relief Algorithm is as follows
[37].

1) Initialization: given D ={(yi, 20}t
1 < i< I, number of iterations P;

Q)forp=1:P

3) Randomly select a pattern y from D;

4) Find the nearest hit NH(y) and miss NM(y) of y;

S)yfori=1:1

6) Compute: w; = w; + |y("> -

7) end

8) end

set w; =0,

NM(">(y)| - |y"') — NH(")(y)|

3.3 Performance indicators

In this paper, to evaluate the effectiveness of the model,
we use the following types of indicators: Coefficient of
determination (R?) measures the square correlation
between the design value and the predicted value [41], the
value of R* changes from 0 to 1, the model is said to be
more accurate as R” is closer to 1 [42]. In addition, we
also used root mean square error (RMSE) [43] and mean
absolute error (MAFE) [44]. The proposed algorithms get
better results when the value of RMSE and MAE are small
[45,46]. Where RMSE shows the difference in value
between reality and prediction shown in the equation
below. Besides, MAE presents the average error between
fact and prediction. These coefficients are calculated
through the following equations [47,48]:

1 _
MAE=zqu—m,

RMSE = 4 % Z (ci—T)2, “4)

3

_1_ ’ (5)

2
i@—ﬁ

where k infers the number of the samples, ¢, and ¢; are the
actual and predicted outputs, respectively, and ¢ is the
average value of the c,.

4 Methodology flow chart

The current study is conducted according to the proposed
methodology, which consists of three main steps as
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follows: 1) data preparation; 2) constructing of the
models; and 3) validating the proposed models (Fig. 4).

1) Data preparation: in this step, the sample data taken
from the laboratory was adopted to build a training and
testing (validating) dataset. The dataset was divided with
a ratio 70/30, in which 70% used for training and 30% for
testing.

2) Constructing the models: in this step, the training
dataset was used for training the models on the basis of
RF coupling with Relief algorithm.

3) Validating the proposed models: in this step, the
testing dataset was employed to validate the proposed
model. Statistical criteria consisting of RMSE, MAE, R?
were employed to validate the models.

5 Results

5.1 Feature selection by Relief algorithm

In general, to prevent multicollinearity and overfitting
problems, dimension reduction such as principal compo-
nent analysis (PCA) and feature selection approaches
using particle swarm optimization, genetic algorithm, RF,
Relief algorithm [49-51]. This study used the Relief
algorithm to perform the feature selection. The nearest
neighbor is a crucial factor of the Relief algorithm. When
looking at the test data set, it can be noticed that nearest
neighbors ranging from 5 to 500 gave different results.
Realize that it is possible to find 3 data sets from the
weights of the 13 input variables in the data set. Figure
5(a) uses 5 to 35 closest neighbors (the lowest number of
neighbors), the weights of the variables are also the worst
in the 3 data sets. The weight of inputs reaches a
relatively high value of 0.042 when there is only 1 input
variable, but when using from 1 to 8 input variables, the
weights of inputs decrease drastically and relatively
equally, only reaching from 0.005-0.1, even when the

correlation
matrix principal
component
analysis

independent
variable
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number of input variables is 6 and the weight is less than
0. When the number of input variables was 9, the weights
of the variables reached 0.02 and started to increase, then
peaked at about 0.43 when the number of input is 10, then
decreased gradually and spiked again to reach the
maximum value of 0.81 when the number of input is 13.

Figure 5(b) looks for 40 to 85 the nearest neighbors.
The resulting graph shows that the weights of the inputs
are higher than in Fig. 5(a). Most notably, when the
number of input variables is 6, the weight of the input
reaches the min value of less than 0, and the maximum
value is 0.08 when the number of input variables is 10.

Likewise, Fig.5(c) looks for 90 to more than 500
nearest neighbors. The resulting graph shows that the
weights of the inputs are higher in Figs. 6(a) and 6(b).
Especially when the number of input variables is 6, the
weight of the input reaches the min value, while it
reaches a maximum value of 0.09 when the number of
input variables is 10.

In Table 2, the RF is denoted RF, the Relief algorithm
denoted by RL, the numbers 13, 6,7, 8, are the number of
different input variables used in the data set. Overall,
using Relief, 4 data sets are finally selected.

5.2 Convergence and statistical analysis

In this work, it was decided to conduct 50 simulations,
after which one could determine whether or not the
number was adequate, and the proposed ML model was
reliable. This approach has been proposed in several
recent studies [52,53], and proved to be a reliable method
to investigate the “response” of the model under the
random sampling effect. The convergence analysis is
conducted with R* and RMSE for the training and testing
datasets and is depicted in Fig. 6. Regarding model RF-
RL13, R* converged within 0.5% of error only after 8
simulations. And RMSE required 11 simulations to
converge in 5% of error (Figs. 6(a) and 6(b)). For

testing part
30%

testing part
70%

-+~
va

= - R 0951
lllllll 2 = = = idel regression line
- X200 AR
e | (——— CEEm——— g, o ﬁﬁ;&;
o X g o u‘-‘}b.
,/” . | 2 4
robustness of models validating models building models

convergence and
statistical analysis

R?, RMSE, MAE MS5P, Gaussian process
random forest coupling with

relief algorithm

Fig. 4 Methodology flow chart.
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Fig. 5 Weights of input variables in the function of different nearest neighbors for: (a) from 5 to 35 nearest neighbors; (b) from 40 to 85

nearest neighbors; (c) more than 90 nearest neighbors.

RF-RL6, R* converged within 0.35% of error only after
13 simulations. Moreover, RMSE required 32 simulations
to converge in 0.35% of error (Figs. 6(c) and 6(d)). For
RF-RL7: R* converged within 0.7% of error only after 13
simulations. Furthermore, RMSE required 13 simulations
to converge in 0.7% of error (Figs. 6(e) and 6(f)). For RF-
RLS8, R* converged within 0.3% of error only after 27
simulations. And RMSE required 27 simulations to
converge in 0.3% of error (Figs. 6(g) and 6(h)). As a
result, 50 simulations for each case are conducted, and
the convergence analysis ensures the reliability of the
prediction results of all RF-related models proposed
herein.

Specifically, when the number of input variables is 13,
as can be seen in Fig. 7, the obtained R’ is the highest, for
the training set R* = 0.9905; with the testing set R> =
0.9856. In the same case, the obtained RMSE is the
lowest, for the training set RMSE = 0.098; for the test set
RMSE = 0.2168. At the same time, obtained MAE is also
the smallest, for the training set MAE = 0.0602, for the
testing set RMSE = 0.1148. However, the best case could
be RF-RL7 with 7 inputs, but the prediction accuracy
remained the same as the raw dataset with 13 inputs. As a
result, reducing 6 inputs may not affect the prediction

results. Using four different datasets, the results of
training and testing statistics are shown in Table 3. It can
be shown that the training was effective, and that high
accuracy was achieved in all cases.

5.3 Prediction accuracy

The simulation of C, by the RF-RL model using the
training and testing dataset is shown in Fig. 8. Here, the
graphs above (Fig. 8) show the best predictions presented
here with 4 data sets. It can be seen that there is a high
correlation between the predicted and actual values, the
predicted results are almost the same as the experimental
results for both the training and testing set.

Figure 9 shows the comparison between the predicted
and measured values of C, of all data for the cases with 6,
7, 8, and 13 input variables using RF coupling with Relief
(hereafter call as RF-RL). The correlation coefficient
values (R) of all cases are very high (R > 0.99), which
means that RF-RL model has a high prediction ability.
The prediction ability in this study is higher than those
reported in previous studies [23—-25]. This may be related
to the advantages of Relief, as previously mentioned,
Relief is a non-parametric and non-myopic algorithm
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Fig. 6 Analysing of the convergence of prediction results with respect to statistical criteria of different datasets over 50 simulations: (a) R
of RF-RL13; (b) RMSE of RF-RL13; (c) R* of RF-RL6; (d) RMSE of RF-RL6; (¢) R? of RF-RL7; (f) RMSE of RF-RL7; (g) R* of RF-RLS;
(h) RMSE of RF-RLS.
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Table 2 Summary of different datasets selected using Relief algorithm
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Fig. 7 Comparisons of the prediction accuracy over 50 simulations in different cases with respect to (a) R, (b) RMSE, and (c) MAE.

[30,31], which can reduce the limitation of RF. From Fig. 9,
it can be concluded that all proposed models performed
well and the model with 13 input variables has the best
performance with the highest correlation coefficient R of
0.9934.

Table 4 shows the results of training and testing
statistics with 4 data sets of input variables. It can be seen
that the training is good, and perfect accuracy (high RZ) is
obtained in all the cases.

The prediction results of RF are then compared with
those of well-known ML techniques, including light
gradient boosting machine (LightGBM), CatBoost, and
deep neural network (Deep NN). Overall, LightGBM and
CatBoost are gradient boosting DTalgorithms, however,
RF’s nature entails the use of its bagging method to form
the model, which is different from LightGBM and

CatBoost. Deep NN are ANNs that, in their natural form,
include many hidden layers. While the Python
programming language is used to develop the LightGBM
and CatBoost algorithms, the Matlab programming
language is used to create Deep NN. After several trial
and error tests, it was decided to use the default setting of
hyperparameters of LightGBM and CatBoost from the
original library, whereas the strategy to construct the
Deep NN was based on the relevant literature [54].
Overall, the parameters selected to conduct the simulation
are presented in Table 5.

Comparison is conducted using the 10-fold cross-
validation (CV) technique. It is used to guarantee the
suggested models’ generality in the face of the variability
in the training dataset while building it. It is also used to
ensure that the model’s high prediction accuracy (if any)
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is not “accidentally” achieved by using a specific mix of
samples in the training dataset. The results for the 10-fold
CV are presented in Fig. 10. LightGBM has the lowest R
accuracy and the highest RMSE values in the third, sixth,
and ninth CVs, indicating that it is the most unstable
algorithm for this problem. For the prediction of soil
consolidation coefficient, Deep NN and CatBoost models

Front. Struct. Civ. Eng. 2022, 16(2): 224-238

perform quite well in terms of R* and RMSE, with
numerous CV iterations obtaining greater accuracy than
the suggested RF model. The RF model, on the other
hand, seems to be the most stable model for this problem,
as seen by its low values of standard deviation in terms of
R* and RMSE.

Table 6 summarizes the prediction findings for the

Table 3 Summary of different quality assessment criteria over 50 simulations in different cases

criteria RF-RL13 RF-RL6 RF-RL7 RF-RL8
train test train test train test train test
R
min 0.9809 0.9085 0.9736 0.9208 0.9792 0.8827 0.9784 0.9044
average 0.9862 0.9677 0.9796 0.9606 0.9842 0.9656 0.9825 0.9620
max 0.9905 0.9856 0.9868 0.9885 0.9918 0.99 0.9893 0.9829
std 0.0021 0.0157 0.0033 0.0155 0.0024 0.0202 0.0025 0.0157
RMSE
min 0.0714 0.0853 0.0887 0.0736 0.0687 0.0827 0.0763 0.0985
average 0.0865 0.1331 0.1069 0.1482 0.092 0.1354 0.0978 0.1437
max 0.098 0.2168 0.1184 0.2257 0.1048 0.247 0.1074 0.2418
std 0.0054 0.0321 0.0072 0.0299 0.006 0.0318 0.0068 0.0328
MAE
min 0.0447 0.0603 0.0554 0.0478 0.0451 0.0597 0.0536 0.0683
average 0.0537 0.0842 0.0621 0.0918 0.0566 0.086 0.0634 0.0954
max 0.0602 0.1148 0.0701 0.1288 0.0652 0.1415 0.0698 0.1304
std 0.0034 0.0144 0.0035 0.0141 0.0034 0.016 0.0044 0.0163
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Fig. 8 Target and output values plots for training and testing datasets for the best predictor in different cases: (a) RF-RL13; (b) RF-RL6;
(c) RF-RL7; and (d) RF-RLS.
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Fig. 9 Regression graphs for all data for the best predictor in different cases: (a) RF-RL13; (b) RF-RL6; (c) RF-RL7; (d) RF-RLS.
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Table 4 Summary of different quality assessment criteria for the best predictor in different cases

case set RMSE MAE Err.Mean Err.Std R
RF-RL13 train 0.0865 0.0577 0.0009 0.0868 0.9868
test 0.0880 0.0608 0.0051 0.0886 0.9856
all data 0.0870 0.0586 0.0021 0.0872 0.9869
RF-RL6 train 0.1132 0.0701 0.0010 0.1137 0.9787
test 0.0736 0.0478 -0.0063 0.0740 0.9885
all data 0.1030 0.0634 —0.0012 0.1033 0.9824
RF-RL7 train 0.0932 0.0615 0.0005 0.0935 0.9841
test 0.0856 0.0603 —0.0304 0.0808 0.9900
all data 0.0910 0.0611 ~0.0087 0.0908 0.9850
RF-RLS train 0.0982 0.0683 0.0010 0.0985 0.9850
test 0.0985 0.0696 -0.0183 0.0976 0.9709
all data 0.0983 0.0687 —0.0048 0.0984 0.9825

Table 5 Summary of different parameters for the algorithms used in this study

algorithm

description of parameters

RF

Minimum number of samples to be at a leaf node = 2; Number of trees in the forest = 500; Measure of quality of split = MSE; Number of

samples to split = 2; Number of features to consider in modeling = 13.

LightGBM  Type of boosting: Gradient Boosting DT; Maximum tree leaves = 30; No maximum tree depth; Learning rate = 0.1; Number of trees = 100.
Deep NN Number of inputs = 13; Number of output = 1; Number of hidden layers = 3; Neurons in the three hidden layers, respectively, 20, 12, and 6 for

hidden layer 1, 2, and 3; Training algorithm = Broyden—Fletcher—Goldfarb—Shanno algorithm; Leaning rate = Constant; Number of training
epoch = 500; Activation function = ReLu.

CatBoost

Minimum number of samples to be at a leaf node = 1; Learning rate = 0.03; Maximum tree leaves = 64; Iterations = 1000; Evaluation metric =

RMSE; Estimation method = Newton method.
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Fig. 10 Results of 10-fold cross-validation for the training part using LightGBM, CatBoost, Deep NN, and RF algorithms in this study:

(a) R%; (b) RMSE.

three approaches, whereas Fig. 11 depicts the correspon-
ding regression graphs for the whole dataset. As can be
seen, all three models perform well during the training
phase, particularly the CatBoost algorithm (i.e., R* =
0.9981). On the other hand, the prediction accuracy
metrics for the testing phase are lower than those for the
training phase, ensuring that no overfitting occurs. The
best model is Deep NN for the testing results (R* =
0.9791), followed by CatBoost (R* = 0.9788) and
LightGBM (R? = 0.9454). With the proposed RF model’s
prediction accuracy and the little difference in error

metrics, it is possible to infer that the RF model outper-
forms Deep NN, CatBoost, and LightGBM algorithms in
predicting the soil consolidation coefficient.

To sum up, 188 samples may not be large, but the
results of modeling indicated that a combined model of
RF and Relief could predict well the consolidation
coefficient of soil with very high accuracy. Because of
the little difference in prediction performance between
the initial dataset (13 inputs) and the reduced dataset (i.e.,
6, 7, or 8 inputs), it can be concluded that the Relief
approach might be used to minimize the input space.
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Table 6 Summary of different quality assessment criteria for the best predictor in different cases

algorithm set RMSE MAE R’
Deep NN train 0.0869 0.0545 0.9837
test 0.1211 0.0755 0.9791
all data 0.0985 0.0609 0.9823
train 0.0688 0.0549 0.9981
CatBoost test 0.1251 0.0799 0.9788
all data 0.0940 0.0624 0.9850
train 0.0818 0.0507 0.9871
LightGBM test 0.1833 0.1030 0.9454
all data 0.1219 0.0666 0.9729
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Fig. 11 Regression graphs for all data for different cases: (a) Deep NN; (b) CatBoost; (c) Light GBM.

When dealing with predicting soil parameters problem
that has a large number of data points, dimensionality
reduction by Relief may be quite beneficial. Thus, this
hybrid model can be applied for predicting other soil
parameters in further studies. Furthermore, more data
should be collected and studied in future studies to
validate the efficiency of this hybrid model.

Sensitivity analysis is used to understand better the
impact of input characteristics on the consolidation
coefficient of soil. The significance of each feature is
determined by the mean of the accumulation of each tree’s

impurity reduction. The analysis is shown in Fig. 12,
utilizing the whole input space, which contains thirteen
parameters.

Clearly, I;, (limit liquid) is the most significant
parameter affecting the consolidation coefficient of soil,
followed by I, I;5, 1,5, and I, which are the next four
most significant factors. In good agreement with the
Relief model’s outcomes, input I,, is always kept in all
three scenarios (i.e., RF-RL6, RF-RL7, RF-RLS). Inputs
such as I, 5, and I; are also selected by the Relief model
in two scenarios, along with 1., I, and I, which are the
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Fig. 12 Feature importance analysis conducted with 13 inputs
using RF.

following three critical factors. Inputs I, and I, were
discovered via feature importance analysis to be the least
significant components, and these inputs are likewise
removed in all three previously mentioned scenarios by
the proposed Relief model. Again, it is shown that the
Relief model is a good choice for dimensionality
reduction in this study.

6 Conclusions

In this study, a model of RF Coupling With Relief
Algorithm was employed to predict the consolidation
coefficient of soil with 13 simple input variables of soils.
Multi-correlation between input and output variables was
carried out to understand the dependency of each input
variable with output for better estimation of C,.

The performance of the proposed models was assessed
using different statistical indicators such as R2, RMSE,
and MAE. Four models of RF-RL with 6, 7, 8, and 13
input soil variables were evaluated. The proposed model
results showed that all RF-RL models predicted C, well
with high accuracy, and the highest accuracy was found
for the model with 13 input variables with (R* = 0.9869,
RMSE = 0.0870, and MAE = 0.0586). However, thanks to
the RL model, the remaining models with significant
dimensionality reduction of the input space exhibit
comparable prediction results, with only a slight
difference in performance metrics. In addition, when
compared to several benchmark ML models, such as deep
neural networks, CatBoost, and LightGBM, the original
RF model was more stable and effective in predicting the

C, of soil.
As a result, it can be said that the RF-RL is an excellent
and inexpensive technique for predicting the

consolidation coefficient of soil with high accuracy,
which may be employed to estimate other vital soil
parameters and geotechnical parameters such as shear
strength or soil compressibility coefficient.

The refinement and growth of the ML model is a

Front. Struct. Civ. Eng. 2022, 16(2): 224-238

continual process that requires a great deal of study as
well as extensive data collecting from various locations
across the globe. This study is only conducted for a
region in Vietnam; thus, it is needed to extend this study
for many types of soil and other regions with a
considerable number of samples to validate the finding of
this paper. Furthermore, other based and hybrid models
should be carried to compare with current models. In
addition, other feature selection methods such as PCA,
Deep autoencoder, t-distributed Stochastic Neighbor
Embedding (t-SNE), Locally Linear Embedding (LLE)
can be used for dimensionality reduction instead of the
Relief algorithm used in this study for better performance
of the ML models.
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