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ABSTRACT This paper utilizes three popular semantic segmentation networks, specifically DeepLab v3+, fully
convolutional network (FCN), and U-Net to qualitively analyze and identify the key components of cutting slope images
in complex scenes and achieve rapid image-based slope detection. The elements of cutting slope images are divided into
7 categories. In order to determine the best algorithm for pixel level classification of cutting slope images, the networks
are compared from three aspects: a) different neural networks, b) different feature extractors, and c¢) 2 different
optimization algorithms. It is found that DeepLab v3+ with Resnet18 and Sgdm performs best, FCN 32s with Sgdm
takes the second, and U-Net with Adam ranks third. This paper also analyzes the segmentation strategies of the three
networks in terms of feature map visualization. Results show that the contour generated by DeepLab v3+ (combined with
Resnet18 and Sgdm) is closest to the ground truth, while the resulting contour of U-Net (combined with Adam) is closest

to the input images.
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1 Introduction

The stability of slopes plays a vital role in the construc-
tion and operation of highway systems [1]. In recent
years, a large number of high slopes have been estab-
lished in China due to the rapid development of highway
construction. The slopes in certain mountainous areas
may be more prone to or are already suffering from dam-
ages caused by natural environment and human activity,
making it crucial to evaluate the current state of important
sections of the slopes to prevent further accidents and
losses.

At present, there are various methods to assess the
slope stability. For example, most engineers measure
slope stability using sensor data and mathematical calcula-
tions. Wu et al. [2] designed a Portrait-based Disaster
Alerting System using hillslope monitoring sensors, whi-
ch combines service servers, wireless sensor networks,
and analytic network processing technology to predict
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and monitor slope disasters. Another way to assess slope
stability is by observing the overall appearance, which
heavily relies on the inspectors to regularly assess the
slope, obtain relevant digital images, and make an intuit-
ive judgment on possible damages or risks through compa-
rison and experience [3]. Slope inspections may be imp-
eded due to height differences between slopes or rocky
road conditions, thus Unmanned Aerial Vehicles (UAVs)
have been introduced to collect slope images [4]. In
general, UAVs are used to collect images of lattice
beams, retaining walls, and vegetation on cutting slopes.
Surface damages can be identified by comparing slope
images collected from different time periods. However,
manually classifying and identifying damage is time-
consuming, inefficient, and subjective due to the large
number of collected images [5], making an artificial
intelligence method imperative for slope damage dete-
ction.

In recent years, artificial intelligence is mostly used to
monitorslopestabilitythroughslopedisplacement(thedispla-
cement change of preset observation points), similar to
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using a nonlinear function to establish the mapping
between the input and output (e.g., the bending analysis
of Kirchhoff plate [6], boundary value problems [7], and
solution of partial differential equations in computational
mechanics [8]). Zhou et al. [9] used the dynamic energy
factor, slope factor, and resistance factor as the input of a
back propagation (BP) neural network and predicted the
maximum vertical and horizontal displacement during a
slope collapse, with an accuracy of 86.67% and 93.33%,
respectively. Xing et al. [10] used the genetic algorithm
to optimize the parameters of a support vector machine
(SVM) and established a slope stability prediction model.
Lin et al. [11] trained an artificial neural network (ANN)
with 955 highway slope samples to study the influence of
earthquakes on slope failure characteristics. However,
these methods require intensive instrumentation when it
comes to large-scale civil infrastructures (e.g., slopes),
including an enormous amount of sensor installation and
data collection [12]. Thus, using sensor results as the
input of artificial intelligence assessment in slope stability
is still a challenge.

As opposed to image recognition of slope surfaces
where data collection is much easier than slope displace-
ment monitoring, Wu [4] used SVM and convolution
neural network (CNN) to classify two types of slopes:
landslide and no-disaster. However, methods such as
ANN and SVM are limited by their low detection
accuracy, overfitting phenomenon, and slow detection
speed [13]. At the same time, artificial intelligence in the
field of image detection requires a large amount of
training image samples to improve model accuracy.
Therefore, a rapid, automatic feature extraction algorithm
is necessary to process the immense slope monitoring
data [14,15]. Hence, deep convolution neural networks
(DCNNs) have been increasingly utilized for slope image
detection for their stronger robustness and lower
computational cost [16]. Ghorbanzadeh et al. [17] used a
CNN method to detect slope failure. Spectral information
and slope data were derived from the detected topogra-
phic data, specifically UAV remote sensor images. Shu
et al. [3] compared the performance of two networks,
AlexNet and GoogleNet, to classify slope disaster images
and results showed that GoogleNet can reach an accuracy
of approximately 90%. The above studies show that the
category and location of slope damages can be obtained
through image classification and location. However, these
methods can only estimate the rough position and contour
of objects of interest in the images, thus a more accurate
method is needed to improve image recognition for slope
disaster prevention.

The deep learning method has been gradually applied
for extracting object contours, making pixel level
classification methods imperative. These methods can
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directly classify image pixels to identify objects of
interest. There are many semantic segmentation CNN
models based on pixel level classification, such as SegNet
[18], U-Net [19], DeepLab v3+ [20], and fully convol-
utional network (FCN) [21], where the network
performance and segmentation results are different. In
civil engineering, Narazaki et al. [22] used SegNet and
FCN to segment bridge structural components in images
of complex scenes. The sequential configuration method
based on an FCN achieves 100% score of mean inters-
ection of union (MloU). Liu et al. [23] used the You Only
Look Once (YOLO) and a modified U-Net to extract the
contour of pavement cracks on a sidewalk with a
precision of 97.24%. Dung and Anh [24] used an FCN to
automatically extract crack images with an average
precision of 90%.

Another artificial intelligence method, automated vision-
based inspection, has attracted much attention in civil
engineering and widely used in the fields of modal strain
energy and vibration responses of a steel truss [25] for
road crack detection [23], bridge component detection
[22], and structural damage feature extraction. However,
improving image recognition is crucial to establish the
mapping relationship between the degree of damage of
key slope components and its future stability to prevent
possible slope disasters. Since the majority of existing
guidelines of structural inspections rely on both damage
and structural information to evaluate overall structural
stability, timely detection of key components and slope
displacement is crucial [26]. Thus, applying semantic
segmentation to the field of image recognition would be
an ideal solution.

Different semantic segmentation networks use different
feature extraction and expansion strategies, thus using the
appropriate models can improve the recognition effici-
ency of cutting slope components. This paper compares
and tests the performance of three semantic segmentation
networks (DeepLab v3+, FCN, and U-Net) in seven categ-
ories (lattice beam, vegetation, vegetation disappearance,
retaining wall, sky, road and road sign). In addition,
different optimizers are used to determine the ideal
combination for cutting slope image recognition. Finally,
the segmentation results of different networks are
analyzed through feature map visualization.

2 Methodology

This section introduces the principle, procedure, and three
examples of semantic segmentation.
2.1 Semantic segmentation

In this paper, three semantic segmentation networks,
DeepLab v3+, FCN, and U-Net, are used to identify
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cutting slope images (Fig. 1). A semantic segmentation
network usually consists of two parts: a contracting path
(feature extraction) and an expansive path (feature
expansion).

The contracting path extracts features from the input
image and creates a feature map. It can be generally
regarded as an ordinary classification neural network
without the classification layer [27]. In Fig. 2, the contour
of a lattice beam in the input image is gradually extracted
by the contracting path, which will then connect with the
expansive path. Some models may have feature extraction
integrated in the expansive path [19,20].

In the expansive path, an enlargement of the feature
map size is completed by transposed convolution layers
[28], whose main function is to restore the feature map of
the contracting path into the same resolution of the input
image (Fig.2). The classification operation is comple-
ted by a 1 x 1 convolution layer to output the same num-
ber of feature maps as the class number (i.e., 7) defined
by the network. The element value of the feature map
represents the “strength” in which a certain position
belongs to a certain class.

The feature maps will then pass through the Softmax
layer to transform its relative “strengths” into the
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probability. The probability distribution matrices with the
same size (length and height) as the input image are
obtained. The values of each matrix represent the
probability of their corresponding position category in the
input image. For example, if the probability of category A
is the largest, the final layer of the network will set the
label in this pixel as A.

This paper uses weighted cross-entropy as the loss
function, which functions to quickly narrow the gap
between the predicted and real value of the network
model through its own gradient direction and size, similar
to minimizing the cost function (loss function) to predict
the potential energy in physics-informed neural networks
(PINNS) [29].

For the cross-entropy loss function, the loss of a batch
of training samples is defined as:

1 b v u “
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where b is the amount of training samples in a batch, v is
the number of pixels of an image, u is the class number,
w(l) is the weight, y,,, is the probability of real label, and
$.m 18 the probability of prediction label. The loss
function is calculated for each batch.
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Fig. 2 Extraction and expansion process of a DeepLab v3+ with Resnet18 model. AC = atrous convolution, TCL = transposed convolution
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In short, feature extraction of the semantic segmenta-
tion neural network transforms the input image into a mult-
idimensional feature representation (similar to CNN’s
automatic feature extraction from input data [30]), while
the expansion path is a shape generator that produces
object segmentation from the feature extracted from the
convolution network. The final output of the network is a
probability distribution matrix with the same size as the
input image. The category of each pixel is determined
according to the probability distribution matrix [27].

2.1.1 DeepLab v3+

Section 2.1.1 introduces the semantic segmentation net-
work, DeepLab v3+, whose feature extraction path uses
Resnetl8 [31]. Prior to feature expansion DeepLab v3+
performed four different strategies of atrous convolution
(AC) [32] to roughly extract the features of the previous-
layer feature maps (Table 1). The purpose of padding is
to center the contour of the object of interest to increase
the probability of it being extracted by the AC layer to
extract it [33].

There will also be “skip” operations in the semantic
segmentation network when the shallow feature map
generates two branch paths. One of the branch paths is
continuously extracted by a convolution kernel and rect-
ified linear unit (Relu) layer [34], and the other is a “deep
concatenation” of shallow feature maps and deep feature
maps (Fig. 3) [19].

In addition, the feature extraction layer in DeepLab v3+
uses batch normalization, whose purpose is to scale the
input to the nonlinear activation function at each layer
using the learned mean and standard deviation parame-
ters, thus accelerating and improving the convergence of
the parameter updating process [35]. Figure 4 shows the
network structure of DeepLab v3+ with the Resnetl8
model, where L1-L67 represent the Resnetl8 network
structure without the output layer.
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2.1.2  Fully convolutional network

The feature extraction path of the FCN is based on the
VGG16 network. The network structure of the FCN
expansion path will differ due to the size of upsampling
factors (8, 16, and 32). The main difference between them
is the feature expansion. The FCN upsampling factor
used in this paper is 32 (represented by FCN 32s),
meaning only one transposed convolution is used [21].
FCN 32s (Fig. 5) directly uses the transposed convolu-
tion layers to expand and resize the feature image into the
size of the input image, while the DeepLab v3+ network

Table 1 Properties of AC layer

property Ist AC 2nd AC  3rd AC 4th AC
padding size 0 6 12 18
dilation factor (DF) 1 6 12 18
old filler size (OFZ) 1x1 3x3 3x3 3x3
new filler size (NFZ) 1x1 11x11 23x23 35%35
new convolution kernel |

- ]

Note: The difference between the four ACs is: a) the padding size; b) the
dilation factor (DF of the vertical and horizontal directions are the same).
NFZ = (OFZ-1) x DF—1, the rest of the positions are filled with 0. The old
filler becomes the new filler (AC) through different DF indicators.
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Fig.3 Deep concatenation (DC). L84 (feature maps after
multiple feature extraction) and L87 (feature maps directly from
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will continue feature extraction even after the transposed
convolution layers are used.

In addition, dropout layers are used in FCN. Dropout
[36] prunes the outputs of designated layers during
training to improve the robustness of the trained network,
reducing the overfitting effect.

2.1.3  U-Net

Section 2.1.3 introduces the U-Net network, which was
given its name due to its U-shaped structure. Its feature
extraction path consists of convolution layers, Relu layers,
and Max Pool layers, while the feature expansion path is
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comprised of transposed convolution layers and Relu
layers.

Compared with the previous semantic segmentation
networks, the U-Net structure (Fig. 6) has many “deep
concatenation” operations that regularly connect various
shallow feature maps with deep feature maps.

To conclude, the three semantic segmentation networks
utilize different feature extraction and expansion strate-
gies. For DeepLab v3+ (combined with resnet18), L2-1.83
are the feature extraction parts, while L84-L99 are the
feature expansion parts. For FCN 32s, L2-1.39 are the
feature extraction parts, while L40-L42 are the feature
expansion parts. For U-Net, L2-1.27 are the feature

Max Pool

L24

L25

Relu layer

conv3x3

Relu layer
Max Pool
Relu layer

conv 3 x3

Max Pool

conv3x3

Fig. 6 U-Net structure.
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extraction parts, while L28-L57 are the feature expansion
parts. The biggest difference between these is the length
of feature expansion since the number of deep concatena-
tion is different (DeepLab v3+ is 1, FCN 32s is 0, U-Net
is 4). The following sections introduce the indicators for
evaluating the performance of these networks, which play
a decisive role in selecting the optimal cutting slope
semantic segmentation network model.

2.2 Evaluating indices

This paper uses the following evaluation indices: preci-
sion (PR), per-class pixel accuracy (PA), intersection of
union (loU), mean boundary F1 score of a class
(MBFSoC), mean pixel accuracy (MPA), global pixel
accuracy (GPA), MIoU, weighted intersection of union
(WloU), and mean boundary F1 score of a dataset
(MBFSoDS) [37]. 1t should be noted that, in the semantic
segmentation task, true positive (7P), false positive (FP),
false negative (FNV), and true negative (7N) are all based
on image pixels. In the following formulas, NC and p
represent the category number and image number,
respectively, while p;; represents the probability that the
pixel with a real label i is predicted as with a label j.

TP = Zpiia
FP, = Zpij(iij)y
FN,= ) pu(i# ),

TN, = Z py—TP,—~FP,—FN, Q)
PR, =TP,/(TP,+FP), 3)
PA, = TP,/(TP,+FN,), (4)

NP
MBFSOC, :(Zi=l (2 X PR; picture X PA, picture/

(PR icure + PA; i) ) INP, (5)
MPA = (ZZPA,-) INA, 6)
GPA=(Y."TP)| Y b @)
MloU = (ZZIoU,.) Inc, ®)

WioU = (3" (TP+ FN)x10U))[ Y pis ©)
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NC
MBFSoDS =(Z MBFSoC,-) INC. (10)
i=1
In addition to the above evaluation indices, this paper
also uses the false positive rate (FPR), mean false
positive rate (MFPR), and global false positive rate
(GFPR) to evaluate network prediction error, which is
calculated as followed.

FPR,=FP,/(TN,+FP), (11)
MFPR, = (ZZFPR,-) Inc, (12)
GFPR, = (ZZTFPi) / Z i (13)

2.3 Establishment of dataset

This subsection explains the source and image proce-
ssing method of the dataset, as well as the setup of the
training parameters.

2.3.1 Dataset processing

In order to train the pixel classifiers of slope components,
it is necessary to collect relevant training samples.
However, there are no public datasets available of cutting
slope images for segmentation task. The image dataset
used in this paper is captured by a UAV (DJI spirit 4 Pro
v2.0, DJI, Shenzhen, China). The 100 original slope
images were obtained by photographing several cutting
slopes of different levels in a section of the Shenzhen-
Cenxi highway in Guangdong Province, China. The slope
images had a resolution of 5472 x 3078 and an average
shooting height of 118 meters; all shot under clear
weather and good lighting. In addition to slope compo-
nents, the images also contain other less relevant scenes
(i.e., roads, vegetation, sky, etc.). A total of 5000 cutting
slope scenes with a resolution of 960 x 720 were obtained
from the 100 high-resolution images using a sliding
window (960 x 720) and step size of 500 (Fig. 7). This
process not only increases the proportion that the slope
components occupy to optimize labeling, but also incr-
eases the number of samples for training or testing.

Fig. 7 Raw image (5472 x 3078) and processed image (960 X
720).



420

Since many of the 5000 cutting slope images show
repetitiveness or similarities, 971 different, high quality
images were selected for training and testing. Among
them, 903 were randomly selected as the training sam-
ples, while the remaining 68 were used as the testing
samples. To test the performance of the network with rich
or complex scenery, the pixels in the training sample
images were classified into seven categories: lattice
beam, vegetation, vegetation disappearance, sky, retain-
ing wall, road, and signs. It should be noted that the edges
of the objects of interest were manually labeled, thus the
contours in the ground truth and raw image do not match
100%. The Imagelabeler toolbox of MATLAB (MathWo-
rks Inc., Natick, MA, USA) was used to label the pixels.

2.3.2 Hyperparameter

In this paper, the training parameters are kept constant for
U-Net, FCN 32s, and DeepLab v3+ with Resnet18. Two
optimizers, Sgdm and Adam, are used for the three
networks. With the Sgdm optimizer, the momentum
parameter is 0.9, minimum batch selection is 10, maxi-
mum epoch is 30, and the whole training process has
2700 iterations to update the network weights. Since
small and decreasing learning rates are recommended
[38], the initial learning rate is 0.001, the change factor is
0.3, and the variation interval is 10 epochs (Fig. 8). In
addition, an L2 regularization term is added to the cross-
entropy loss function to reduce the overfitting effect [39].

Since the proportion of certain categories is relatively

0.001

0.0003

[T, 2o
ERENNANEN
11

21

learning rate

epoch
Fig. 8 Learning rate change chart.

Table 2 The weight coefficients of the cross-entropy loss function in
training

LN? w(l)
LB 0.6390
VT 9 0.1292
vD 9 1.3671
sky 2.8740
RW © 0.5869
road 1
signs 20.5913

Notes: a) LN: label name; b) LB: Lattice beam; ¢) VT: Vegetation; d) VD:
Vegetation Disappearance; ¢) RW: Retaining Wall.
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small in the training set (i.e., road signs, roads, etc.),
median frequency balancing, a technique to weigh the
sum of cross-entropy loss for each class to compensate
for data distribution imbalance [40], is used. And the
weight coefficients of each category in training are shown
in Table 2. In addition, the dataset is shuffled randomly
after every iteration during the training process. The
software used is MATLAB R2020a and the testing
process was performed on a computer with Intel (R)
Xeon (R) CPU e5-2620-v4 CPU, RAM 128G.

2.4 Additional evaluations

To evaluate the reliability and robustness of the model,
the optimal network model will be verified in three
additional aspects.

1) K-fold cross validation experiment: The data is
divided into K parts with only one taken as the testing set
each time. The rest is used as the training set to train the
network model. This process is repeated K times until
each part of the dataset is used as a test set. In this paper,
K =10 (10 has been widely used in relevant studies [41]).

2) AdeDelta optimizer with piecewise constant decay
and cosine decay is used for training.

3) Three new sets of different cut slope images will be
tested.

3 Testing images and discussion

In this section, the 68 images of cutting slope scenes
mentioned above are used as the test set and the evalua-
tion indices mentioned in Section 2.2 are used to evaluate
the performance of the trained semantic segmentation
network. The objectives are:

1) to compare the performance of three semantic seg-
mentation networks with cutting slope scenes;

2) to compare the performance of two optimizers, Sg-
dm and Adam;

3) to implement additional evaluations on the optimal
network model.

3.1 Testing image results

A total of 68 images sized 960 x 720 x 3 are used to test
the performance of the 3 trained semantic segmentation
networks. These images have not been used in training.
The test results are shown in Tables 3—6 and the partial
prediction results are presented in Fig. 10. The
Convergence graphs (loss/accuracy vs. number of epoch)
of the training and validation datasets for the CNN model,
as well as the confusion matrix for the classification
metric with presented Pixel level classification network
models are shown in Figs. 20 and 21 of Appendix.
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Table 3 Precision of testing images of cutting slopes (%)
model precision (PR)
LB VT VD sky RW road signs MPR
U-Net (Sgdm) NaN 75.57 NaN NaN NaN NaN NaN 10.80
U-Net (Adam) 47.51 97.25 22.84 34.73 22.05 13.00 21.29 36.95
FCN (32s Sgdm) 74.72 98.86 35.77 92.52 91.17 91.67 45.82 75.79
FCN (32s Adam) 48.59 97.49 13.29 NaN 32.57 NaN NaN 27.42
DeepLab v3+ (Resnet18 Sgdm) 81.42 98.99 38.30 88.27 82.55 85.06 59.52 76.30
DeepLab v3+ (Resnet18 Adam) 76.13 98.66 27.09 3432 63.46 0 NaN 42.81
Note: Bold font is the best case.
Table 4 Per-class pixel accuracy of testing images of cutting slopes (%)
model per-class pixel accuracy (PA4)
LB VT VD sky RW road signs MPA GPA
U-Net (Sgdm) 0 100 0 0 0 0 0 14.29 75.57
U-Net (Adam) 70.95 88.71 48.30 46.54 4.64 0.23 24.74 40.59 79.57
FCN (32s Sgdm) 93.81 86.46 91.68 93.17 96.51 92.61 77.66 90.27 88.23
FCN (32s Adam) 94.08 85.98 19.65 0 3.05 0 0 28.96 79.29
DeepLab v3+ (Resnet18 Sgdm) 92.89 89.54 82.70 99.42 98.35 97.18 79.14 91.32 90.32
DeepLab v3+ (Resnet18 Adam) 86.57 85.91 84.08 86.29 84.32 0 0 61.02 84.00
Note: Bold font is the best case.
Table 5 Intersection of union of testing images of cutting slopes (%)
model intersection of union (loU)
LB VT VD sky RW road signs MloU WioU
U-Net (Sgdm) 0 75.57 0 0 0 0 0 10.80 57.11
U-Net (Adam) 39.78 86.54 18.35 24.82 3.99 0.23 12.92 26.66 72.15
FCN (32s Sgdm) 71.21 85.61 34.64 86.65 88.26 85.42 40.48 70.32 81.79
FCN (32s Adam) 47.15 84.11 8.61 0 2.87 0 0 20.39 70.74
DeepLab v3+ (Resnet18 Sgdm) 76.64 88.73 35.46 87.81 81.43 83.01 51.45 72.08 84.71
DeepLab v3+ (Resnet18 Adam) 68.09 84.92 25.77 32.55 56.76 0 0 38.30 77.09
Note: Bold font is the best case.
Table 6 Mean boundary F1 score of class of testing images of cutting slopes (%)
model mean boundary F1 score of class (MBFSoC)
LB VT VD sky RW road signs MBFSoDS
U-Net (Sgdm) NaN 45.11 NaN NaN NaN NaN NaN 6.44
U-Net (Adam) 46.10 61.48 27.12 12.27 11.38 9.38 43.59 30.19
FCN (32s Sgdm) 55.33 61.48 15.93 54.55 64.02 52.61 9.36 44.75
FCN (32s Adam) 29.48 49.92 8.34 NaN 3.68 NaN NaN 13.06
DeepLab v3+ (Resnet18 Sgdm) 65.03 70.81 24.68 29.61 35.79 39.29 32.12 42.48
DeepLab v3+ (Resnet18 Adam) 59.47 65.89 20.98 20.04 29.86 0 NaN 28.03

Note: Bold font is the best case.

Results show that five of the six situations performed
well (including one U-Net (Adam), FCNs, and DeepLab
v3+). Among them, DeepLab v3+ with Resnet18 Sgdm
achieved the highest GPA (90.32%), while the FCN 32s

Adam achieved the lowest GPA (79.29%). The U-Net
Sgdm demonstrated poor performance, though scored
high values in certain evaluation indices, such as GPA
and WIloU. However, U-Net Sgdm mistakenly classified
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all pixels in the cutting slope images as vegetation, as
shown in Fig. 10(e). While the evaluation index value of
U-Net Sgdm is high, the fact that it predicted all pixels as
“vegetation”, which often occupy a majority of the pixels
of cutting slope images (Fig. 9 and Table 7), resulted in a
much larger PA value. This, in turn, resulted in a much
larger GPA index and plausible effect in the evaluation
index.

For the program execution time (Table 8), the mini-
mum time used by the DeepLab v3+ with Resnetl8 and
Sgdm model is 1.56 s/image.

Figure 10 shows the different predictions of DeepLab
v3+ with Resnet18 and Sgdm, FCN 32s Sgdm, and U-Net
Adam. Though the evaluation index of the image
prediction results of FCN 32s Sgdm was plausible, the
actual prediction results do not match the actual situation
shown in the cutting slope images. Specifically, curved
contour features were recognized as straight lines, certain
details were lost, and even the contour of ground truth
was inconsistent, let alone the contour of the original
image. The MBFSoDS index of the DeepLab v3+ com-
bined with Resnet18 and Sgdm model is 2.27% less than
that of the FCN 32s Sgdm model since FCN is more
accurate when identifying objects with straight contour.
Though DeepLab v3+ fits very well with the contour of
the ground truth but not with the original image, it is
important to keep in mind that the two often contain
small, unavoidable discrepancies from human error.

The U-Net Adam model fits well with the original
image. FPR in Table 9 indicates that U-Net Adam often
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Fig. 9 Pixel distribution frequency of each category in 971
image sets.

Table 7 Number of pixels by category
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classified pixels into the wrong class (i.e., in the fourth
row of Fig. 10, the U-Net Adam model identified the
entire retaining wall as a lattice beam). In addition, the
performance of U-Net Adam in the evaluation index is
less than ideal since it often classifies pixels of the same
brightness into the same category.

Compared with the ground truth, the overall evaluation
index of DeepLab v3+ with Resnet18 and Sgdm demo-
nstrated the best prediction results on cutting slope
images.

To verify the reliability of the DeepLab v3+ with Resn-
etl8 and Sgdm model, 3 additional evaluations will be
carried out.

First, K-fold cross validation experiment was implemen-
ted to assess the robustness of the optimal model
(DeepLab v3+ combined with Resnetl8 and Sgdm).
Table 10 shows that after 10-fold cross validation, the
average GPA and MIoU values differ from the origin by
only 0.21% and 2.66%, respectively (903 images of
training set and 68 images of testing set). The results
show that the network model was not over-fitting and had
ideal robustness.

To find suitable training hyperparameters (i.e., optimi-
zer and learning rate decay strategy), the AdeDelta
optimizer of cosine learning rate decay and piecewise
constant decay are applied to the optimal network model
(DeepLab v3+ with Resnet18). Results (Table 11) show
that DeepLab v3+ (Resnet18) works best with the Sgdm
optimizer and piecewise constant decay. It is worth
mentioning that when DeepLab v3+ is combined with
AdeDelta, certain small objects in the images (i.e., roads
and road signs) are incorrectly classified into lattice
beams, sky, and retaining walls, resulting in poor index
scores.

More images from three different cutting slopes are
used for further testing to determine the actual value of
the optimal model (DeepLab v3+ combined with
Resnetl8 and Sgdm). Recognition results (Fig. 11) show
that, in cases 1 and 3, the pixels of the lattice beam close
to vegetation were wrongly recognized due to the color
similarities. In addition, the contours of other classes are
more accurate in complex and staggered scenes,

label pc Y ipc ® real-world objects

LB 92014213 599270400 concrete lattice beam, concrete ladder, concrete drainage channel
VT 508610045 671155200 grass, trees

VD 31215511 448588800 soil exposed after vegetation disappearance

Sky 2855823 78796800 sky

RW 29833466 184550400 concrete and marble retaining walls

Road 6273698 62208000 roads, highway guardrails, road drains, traffics

Signs 126202 20044800 road signs

Notes: a) pc: pixel count, the total number of pixels in this class; b) ipc: image pixel count, the total number of image pixels containing this category.
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indicating that the recognition performance of the model
is not bad.

3.2 Discussion

Different segmentation networks demonstrate different

Table 8 Network program execution time

OCNN-based SM

model PET
U-Net (Sgdm) 8.85
U-Net (Adam) 26.26
FCN (32s Sgdm) 4.10
FCN (32s Adam) 477
DeepLab v3+ (Resnet18 Sgdm) 1.56
DeepLab v3+ (Resnet18 Adam) 3.09

Note: PET = program execution time (s/image). Bold font is the best case.

MIoU: 61.45

MIoU: 41.72

MloU: 51.32
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MloU: 62.14

MloU: 34.07

N

J}f[Io U:36.90

423

pixel classification accuracies. This subsection visualizes
the feature extraction and expansion processes of input
image into output results within the network.

It should be noted that the presented feature maps are
adjusted to the [0,1] using the MATLAB function “mat2-
gray”. The degree of recognition and extraction of the
map features are expressed in the rainbow legend with the
redder colors representing the higher degree, and vice
versa. The input image is shown in Fig. 12.

The DeepLab v3+ combined with Resnet18 and Sgdm,
FCN 32s Sgdm, and U-Net Adam are selected for
comparative discussion.

3.2.1 DeepLab v3+ combined with Resnet18 and Sgdm

Figure 4 shows the network structure of Deeplab v3+
combined with Resnetl8 and Sgdm. After the first
activation (L4) of the image input to the network, 64

MloU: 87.20 MloU: 41.31 MloU: 24.

MIoU: 40.47 MloU: 2 MloU:

MloU: 55.66 MloU: MloU: 20.24

MloU: 81.72 MloU: MloU: 22

MloU: 59.96 MloU: 26.01 MloU: 21.87

MloU: 32.58 MIoU: 12.53

MloU.

MloU: 43.87 MloU :

e
(e ®

21.28 MloU: 21.87

road

Fig. 10 Prediction results of partial semantic segmentation model. (a) Input image; (b) ground truth; (c) DeepLab v3+ combined with
Resnet18 and Sgdm; (d) FCN 32s Sgdm; (e) U-Net Sgdm; (f) U-Net Adam.
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Table 9 FPR of networks (%)

model false positive rate (FPR)

LB VT VD sky RW road signs MPFR GFPR
U-Net (Adam) 13.15 7.76 5.98 0.85 0.57 0.03 0.08 4.06 20.43
FCN (32s Sgdm) 5.32 3.08 6.03 0.07 0.33 0.18 0.08 2.16 11.77
DeepLab v3+ (Resnet18 Sgdm) 3.56 2.81 4.88 0.13 0.72 0.37 0.05 1.79 9.68

Note: Bold font is the best project.

Table 10 The result of the K-fold cross validation (%)

Situation K1 K2 K3 K4 K5 Ko6 K7 K8 K9 K10 mean origin
GPA 91.92 93.09 94.82 95.47 91.38 94.67 86.61 87.08 88.64 91.60 91.53 91.32
MloU 69.34 68.24 75.96 77.717 70.68 73.31 64.35 65.25 62.19 67.70 69.42 72.08

Table 11  Prediction results of DeepLab v3+ combined with different optimizer and learning rate decay strategy (%)

DeepLab v3+ (Resnet18) index

MPR MPA GPA MloU WioU MBFSoDS PET
Sgdm and PCD 76.30 91.32 90.32 72.08 84.71 42.48 1.56
AdeDelta and PCD 13.72 40.44 78.79 20.40 73.96 2291 3.67
AdeDelta and cosine decay 13.29 30.25 70.04 16.43 65.93 17.68 1.89

Note: Bold font is the best case. PCD = piecewise constant decay; PET = program execution time (s/image).

input output input output input output
case 1 case 2 case 3

Fig. 11 DeepLab v3+ (combined with Resnet18 and Sgdm) in 3 cases.

feature maps are obtained, shown in Fig. 13, where L4-22 it reaches the end of the feature extraction part), only
represents the 22nd feature map obtained after layer 4 is  certain feature maps of noticeable significance are
activated. selected for discussions. The results are shown in Fig. 14.

Due to the large number of feature maps (as the number Take the lattice beam in the image as an example.
of feature maps increase, the resolution becomes lower as  Along the feature extraction path, as the number of
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network layers increases, the size of the feature maps
decreases, making the contour of the lattice beam more
representative of the original delicacy. After multiple
layers of feature extraction, the comparison between L4-
22 and L67-405 (Fig. 14) shows that the outer contour of
the lattice beam has become ambiguous and is replaced
by an approximate shape.

In Fig. 14, L70, L73, L76, and L79 each have 256
feature maps after 4 parallel AC operations, which is used
to increase the layer’s receptive field without increasing
the number of parameters or computation [20]. The feat-
ure maps obtained from AC operations contain repres-
entative features of the input image. Thus, the results
(L83-25) of feature extraction operation not only demo-
nstrate the features of the lattice beam, but also eliminate
other irrelevant features.

In Fig. 14, L84 is a transposed convolution layer. The
comparison between L84-25 and the previous layer
Fig. 13 Among the 64 feature maps after L4 activation, the shows an increase in image resolution anq lattice beam
22nd feature map is extracted. features. The feature maps of L95 are obtained by a DC
operation on the shallow feature maps (L87) and deep

Fig. 12 Input image (raw image).
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Fig. 14 Visualization results of feature map of input image by DeepLab v3+ combined with Resnet18 and Sgdm network.
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feature maps (L84), followed by a feature extraction
operation. The feature contour of the image target
extracted from the front part of the network is more
identifiable, while the one extracted from the back part is
more representative of the original image. Since the
general semantic segmentation network has deep layers,
many detailed contours may have been lost after deep
feature extraction, which even the transposed convolution
operation may not be able to restore. Therefore, the deep
layer feature maps require deep concatenation with the
delicate feature maps from shallow layers to produce
combined feature maps that contain fine contour features.
The extraction results of these feature maps show clear
lattice beam features (L95-33). In other words, feature
extraction after “deep concatenation” not only extracts
the lattice beam features from the deep feature maps
(such as L84-25) and discards irrelevant information, but
also obtains lattice beam details from the shallow feature
maps (such as L87-4). The results are shown in L95-33
(Fig. 14).

The feature maps of L96 are obtained from the feature
maps of L95 through seven convolution kernels sized
1 x 1, which functions to classify pixels of feature maps.
Then, the transposed convolution layer expands the
feature maps of the previous layer (L96) into the same
resolution as the input image. Finally, the Softmax layer
converts the values in the L97 feature maps into
probability form and the final layer attaches the category
label to the corresponding position of the feature map
according to the standards mentioned above. The above
process describes pixel level classification of the
DeepLab v3+ with Resnet18, which has 18 layers of deep
feature extraction.

Since additional feature extraction layers may lead to
better classification, a DeepLab v3+ with Resnet50 model
with 50 layers deep feature extraction was tested
(Resnet18 is replaced by Resnet50 and the remaining tail
structure of DeepLab v3+ is kept). In terms of the
evaluation indices PR, PA, loU, and MBFSoC, DeepLab
v3+ with Resnet50 performed slightly better than
DeepLab v3+ with Resnetl18 (Table 12). However, the
computational cost would increase significantly for

certain network series [16]. Since the network structure of
DeepLab v3+ with Resnet50 is more complex than that of
DeepLab v3+ with Resnetl8, the image prediction
process also takes longer. It is also worth mentioning that
the training time of DeepLab v3+ with Resnetl8 is 45%
more than that with Resnet50 due to its fewer network
weight parameters that require adjusting. Thus, DeepLab
v3+ with Resnetl8 is more practical for cutting slope
image recognition.

3.2.2 FCN 32s Sgdm

Section 3.2.2 discusses feature map visualization for FCN
32s Sgdm. In comparison, the object contours of the
cutting slope scenes predicted by FCN 32s Sgdm are
relatively straight with the original rugged contour
replaced by smooth lines. Similar to Section 3.2.1, only
selected feature maps are discussed. The feature maps of
each layer are shown in Fig. 15.

In the first convolution of the FCN 32s semantic
segmentation model, the width and height are padded
with 0 and the padding size is 198. This operation of
filling pixels outward makes the contour of the object of
interest more centered in the feature map, which can
increase the chances of the network extracting the key
components of the feature maps.

The feature maps of .10 are obtained from L5 after
multiple feature extractions (Fig. 15). Interestingly, the
feature extraction path of this part (L6-L10) not only
extracts the position of vegetation class in the input image
(L10-47), but also deliberately extracts the information of
the lattice beam edge (L10-2). Figure 15 clearly indicates
in L17-103 that the activated position in the feature map
forms the outer edge contour of the lattice beam. It can be
seen from L24-47 that the outer edge contour feature of
the lattice beam is extracted. From another point of view,
the outer contour corresponding to the vegetation position
is also clearly divided. The maximum pool layer, L25,
reduces the size of the feature maps. The comparison
between [24-388 and L[25-388 shows an obvious
difference in the resolution between these two. Further-
more, L39 is obtained from 4096 L38 feature maps

Table 12 Prediction results of DeepLab v3+ network with two different feature extraction layers (%)

Model Index

MPR MPA GPA MloU WiloU MBFSoDS PET
DeepLab v3+ (Resnet18 Sgdm) 76.30 91.32 90.32 72.08 84.71 42.48 1.56
DeepLab v3+ (Resnet18 Adam) 42.81 61.02 84.00 38.30 77.09 28.03 3.09
DeepLab v3+ (Resnet50 Sgdm) 77.61 91.90 91.63 73.71 86.16 47.56 2.87
DeepLab v3+ (Resnet50 Adam) 32.88 42.92 82.60 28.18 75.36 21.87 15.12

Note: Bold font is the best case.
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Fig. 15 Visualization results of feature map of input image by the FCN 32s Sgdm network.

through 7 convolution kernels of 1 x 1. The contour of
the lattice beam has been completely and smoothly
extracted. The high-resolution image (L40-1) is obtained
after the feature map passes through the transposed
convolution layer and its values converted into
probability form (L42-1) through the Softmax layer.
Finally, the last layer labels the pixels with their
corresponding probability values.

Compared to DeepLab v3+ with Resnetl8 and Sgdm,
FCN 32s Sgdm only uses one transposed convolution
layer, thus the results are much smoother since it is
difficult to directly restore the contour information of the
lattice beam with fine discrimination from low resolution.
However, this operation is conducted by DeepLab v3+
with Resnet18 twice so that the network not only expands
image resolution, but also extracts additional details.
Since FCN 32s does not use “deep concatenation”, the
program loses accurate contour information of the object
of interest, making DeepLab v3+ with Resnetl8 better at
feature restoration.

3.2.3 U-Net Adam

Section 3.2.3 discusses the visualization of feature maps
of U-Net Adam by comparing it with the previous two

models. L5-56 of Fig. 16 is one of the feature maps of the
input image L1 after 2 convolution layers, 1 activation
layer, and profile feature extraction of the lattice beam.

In Fig. 19, the profile features of the lattice beam can
still be extracted by the network even after the resolution
of L10-33 is reduced. In L15, 256 feature maps are
generated, but none extracted the features of the lattice
beam (Fig. 17).

&

Fig. 17 The 64 feature maps of L15 in U-Net Adam.
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In Fig. 19, the features of other objects in L15-143
were extracted, rather than that of the lattice beam. In the
network structure, the deep layers (L29 and L36) are
concatenated with the shallow layers (L20 and L15),
producing L30 and L37, respectively. After the feature
extraction process, L34 and L50 were unable to extract
features of the lattice beam, unlike DeepLab v3+
combined with Resnetl8 and Sgdm. However, the lattice
beam features (L55-6) sudden appeared in L55 after
feature extraction due to “deep concatenation” between
L50 (deep layer) and L5 (shallow layer). As mentioned
previously, none of the feature maps in L15 had obvious
lattice beam features, making it difficult for the network
to extract its contour. This is because the values of the
lattice beam positions in the L15 feature map were
mapped to 0 by the Relu layer and applying convolution
operation (feature extraction) to L15 cannot make the
values of these positions (the pixel of the lattice beam)
greater than 0, thus the outcome is the same as L30.

It should be noted that the feature maps of L48 were
obtained after L43 (without the lattice beam contour) and
L10 (with the lattice beam contour) are concatenated and
underwent feature extraction. However, the position of
the lattice beam was still not activated in the 128 feature
maps of L46 (Fig. 18) because the convolution layer is
more inclined to extract the features of non-lattice beams.
In other words, the feature vectors of the lattice beam
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contour in the feature maps all have negative values.

In Fig. 19, L29, L36, L43, and L50 are the feature maps
obtained after the transposed convolution feature expa-
nsion. Among them, L56 was obtained from 64 feature
maps of L55 through 7 convolution kernels of 1 x 1.
L57-1 is the result of the Softmax layer.

In terms of the entire U-Net model, the L2-L10 layers
function to extract features of the lattice beams, while the
L11-L50 layers function to extract features of other
elements of interest. The features of lattice beams in
L51-L55 were extracted from the fine shallow feature
maps and rough deep feature maps. Finally, each pixel is
labeled with their corresponding probability value.

Prediction results show that the contour extracted by
U-Net is closest to the input image, though the network is
more vulnerable to pixel interference with the same
brightness, such as when vegetation disappearance is
incorrectly classified as the lattice beam. The darker part
is also prone to error and easily misclassified as

Fig. 18 128 feature maps of L46 in U-Net Adam.
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Fig. 19 Visualization results of feature maps of input image by the U-Net Adam network.
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vegetation. In Table 9, the FPR of the U-Net is the
highest, thus the score on the evaluation index is not as
good as the other two.

4 Conclusions

Finding an appropriate semantic segmentation network to
predict the contour of elements of interest for slope
images (i.e., lattice beams, vegetation disappearance,
retaining walls, etc.) establishes the foundation of
mapping slope surfaces and evaluating slope safety and
stability. This paper uses three semantic segmentation
networks combined with two optimizers, Sgdm and
Adam. Finally, the prediction results are discussed from
the perspectives of feature extraction, expansion, and
feature map visualization.

With the above research, the following conclusions can
be drawn.

1) From the evaluation indices we can see that the best
semantic segmentation network is DeepLab v3+ with the
highest MPR value with the Resnetl8 feature extractor
and Sgdm optimizer. At the same time, DeepLab v3+ also
achieved the highest scores in GPA and WioU. The
program execution time is shortest when the feature
extractor is Resnetl8 and Sgdm is the optimizer.
DeepLab v3+ combined with Resnetl8 and Sgdm
performed the best in terms of cost performance.

2) For the FCN 32s model, the Sgdm optimizer
performed better than the Adam optimizer.
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3) The U-Net model performed poorly except when
combined with the Adam optimizer. The MPR, GPA,
WIoU, and MBFSoDS of the U-Net Adam model are
10.75%—39.35% lower than that of DeepLab v3+
combined with Resnetl8 and Sgdm. PR had the biggest
difference of 39.35%, while GPA had the smallest
difference of 10.75%.

4) In feature maps visualization, the DeepLab v3+
model combined with Resnetl8 and Sgdm produced
results of the input image closest to the ground truth. The
FCN 32s model often ignored details of the objects of
interest and does not reflect the real contour. The
prediction results of U-Net is closest to the input image,
but it is still prone to errors (FP in Table 9 is high),
resulting in poor evaluation indices.

An appropriate, practical network model can lay the
foundation for slope image recognition and change
quantification. The statistical information of the number
of pixels of the elements concerned by semantic
segmentation can be used as a reference index for the
slope safety.

Appendix
See Figs. 20 and 21.
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Fig. 21 Confusion matrix for the classification metric with presented Pixel level classification network models. (a) DeepLab v3+
(Resnet18 Sgdm); (b) DeepLab v3+ (Resnet18 Adam); (c) DeepLab v3+ (Resnet50 Sdgm); (d) DeepLab v3+ (Resnet50 Adam); (e) FCN
32s (Sgdm); (f) FCN 32s (Adam); (g) U-Net (Sdgm); (h) U-Net (Adam).

References

10.

11.

. Chen Z. Soil Slope Stability Analysis—Principle, Methods and

Programs. Beijing: China Water & Power Press, 2003 (in Chinese)

. Wu C I, Kung H Y, Chen C H, Kuo L C. An intelligent slope

disaster prediction and monitoring system based on WSN and
ANP. Expert Systems with Applications, 2014, 41(10): 4554—4562

. Shu J, Zhang J, Wu J. Research on highway slope disaster

identification based on deep convolution neural network. Highway
Traffic Technology, 2017, 13(10): 7074 (in Chinese)

. Wu J. Feature learning of highway image and detection of slope

failure. Thesis for the Master’s Degree. Beijing: Beijing University
of Posts and Telecommunications, 2018 (in Chinese)

. Xu J, Gui C, Han Q. Recognition of rust grade and rust ratio of

steel structures based on ensembled convolutional neural network.
Computer-Aided Civil and Infrastructure Engineering, 2020,
35(10): 1160—1174

. Guo H, Zhuang X, Rabczuk T. A deep collocation method for the

bending analysis of Kirchhoff plate. Computers, Materials &
Continua, 2019, 59(2): 433-456

. Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T. Artificial

neural network methods for the solution of second order boundary
value problems. Computers, Materials & Continua, 2019, 59(1):
345-359

. Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh V M, Guo

H, Hamdia K, Zhuang X, Rabczuk T. An energy approach to the
solution of partial differential equations in computational
mechanics via machine learning: Concepts, implementation and
applications. Computer Methods in Applied Mechanics and

Engineering, 2020, 362: 112790

. Zhou H, Chen Y, Tian R. Distance prediction of slope-foot

landslide in southwest of China based on GA-BP neural network.
In: 2019 the 6th Annual International Conference on Material
Engineering and Application. Guangzhou: IOP Publishing, 2020

Xing Y, Wang J, Li X, Liu R, Gao J. Slope stability prediction
model based on GA-SVM. In: 2010 International Conference on
Educational and Information Technology. Chongqing: IEEE, 2010
Lin H M, Chang S K, Wu J H, Juang C H. Neural network-based
model for assessing failure potential of highway slopes in the

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

Alishan, Taiwan Area (China): Pre- and post-earthquake invest-
igation. Engineering Geology, 2009, 104(3-4): 280—289

Xia Y, Chen B, Weng S, Ni Y Q, Xu Y L. Temperature effect on
vibration properties of civil structures: A literature review and case
studies. Journal of Civil Structural Health Monitoring, 2012, 2(1):
29-46

Yao X. Evolutionary artificial neural networks. International
Journal of Neural Systems, 1993, 4(3): 203—222

Lin Y, Nie Z, Ma H. Structural damage detection with automatic
feature-extraction through deep learning. Computer-Aided Civil
and Infrastructure Engineering, 2017, 32(12): 1025—-1046

Zhong K, Teng S, Liu G, Chen G, Cui F. Structural damage
features extracted by convolutional neural networks from mode
shapes. Applied Sciences (Basel, Switzerland), 2020, 10(12):
4247-4262

Teng S, Liu Z, Chen G, Cheng L. Concrete crack detection based
on well-known feature extractor model and the YOLO v2
network. Applied Sciences (Basel, Switzerland), 2021, 11(2):
813825

Ghorbanzadeh O, Meena S R, Blaschke T, Aryal J. UAV-based
slope failure detection using deep-learning convolutional neural
networks. Remote Sensing, 2019, 11(17): 2046—2069
Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep
convolutional ~ encoder-decoder  architecture  for  image
segmentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2017, 39(12): 2481-2495

. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks

for biomedical image segmentation. In: Medical Image Computing
and Computer-Assisted Intervention (MICCAI). Munich: Springer,
2015: 234-241

Chen L C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-
decoder with atrous separable convolution for semantic image
segmentation. In: European Conference on Computer Vision
(ECCV). Munich: Springer, 2018: 833—851

Shelhamer E, Long J, Darrell T. Fully Convolutional networks for
semantic segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017, 39(4): 640—651

Narazaki Y, Hoskere V, Hoang T A, Fujino Y, Sakurai A, Spencer
B F Jr. Vision-based automated bridge component recognition with



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Mansheng LIN et al. OCNN-based SM

high-level scene consistency. Computer-Aided Civil and Infrast-
ructure Engineering, 2020, 35(5): 465—482

Liu J, Yang X, Lau S, Wang X, Luo S, Lee V C S, Ding L.
Automated pavement crack detection and segmentation based on
two-step convolutional neural network. Computer-Aided Civil and
Infrastructure Engineering, 2020, 35(11): 1291-1305

Dung C V, Anh L D. Autonomous concrete crack detection using
deep fully convolutional neural network. Automation in
Construction, 2019, 99: 52—58

Teng S, Chen G, Gong P, Liu G, Cui F. Structural damage
detection using convolutional neural networks combining strain
energy and dynamic response. Meccanica, 2020, 55(4): 945-959
Rojahn C, Bonneville D R, Quadri N D, Phipps M T, Ranous R A,
Russell J E, Stachlin W E, Turner Z. Postearthquake Safety
Evaluation of Buildings. Redwood City, CA: Applied Technology
Council, 2005

Noh H, Hong S, Han B. Learning deconvolution network for
semantic segmentation. In: 2015 IEEE International Conference on
Computer Vision (ICCV). Las Condes: IEEE, 2015: 1520—1528
Dong C, Loy C C, Tang X. Accelerating the super-resolution
convolutional neural network. In: European Conference on
Computer Vision (ECCV). Amsterdam: Springer, 2016: 391-407
Nguyen-Thanh V M, Anitescu C, Alajlan N, Rabczuk T, Zhuang
X. Parametric deep energy approach for elasticity accounting for
strain gradient effects. Computer Methods in Applied Mechanics
and Engineering, 2021, 386: 114096

Zhuang X, Guo H, Alajlan N, Zhu H, Rabczuk T. Deep
autoencoder based energy method for the bending, vibration, and
buckling analysis of Kirchhoff plates with transfer learning.
European Journal of Mechanics. A, Solids, 2021, 87: 104225

He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Las Vegas, NV: IEEE, 2016:
770-778

Chen L C, Papandreou G, Kokkinos I, Murphy K, Yuille A L.

33.

34.

35.

36.

37.

38.

39.

40.

41.

433

DeepLab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected CRFs. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2018,
40(4): 834-848

Cha Y J, Choi W, Biiyiikoztiirk O. Deep learning-based crack
damage detection using convolutional neural networks. Computer-
Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378
He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification.
In: 2015 IEEE International Conference on Computer Vision
(ICCV). Las Condes: IEEE, 2015: 1026—1034

Ioffe S, Szegedy C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. 2015,
arXiv:1502.03167

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 2014, 15(1):
1929-1958

Csurka G, Larlus D, Perronnin F. What is a good evaluation
measure for semantic segmentation? In: Proceedings of the British
Machine Vision Conference. Bristol: BMVA, 2013

Randall Wilson D, Martinez T R. The need for small learning rates
on large problems. In: International Joint Conference on Neural
Networks. Washington, D.C.: IEEE, 2001: 115-119

Krogh A, Hertz J A. A Simple Weight Decay Can Improve
Generalization. In: Proceedings of the 4th International Conference
on Neural Information Processing Systems (NIPS). Denver: MIT
Press, 1991

David Eigen R F. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In:
IEEE International Conference on Computer Vision (ICCV). Las
Condes: IEEE, 2015,

Zhang Y, Yang Y. Cross-validation for selecting a model selection
procedure. Journal of Econometrics, 2015, 187(1): 95-112



	1 Introduction
	2 Methodology
	2.1 Semantic segmentation
	2.1.1 DeepLab v3+
	2.1.2 Fully convolutional network
	2.1.3 U-Net

	2.2 Evaluating indices
	2.3 Establishment of dataset
	2.3.1 Dataset processing
	2.3.2 Hyperparameter

	2.4 Additional evaluations

	3 Testing images and discussion
	3.1 Testing image results
	3.2 Discussion
	3.2.1 DeepLab v3+ combined with Resnet18 and Sgdm
	3.2.2 FCN 32s Sgdm
	3.2.3 U-Net Adam


	4 Conclusions
	Appendix
	Acknowledgements

