Front. Struct. Civ. Eng. 2022, 16(2): 250-265
https://doi.org/10.1007/s11709-021-0785-x

RESEARCH ARTICLE

Presentation of regression analysis, GP and GMDH
models to predict the pedestrian density in various
urban facilities

Iraj BARGEGOL?, Seyed Mohsen HOSSEINIAN®, Vahid NAJAFI MOGHADDAM GILANI"", Mohammad
NIKOOKAR?, Alireza OROUEI®

“ School of Civil Engineering, University of Guilan, Rasht 41996-13776, Iran
b School of Civil Engineering, Iran University of Science and Technology (IUST), Tehran 13114-16846, Iran
“School of Civil Engineering, Islamic Azad University, Semnan 35131-37111, Iran

*Corresponding author. E-mail: vahid_najafi@alumni.iust.ac.ir

© Higher Education Press 2022

ABSTRACT In this study, the relationship between space mean speed (SMS), flow rate and density of pedestrians was
investigated in different pedestrian facilities, including 1 walkway, 2 sidewalks, 2 signalized crosswalks and 2 mid-block
crosswalks. First, statistical analysis was performed to investigate the normality of data and correlation of variables.
Regression analysis was then applied to determine the relationship between SMS, flow rate, and density of pedestrians.
Finally, two prediction models of density were obtained using genetic programming (GP) and group method of data
handling (GMDH) models, and k-fold and holdout cross-validation methods were used to evaluate the models. By the
use of regression analysis, the mathematical relationships between variables in all facilities were calculated and plotted,
and the best relationships were observed in flow rate-density diagrams. Results also indicated that GP had a higher R*
than GMDH in the prediction of pedestrian density in terms of flow rate and SMS, suggesting that GP was better able to
model SMS and pedestrian density. Moreover, the application of k-fold cross-validation method in the models led to
better performances compared to the holdout cross-validation method, which shows that the prediction models using
k-fold were more reliable. Finally, density relationships in all facilities were obtained in terms of SMS and flow rate.
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22% were female. The estimated rate of the World Health
Organization (WHO) for road traffic fatalities was 20.5

1 Introduction

Walking is the simplest way to move between the origin
and destination. For many, it can be the only means of
personal transportation and does not need any vehicles.
Therefore, pedestrians constitute an inseparable part of
transportation systems [1]. Some people are pedestrians
during a day at some time. Safety should be considered
[2], and traffic flow management is certainly an issue in
which governments make significant investments in order
to have an efficient transportation system [3].

Traffic accidents have significantly damaged transpor-
tation facilities in Iran. They reportedly caused 15932
fatalities in Iran in 2016, of which 78% were male and
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per 100000 population in 2016 [4]. They have also
imposed substantial costs on governments and resulted in
problems in other infrastructure and societal spheres,
especially in developing countries, due to their low gross
national income [5]. The occurrence of road traffic
accidents is inevitable; however, the factors affecting
road traffic accidents can be recognized and analyzed in
order to establish and support prevention policies [6].
Road safety depends very much on the road user
behavior. Therefore, identifying the behavior of pedest-
rians in the transportation network helps to manage and
control traffic flow [7].

Since there are various walking habits, the behavior of
pedestrians is variable because of features like the
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number of people in a group, age, gender, clothing, and
so on. Various studies have investigated the relationship
between flow, speed and density of pedestrians. Hughes
[8] proposed a modeling method based on a differential
equation that analyzed the movement of a large group of
pedestrians. This group of pedestrians moved continually
and their density and speed were defined based on the
three hypotheses that imply walking habits for each
pedestrian type. Also, the independent and constant
variables modeled the place and time. The relationships
between speed, density and flow were specified in a fluid
mechanics approach. Helbing et al. [9] presented a figure
density method of pedestrians as simulations in a study
on the movement of pilgrims in Mina/Makkah during the
Hajj by video recording. The figure was based on a model
of pedestrian movements under the social force condition,
which was applied to compare the density in simulations.
In a study performed by Liu et al. [10], the velocity-
density and flow rate-density relationships were obtained
using the pedestrian flow characteristics on stairways
such as in train stations in China. Moreover, the vehicle
flow and pedestrian flow were compared in the mentioned
pedestrian distributing centers, such as the Shanghai
Chifeng Road Light Orbit Station, Shanghai People’s
Square Subway Station and the Shanghai train station and
so on. Results showed that the pedestrians’ flow models
on stairways were appropriate in some transfer stations.
Chen et al. [11] examined longitudinal pedestrian flows
in some passages such as two-direction (ascending and
descending) stairways in a metro station in Shanghai.
They used video recording to obtain pedestrian flow
characteristics such as volume, density and speed in some
high- and low-density conditions and analyzed the
relationships obtained from the dataset. They finally
applied statistical regression to present a model based on
the density-volume and density-speed relationships. Plaue
et al. [12] explored the pedestrian density by video
recording in roofed buildings to gather data. They utilized
some mathematical models to perform numeral simula-
tions and eventually proposed a technique to calculate
pedestrian density. Shafabakhsh et al. [13] conducted a
simulation-based study to examine the effect of elderly
populations on the movement flows of pedestrians in the
sidewalks by the use of a micro-simulation method. By
collecting the data of movement of pedestrians in 19
sidewalks in India and classifying the pedestrian facilities
in terms of their width, Rastogi and Chandra [14]
revealed that the relationships between speed and density
follow the exponential model on the sidewalks of varying
widths and the linear model on a non-exclusive facility.
Moreover, the increase in width of facilities resulted in
increased space available to a pedestrian, but reduced
maximum flow rate and optimum density. In a research
conducted by Bargegol et al. [15] by modelling the flow
rate data of 8541 pedestrians in a walkable street and two
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sidewalks of Rasht, results revealed that the capacity of
the flow rate and the optimum density in all the
mentioned facilities were 96 (ped-m™'-min') and 2.83
(ped - m™), respectively. Pinna and Murrau [16] investiga-
ted the behavior of pedestrians and the simultaneous
effect of age and speed of pedestrians on sidewalks in the
Oristano downtown, Italia. Results indicated that there
was not a linear relationship between age and speed and
they stated that it is better to consider a polynomial
relationship between the mean speed of walking, mean
speed of individual pedestrian, and age class. Sun [17]
provided a simulation of two-sided pedestrian flow with
various walking speeds and presented factors to represent
the walking preference and speeds of pedestrians. The
simulation results exhibit transitions between three
phases: freely flowing, lane formation, and fully jammed
phases as a function of initial density of pedestrians. In
the phase of lane formation, it was observed that faster
pedestrians exceed the slower ones through a narrow
walkway. Moreover, the relationships of density—flow
and density—velocity were different from each other at
different phases.

Various studies have been conducted on the speed, flow
rate, and density of various facilities and the behavior of
drivers, but few studies have been performed on the
behavior of pedestrians in this regard [18]. Although
there have been various studies on the behavior of pedest-
rians on issues such as sidewalks, design of walking
systems, and safety of pedestrians, less attention has been
paid to concepts including speed, density, flow rate for
passing through and outside the crosswalk, and so on.
Moreover, various researches have been performed by the
use of group method of data handling (GMDH) and
genetic programming (GP) methods in many engineering
fields [19-24]. However, no studies have been done on
the use of prediction models (for instance, GP and
GMDH) to represent pedestrian density.

Pedestrian density and pedestrian behavior in general
play important roles in the quality and design of pedest-
rian facilities. If the facility faces a density defect,
it would lead to reduced safety in interactions between
the pedestrians and vehicle flows caused by pedestrian
crossings, as well as various violations of pedestrians,
especially through crossings and intersections. Therefore,
it is very important to investigate the speed, flow rate and
density of pedestrians, and modeling this type of pedest-
rian behavior will increase their safety and reduce traffic
accidents induced by pedestrian crossings. So, the
objectives of this study were:

* obtain the SMS, flow rate and density values in various
facilities, including 1 walkway, 2 sidewalks, 2 mid-block
crosswalks and 2 signalized crosswalks,

* perform statistical analysis to investigate the normality
of data and the correlation of variables,

* apply regression analysis to determine the relationship
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between SMS, flow rate and density of pedestrians in
various facilities,

» obtain prediction models of the pedestrian density
using GMDH and GP models in various facilities,

* evaluate the model by the use of k-fold and holdout
cross-validation methods,

* present pedestrian density relationships in all facili-
ties using the superior model in terms of SMS and flow
rate.

In this study, a field method was applied using video
recording in order to collect data in various facilities,
including 1 walkway, 2 sidewalks, 2 signalized cross-
walks and 2 mid-block crosswalks. Next, the information
of 8490 pedestrians was obtained. Moreover, statistical
analysis was conducted to investigate the normality of
data and correlation of variables. Regression analysis was
then applied to determine the relationship between SMS,
flow rate, and density of pedestrians in various facilities.
Finally, the prediction models of the density of
pedestrians were presented using GP and GMDH models
in various facilities. Figure 1 indicates the process of this
research.

2 Methods

2.1 Data collecting

In this study, the results of extracting pedestrian
information from 7.5 hours of video recording from 2
sidewalks, 1 walkway, 2 mid-block crosswalks and 2
signalized crosswalks of Rasht metropolis were used
during evening peak traffic, then flow rate (ped-min™"),
SMS (m-min™") and density (ped-m™) of pedestrians
were determined using Tracker software. In these
facilities, all 8490 pedestrian crossings have been
occurred on two-sides. To explore the behavior of
pedestrians, crosswalks at 2 busy signalized crosswalks, 2
mid-block crosswalks, 2 sidewalk areas, and 1 walkable
street facilities in the most crowded area of Rasht were
selected and used. Some pictures of the studied area for
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various facilities are also presented in Fig. 2.
2.2 Data description

In this section, the normality of data as well as the
correlation coefficient of dependent and independent
variables were explored.

2.2.1 Normality of dataset

Before modeling, to have fair comparisons, the normality
of dataset was explored, the results of which are illustra-
ted in Table 1. As can be seen, the normality of dataset
was checked according to skewness and kurtosis parame-
ters. Kurtosis illustrates a peak distribution measure and
skewness represents an asymmetrical measure. Generally,
if these two parameters are not in the range of (-2, +2),
the dataset is far from the normal distribution and needs
corrections [25].

As is evident from Table 1, the skewness and kurtosis
values of all variables in various facilities except SMS
data in mid-block crosswalks (through pedestrian
crossing) were between (-2, 2), indicating that the dataset
applied in this study, with that one exception, had normal
distributions.

2.2.2 Correlation of variables

The Pearson correlation analysis was applied in this
research because of the quantitative nature of the dataset.
The Pearson’s correlation coefficient calculates the linear
correlation level of two variables. It is described as a
value between +1 and —1, whereby —1 illustrates a full
negative correlation, 0 shows no correlation and +1
illustrates a full positive correlation. The closer the
absolute amount to 1, the stronger the correlation between
the two variables [26]. The correlation results between
the variables in various facilities used in this study are
indicated in Table 2. The results of the Pearson
correlation between flow rate, SMS and density variables
indicated a high value for all facilities.

Obtaining the SMS, flow rate and density values in various facilities

v

Investigating the normality of dataset and the correlation of variables

v

v

Determining the relationships between SMS,
flow rate and density of pedestrians using
regression analysis

Presentation of density models using GMDH and
GP, and evaluation of the models using k-fold
and holdout cross-validation methods

v

v

Presentation of the superior model to represent the pedestrian density
relationships in all facilities in terms of SMS and flow rate

Fig. 1 The steps of the research method.
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2.3 Modeling methods

In this study, regression analysis was first used to
determine the relationship between SMS, flow rate, and
density of pedestrians in various facilities. Finally, the
prediction models of density in terms of flow rate and
SMS were achieved using GMDH and GP.

2.3.1 Regression analysis

The relationships between response and independent
variables in regressions are predicted using polynomials.
To determine whether regressions are capable of estima-
ting the response variable appropriately, the coefficient of

Fig. 2 Sample pictures of various facilities in the studied area.

Table 1 The kurtosis and skewness results of the dataset
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determination (R?) can be calculated. R? is a statistical
measurement of dataset proximity to the fitted regression,
showing the extent to which percentages of changes of
response variable are explained by independent variables
[27]. R? is always between 0% and 100%. 0% indicates
that the model does not illustrate any variation of the
independent data around its average amount and 100%
shows that the model can illustrate all the variations.
Higher R? values indicate that the observed values are
closer to the fitted line in the regression model. The
Pearson correlation coefficient was utilized due to the use
of quantitative data in this research. The correlation
coefficient (R) demonstrates the capability of linear
relationships between two variables. R-value is between
—1 and +1, which are applied for negative and positive
linear correlations, respectively. R and R? are presented
by Egs. (1) and (2), respectively, where x and y are two
parameters, Y, 1S the actual density value, ypgiceea 15 the
predicted density value, Y, 1S the mean actual density
value, Yyedcea 1S the predicted mean density value, and N
is the number of individuals [28].

_ NEw-(EIEY
VNS - @[V Ey - (7]

)

N - — 2
R2 _ (Zi:l (yactual - y actual) X (ypredicted - y predicted))

= - @
N = 2 N - 2
Zi:l (yactual - y actual) X Zi:l (y predicted — y predicted)

model variables kurtosis skewness standard deviation mean maximum statistic minimum statistic
sidewalks flow rate 5 87 37.85 25.77 0.62 -1.05
SMS 55.16 63.51 61.01 2.31 -1.09 —0.09
density 0.09 1.99 82.22 0.55 0.98 —-0.31
walkable street flow rate 10 60 37.6 9.17 —-0.05 0.65
SMS 53.8 60.86 57.74 1.79 —0.42 —0.63
density 0.18 1.11 0.67 0.18 0.25 0.29
mid-block crosswalks (through pedestrian crossing)  flow rate 1 10 5.79 2.46 -0.17 —-0.01
SMS 55.92 103.85 65.19 9.35 2.65 8.77
density 0.01 0.18 0.09 0.04 -0.22 —0.11
mid-block crosswalks (out of pedestrian crossing) flow rate 3 31 12.69 6.24 0.98 1.44
SMS 53.83 67.54 59.67 3.48 0.1 -0.37
density 0.05 0.47 0.21 0.09 0.77 0.98
signalized crosswalks (through pedestrian crossing)  flow rate 1 31 8.78 6.47 1.03 0.51
SMS 54.83 90 68.68 7.34 0.29 —0.62
density 0.01 0.5 0.14 0.11 1.02 0.28
signalized crosswalks (out of pedestrian crossing) flow rate 1 18 4.72 3.45 1.18 1.36
SMS 47.41 86.84 66.89 9.63 0.02 —0.98
density 0.01 0.32 0.08 0.07 1.24 1.23
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Table 2 Investigation of the correlation between dependent and
independent variables

model variables flowrate =~ SMS  density
sidewalks flow rate 1 -0.962  0.981
SMS —0.962 1 0.983
density 0.981 —-0.983 1
walkable street flow rate 1 —0.892  0.958
SMS —0.892 1 —-0.937
density 0.958 -0.937 1
mid-block crosswalks flow rate 1 —0.674 0.991
(through pedestrian crossing)
SMS —0.674 1 —-0.719
density 0.991 -0.719 1
mid-block crosswalks flow rate 1 0902  0.997
(out of pedestrian crossing)
SMS 0.902 1 0.887
density 0.997 0.887 1
signalized crosswalks flow rate 1 -0.789  0.997
(through pedestrian crossing)
SMS -0.789 1 —0.808
density 0.997  —0.808 1
signalized crosswalks flow rate 1 -0.839  0.994
(out of pedestrian crossing)
SMS —0.839 1 —0.854
density 0.994 -0.854 1

2.3.2  Group method of data handling

GMDH neural network uses a class of polynomial to
describe relationships between independent and depen-
dent parameters and is constructed in feedforward and
multi-layered networks and contains a set of neurons that
are taken from several input pairs using second-order
polynomials. Ivakhenko devised a technique in 1966 that
could be applied in complex systems and create a self-
organizing model that could be used to predict and
identify system problems. To model complex systems
containing a dataset with 1 output and many inputs,
Kolmogorov-Gabor polynomials are applied as Eq. (3), in
which y is the model output, x = (x, x,,...,x,) is the input
vector and a = (ay,a,,...,a;) is the vector of coefficients
[29]:

n n n
y =d, + E a; x; + E E a,a,x,xl
i=1

=1 j=1

n n n
+ Z Z Z AiA;AXX X+ 3)

i=1 j=1 k=1

In this network, each layer contains one or more
processor units, each of which has one output and two
inputs. These units act as the components of the model
and are assumed in a second-order polynomial form
through Eq. (4), the coefficients of which are obtained by
the use of regression models:
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P = Ao+ Q1 X1 + Ay, + A3 X, X, + A X +as X 4)

The least-square errors should be minimized to
compute the output value §; as Eq. (5) [30]:

e= ) G-y 5)
i+1
To find the minimum errors, the partial derivative of
Eq. (5) is applied. A matrix equation (Aa =y) can be
presented by substituting from Eq. (4) into this partial deri-
vative, in which Y = {y,,...,y.}", a = {ao,a\,a»,as,a.,as}
and matrix A is as Eq. (6):

2 2
Loy Xy Xy, X, Xipo Xy
— 2 2
A= 1 xyp X0 X X Xy Xy | 6)
2 2
1 'x”P 'x”q ‘xnp an xnp -an

The technique of singular value decomposition is
utilized as a solution to the aforementioned matrix
equation, through which the unknown a is calculated
using Eq. (7), in which AT is the transposition of the
matrix:

a=(A"A)"'A"y. (7)

2.3.3  Genetic programming

GP was applied to propose the pedestrian density model
in the study, which was first presented by Koza [31], and
demonstrates an extendable approach for an evolutionary
algorithm based on the evolution concept of Darwin. In
general, this approach seeks to solve problem space
instead of dataset space. The GP method has been presen-
ted as a development of genetic algorithms where pro-
grams are represented as tree graphs and illustrated in a
practical programming language. In this approach, after
the specification of the generation numbers and presen-
ting the input and output parameter amounts, a random
population of trees in each generation is constructed to
obtain the greatest population diversity. Each member of
a random population is a computer structure composed of
functions and numbers, which are selected from two
separate sets called the set of functions and the set of
terminals. Functions are all arithmetic operators or
Boolean logic functions that help to solve the problem
better and faster. Terminals are also independent vari-
ables. In short, GP solves problems in either a mutation or
a combination [32]. This evolutionary basis in GP is a
well-regarded concept in many other swarm-based approa-
ches such as particle swarm optimizer (PSO) [33], ant
colony optimizer (ACO) [34], grey wolf optimizer
(GWO) [35,36], Harris hawks optimizer (HHO) [37],
whale optimizer (WOA) [38], and teaching-learning-
based optimizer (TLBO) [39], differential evolution (DE)
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[40], differential search (DS) [41], and other hybrid and
enhanced techniques [42—44]. Such methods and recent
evolutionary optimization algorithms have been applied
in various complex space and practical problems [45—47].
In fact, GP is an optimization technique that applies the
concept of natural selection to generate solutions for
problems. Using these solutions, solving the problems or
estimating the ultimate answers, without specific program-
ming requirements, can be achieved. GP has been shown
to be very useful for the discovery of the solutions which
best fit the data, without presupposing the model struc-
ture. These solutions are finally represented in a
mathematical relationship form. Moreover, the created
relationships can be easily manipulated practically [48].

2.3.4 Cross-validation

When the parameters consist of high ranges, using
subsets of data that completely cover data trends is more
obvious due to the increment of the performance of
models. Today, many cross-validation methods are used
to overcome this problem, one of which is k-fold cross-
validation. Due to the dynamic nature of the k-fold
method, it is able to cover all data trends in both training
and testing samples. In k-fold cross-validation, the
original sample is randomly partitioned into k equal sized
subsamples, of which a single subsample is retained as
the validation data for testing the model, and the
remaining k — 1 subsamples are used as training data. The
cross-validation process is then repeated k times, with
each of the & subsamples used exactly once as the
validation data. The k results can then be averaged to
produce a single estimation. In science, in general, a
k value of 10 is commonly used, and this was applied in
this research [49,50].

In order to select the training and testing data for
evaluating algorithms, the holdout method is adopted. In
the holdout method, data points are randomly assigned to
two sets, usually called the training set and the testing set.
The size of each of the sets is arbitrary although the
testing set is typically smaller than the training set. In
typical cross-validation, results of multiple runs of model
testing are averaged together; in contrast, the holdout
method, in isolation, involves a single run. It should be
used with caution because without such averaging of
multiple runs, one may achieve highly misleading results
[51,52].

3 Results

In this section, the relationship between SMS, flow rate,
and density of pedestrians was determined and plotted
using regression analysis. Then using the independent
variables of flow rate and SMS, the prediction models of
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pedestrian density were obtained by GMDH and GP
models. GMDH and GP models using k-fold cross-
validation method were applied to predict pedestrian
density and results were compared with those of the
holdout method (i.e., 70% of data was used for training
and the rest was applied for testing the dataset). Finally,
the dependent variable of density was predicted in various
facilities using the superior model.

3.1 Regression analysis

The main goal of this research was to determine the
relationship between SMS, flow rate (V) and density (D)
of pedestrians. To specify these relationships, the number
of pedestrians crossing each facility was first obtained by
video recording. The time for all pedestrians crossing
(8490 pedestrians) was then achieved using a stopwatch
and SMS of movement of individuals was provided by
dividing the traveled distance by the crossing time. Then,
using V' = SMS x D proposed by the HCM [53], the
density for each minute was calculated. Moreover, the
flow rate-density, SMS-flow rate and SMS-density curves
were plotted by the dataset achieved in various facilities.
Eventually, the mathematical relationship between vari-
ables was formulated by the use of regression analysis,
in which the formula is represented on the curves. The
relationships between flow rate-density, SMS-flow rate
and SMS-density of sidewalks are illustrated in Fig. 3.
Also, these curves in other facilities such as walkable
street (in Fig. 4), mid-block crosswalks (through pede-
strian crossing) (in Fig. 5), mid-block crosswalks (out of
pedestrian crossing) (in Fig. 6), signalized crosswalks
(through pedestrian crossing) (in Fig. 7) and signalized
crosswalks (out of pedestrian crossing) (in Fig. 8) are
indicated separately.

As shown in Figs. 3-8, the highest relationships
between the variables were observed in flow rate-density
curves. To observe the relationship between flow rate,
SMS and density of pedestrians, the equations for all
facilities were drawn. Results of the pedestrians crossing
the sidewalks were achieved using Egs. (8)—(10):

V = —16.252D* +76.58D — 1.992, ®)
SMS = —0.0009V? —0.0023V +63.013, )

SMS = —0.39D* —3.3373D + 63.597. (10)

In which SMS is space mean speed (m-minﬁl), V
represents flow rate (ped'min') and D (ped'm %) is
density. The results of the pedestrians crossing the
walkable street are as Egs. (11)—(13):

V =-16.754D* +70.624D — 1.5228, (11)
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Fig. 3 The relationship between variables in the sidewalks in terms of: (a) flow rate-density; (b) SMS-flow rate; (c) SMS-density.

70 62
—16.754D° + 70.624D — 1.5228 e | SMS =—0.002V2— 0.0285V + 61.734
60 R2=09263 ® ® © oR*=08168
~ o 60 .
5 50¢ 59} ®
g = sgl
240t g 58
5 g 57f
£ 30} g 56
£20f Q55
& s4t °
10+ o flow rate-density ® SMS'ﬂ?W fate
poly. (flow rate-density) S3r poly. (SMS-flow rate)
0 1 L 1 1 1 1 1 1 1 1
0.1 0.5 0.7 0.9 1.1 1.3 520 10 20 30 40 50 60 70
density (ped-m™) flow rate (ped'min?)
(a) (b)
o ©  SMS-density
611 e} poly. (SMS-density)
60
~59+
[
= L
g 58
g 57t
Q56+
=
“55t .
541 we
531 SMS = —3.0468D* — 4.8622D + 62.448
iy | R=08842 |
0.0 0.2 0.4 0.6 0.8 1.0 1.2

density (ped-m™)

©

Fig. 4 The relationship between variables in the walkable in terms of: (a) flow rate-density; (b) SMS-flow rate; (c) SMS-density.
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Fig. 5 The relationship between variables in the mid-block crosswalks (through pedestrian crossing) in terms of (a) flow rate-density; (b)
SMS-flow rate; (c) SMS-density.
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Fig. 6 The relationship between variables in the mid-block crosswalks (out of pedestrian crossing) in terms of: (a) flow rate-density; (b)
SMS-flow rate; (c) SMS-density.
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SMS = -0.002V>-0.0285V +61.734, (12)

SMS = —3.0468D —4.8622D +62.448.  (13)

The results of the pedestrians crossing the mid-block
crosswalks (through pedestrian crossing) are illustrated as
Egs. (14)—(16):

V =57.802D +0.4125, (14)
SMS = 0.6523V? —9.8605V +96.589, (15)
SMS =2085.8D>—529.28D+92.785.  (16)

The results corresponding to the pedestrians crossing
the mid-block crosswalks (out of pedestrian crossing) are
presented as Egs. (17)—(19):

V = 68.448D — 1.5532, (17)
SMS = —-0.0096V +0.8025V +51.394,  (18)
SMS = —30.671D*+48.759D +51.099.  (19)

Morcover, the flow rate and SMS results of the
pedestrians crossing the signalized crosswalks (through
pedestrian crossing) are represented as Egs. (20)—(22):

V =58.7D+0.7213, (20)
SMS = 0.0623V2 —2.4032V +82.385, 1)
SMS =234.88D% — 144.42D + 81.26. (22)

Finally, the results of the pedestrians crossing the
signalized crosswalks (out of pedestrian crossing) are
represented as Egs. (23)—(25):
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3.2 GMDH model

The density prediction model results obtained by the
GMDH technique are illustrated in Table 3 using two
cross-validation methods (k-fold and holdout). Moreover,
due to the dynamic nature of k-fold method, the model
was run k times and finally, the average results for R* and
root-mean-square error (RMSE) were introduced. Table 3
indicates that the application of the k-fold method in the
GMDH model led to better performances than the holdout
method. Thus, the R* values of k-fold method for density
model in all facilities, including sidewalks, walkable
street, mid-block crosswalks (through pedestrian
crossing), mid-block crosswalks (out of pedestrian
crossing), signalized crosswalks (through pedestrian
crossing) and signalized crosswalks (out of pedestrian
crossing) were obtained as 0.9724, 0.9564, 0.9726,
0.9787, 0.9813, and 0.9851, respectively. This indicates
that the model in the k-fold cross-validation method was
able to represent the actual amounts appropriately.
However, the main point of using k-fold returns to the
proper utilization of data for training-testing processes
and hence increasing the reliability of the prediction
model [49].

The correlation of the predicted and actual amounts
achieved by the density model using holdout and k-fold
cross-validation methods is presented for all facilities
mentioned, as shown in Fig. 9.

Figure 10 lists the outputs of the density model for
various facilities aforementioned, and the comparison
between the predicted and actual amounts. For example,
Fig. 10(a) illustrates that the training process for the
sidewalks was stopped after 120 repetitions. This point
shows that the solutions will no longer improve from this
point on, and this point with the RMSE of 0.0018 in the
k-fold cross-validation method indicates the best point for

V =51.617D+0.6587, (23)  the end of the calculations and creation of the model for
the mentioned facility.
SMS =0.2191V*—5.2952V +84.405, (24)
3.3 GP model
SMS = 645.46D" ~278.88D +82.001. 25 In this section, by the use of the independent variables of
Table 3 Density model results presented by GMDH method
number model holdout k-fold
R RMSE R RMSE
a sidewalks 0.9691 0.1145 0.9724 0.0976
b walkable street 0.9437 0.0444 0.9564 0.0383
c mid-block crosswalks (through pedestrian crossing) 0.9554 0.0138 0.9726 0.0085
d mid-block crosswalks (out of pedestrian crossing) 0.9755 0.0153 0.9787 0.0142
e signalized crosswalks (through pedestrian crossing) 0.9783 0.0301 0.9813 0.0194
f signalized crosswalks (out of pedestrian crossing) 0.9750 0.0232 0.9851 0.0086
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Fig. 9 The correlation of the predicted and actual amounts in GMDH model for: (a) sidewalks; (b) walkable street; (c) mid-block
crosswalks (through pedestrian crossing); (d) mid-block crosswalks (out of pedestrian crossing); (e) signalized crosswalks (through
pedestrian crossing); (f) signalized crosswalks (out of pedestrian crossing).
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Fig. 10 The comparison chart of the predicted and actual
amounts in GMDH method for: (a) sidewalks; (b) walkable
street; (c) mid-block crosswalks (through pedestrian crossing);
(d) mid-block crosswalks (out of pedestrian crossing); (e)
signalized crosswalks (through pedestrian crossing); (f)
signalized crosswalks (out of pedestrian crossing).

flow rate and SMS, the prediction model of pedestrian
density using two cross-validation methods (k-fold and
holdout) was obtained using the GP model. The results of
the density prediction model in GP technique are
illustrated in Table 4, which indicates the superiority of
the k-fold method over the holdout method in the GP
model. The R* values of the k-fold method for density
model in all facilities, including sidewalks, walkable
street, mid-block crosswalks (through pedestrian
crossing), mid-block crosswalks (out of pedestrian
crossing), signalized crosswalks (through pedestrian
crossing) and signalized crosswalks (out of pedestrian
crossing) were obtained as 0.9967, 0.9785, 0.9952,
0.9975, 0.9981, and 0.9999, respectively, indicating that
the GP model in the k-fold cross-validation method for all
facilities was also able to illustrate the observed amounts
well. Moreover, the population size, number of genera-
tions, tournament size, maximum tree depth and
maximum genes for all facilities were 200, 100, 4, 8, and
7, respectively, and the best fitness values achieved for
the aforementioned facilities were 0.00075663, 0.020988,
0.00037482, 0.00081453, 0.00065317, and 0.04674,
respectively.

According to Fig. 11, the correlation of the predicted
and actual amounts by GP model for all facilities
mentioned is presented.

The proposed GP model using the k-fold method (as
the superior method) for all facilities, including side-
walks, walkable street, mid-block crosswalks (through
pedestrian crossing), mid-block crosswalks (out of
pedestrian crossing), signalized crosswalks (through
pedestrian crossing) and signalized crosswalks (out of
pedestrian crossing) is presented in Egs. (26)—(31), in
which the parameters are already defined.

D =0.1015%xsinV —0.0162 X cos(sinSMS )
x & eSS _ () 0125 x cos(cos SMS)
x cos(V +SMS X V)x SMS? — 1.692 x g'ahicossMS)
+cos(tanh(cos® V + V) + 1.548, (26)

D =0.0257 X cos(SMS + sin(cos SMS?) + 6.802)
—0.0825x V —1.201 xe*™5* 4+0.0387
X sin(2X V +SMS —0.8248) — SMS x gtnshs +08248
+0.1509 X V xtanh V —0.087

X (SMS —sin(2x V + SMS —0.8248)) + 6.765,
27)

D =0.0439 x sin(e™’ x (tanh(V — SMS ) + cos SMS*+
0.3868 x &' +0.408)) — 0.0009 x SMS +0.0021
x sin(V* x sin(0.3713 x &%) + 0.1514 x sin(2 X tanh V/
—2.409 x SMS +0.9081) + sin(V* x SMS)
+1.408 x cos V +0.0246, (28)
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Table 4 Density model results illustrated in GP technique
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holdout k-fold

number model

R RMSE R RMSE
a sidewalks 0.9895 0.0579 0.9967 0.0018
b walkable street 0.9676 0.0331 0.9785 0.0298
c mid-block crosswalks (through pedestrian crossing) 0.9913 0.0029 0.9952 0.0021
d mid-block crosswalks (out of pedestrian crossing) 0.9962 0.0042 0.9975 0.0014
e signalized crosswalks (through pedestrian crossing) 0.9966 0.0064 0.9981 0.0012
f signalized crosswalks (out of pedestrian crossing) 0.9998 0.0009 0.9999 0.0004

D =0.4347-0.0561 x SMS —1.692 various facilities (except SMS data in mid-block

X (V —1.8524 x cos SMS —1.52 xsin*V)
—1.113x SMS?* x tanh (SMS x V*)—0.001
x @2XV+sinSMS—cosV _ () 0327 x SMS X esinv2
+V xsin(V2+3x SMS —0.8248)
+ tanh (cosSMS ) — 1.0413, (29)
D = 0.0629 x cos(e™ x (V —9.28))

—0.2231 x tanh(SMS +sin(SMS x V*))

— 03817 % Sin(evX<SM52 ~9.358)’x (cos(SMS —2x V)—1.457))

— gVXGxSMST=0153) L () 0134 x sin(sin(SMS x (V —9.28)))
x sin(cos V) X (SMS — tanh V?)
X (tanh(2 X SMS)—9.28) +0.6887, (30)
D =1.816xSMS +0.0265 x tanh(SMS — V?)

+0.6829 X tanh(cos SMS ) +0.2109 x tanh(e>”"*"")

+0.0041 x sin(cos V*) x cos’SM S

—tanh(SMS?*x (V +0.6731))-0.0741

x tanh(cos SMS ) x e™5* ™V 1.2 2405

X tanh(tanh V?) x e*¥5* 0951 5 Gp1g

+ sin(tanh(cos(0.1437 x SMS?)))

X (3.545 X V + M) 1+ 2 275, 31

4 Conclusion and future directions

In this research, the relationship between SMS, flow rate,
and density of pedestrians was investigated in order to
explore the behavior of pedestrians in various facilities.
First, the normality of data and the correlation of
variables were examined. Then regression analysis was
used to determine the relationship between these
variables in the facilities. Eventually, density prediction
models were obtained using GP and GMDH models in
two cross-validation methods (k-fold and holdout) for
different facilities. The most significant results of the
research are as follows.

1) The results of normality of dataset based on kurtosis
and skewness showed that SMS, flow rate and density in

crosswalks (through pedestrian crossing)) had a normal
distribution.

2) The Pearson correlation analysis results indicated a
high Pearson correlation between flow rate, SMS, and
density of pedestrians for all facilities.

3) Regression analysis illustrated the mathematical
relationships between flow rate-density, SMS-flow rate
and SMS-density in all facilities and showed that the
highest relationships between the variables were in flow
rate versus density curves.

4) Results indicated that the application of k-fold
method in GMDH and GP models led to better
performances than the holdout method, meaning that
using k-fold as the cross-validation method increased the
model reliability.

5) The model presented by GMDH technique showed
that the R* values obtained for the k-fold method for all
facilities, including sidewalks, walkable street, mid-block
crosswalks (through pedestrian crossing), mid-block
crosswalks (out of pedestrian crossing), signalized
crosswalks (through pedestrian crossing) and signalized
crosswalks (out of pedestrian crossing) were 97.24%,
95.64%, 97.26%, 97.87%, 98.13%, and 98.51%,
respectively.

6) The GP model predicted the density of pedestrians in
terms of flow rate and SMS with greater accuracy and less
error compared to GMDH, so that the R* values of GP
model in k-fold cross-validation method for all
aforementioned facilities were 99.67%, 97.85%, 99.52%,
99.75%, 99.81%, and 99.99%, respectively.

7) For future research work, other machine learning
techniques [54-57], deep learning models [58—62], and
optimization algorithms [63—65] can be incorporated into
the proposed approaches to obtain more accurate results
in the prediction of pedestrian density. Moreover, this
research can be easily extended to other case studies. The
effects of various variables, such as environmental factors
and travel type (recreational, educational, etc.), on the
SMS, flow rate, and density of pedestrians and the
relationship between them can also be examined.
Furthermore, calibration of the simulation software can
be performed with the results from the present study.
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Fig. 11 The correlation chart of the predicted and actual amounts in GP model for: (a) sidewalks; (b) walkable street; (c) mid-block

crosswalks (through pedestrian crossing); (d) mid-block crosswalks (out of pedestrian crossing); (e) signalized crosswalks (through
pedestrian crossing); (f) signalized crosswalks (out of pedestrian crossing).
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