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Abstract Pathogenic microbes can induce cellular dysfunction, immune response, and cause infectious disease
and other diseases including cancers. However, the cellular distributions of pathogens and their impact on host
cells remain rarely explored due to the limited methods. Taking advantage of single-cell RNA-sequencing (scRNA-
seq) analysis, we can assess the transcriptomic features at the single-cell level. Still, the tools used to interpret
pathogens (such as viruses, bacteria, and fungi) at the single-cell level remain to be explored. Here, we introduced
PathogenTrack, a python-based computational pipeline that uses unmapped scRNA-seq data to identify
intracellular pathogens at the single-cell level. In addition, we established an R package named Yeskit to import,
integrate, analyze, and interpret pathogen abundance and transcriptomic features in host cells. Robustness of
these tools has been tested on various real and simulated scRNA-seq datasets. PathogenTrack is competitive to the
state-of-the-art tools such as Viral-Track, and the first tools for identifying bacteria at the single-cell level. Using
the raw data of bronchoalveolar lavage fluid samples (BALF) from COVID-19 patients in the SRA database, we
found the SARS-CoV-2 virus exists in multiple cell types including epithelial cells and macrophages. SARS-CoV-2-
positive neutrophils showed increased expression of genes related to type I interferon pathway and antigen
presenting module. Additionally, we observed the Haemophilus parahaemolyticus in some macrophage and
epithelial cells, indicating a co-infection of the bacterium in some severe cases of COVID-19. The PathogenTrack
pipeline and the Yeskit package are publicly available at GitHub.
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Introduction

Microbes are the most ubiquitous life forms with little
known in terms of their diversity. Due to a deeper
understanding of their role in regulating host immune
response and causing host pathogenesis, studies on
microbes have become a hotspot in the biological
exploration of human health and disease. In addition,
pathogenic microorganisms show regulatory roles on the
machineries of genetic information flow in host cells, such

as affecting the transcriptional program. This raises the
question of how cell-to-cell variability predicts or alters the
host relationship with microbial organisms in a given
disease context. In recent years, much insight has been
gained into host responses to microbial infections, but
tools used for interpreting the distribution of pathogens in a
single cell and the impact of pathogens on host cell
homeostasis are not available.
Single-cell RNA-seq (scRNA-seq) has recently been

engaged as the most useful tool for studying transcriptomic
characteristics at the single-cell level [1]. It has been
widely used for revealing the distribution of cells in the
microenvironment of organs, tissues and tumors, tracking
cell hierarchy, understanding tumor heterogeneity, and
inferring intracellular communication and regulatory net-
works [2–7]. Since the RNA of intracellular pathogens
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may also be captured when preparing libraries for
transcriptome sequencing, the scRNA-seq data set can
also be used to track pathogens at the single-cell level [8].
In fact, a recent study focusing on viral–host interaction
revealed the SARS-CoV-2 sequencing reads in 3′ scRNA-
seq data [9], highlighting the potential usage of scRNA-seq
in identifying intracellular pathogens. Nevertheless, there
has not been any computational tools that systematically
explore the metagenomic features in host cells at the
single-cell level.
Here, we established a computational framework for

identifying and exploring intracellular pathogens (bacteria
or viruses) at the single-cell level. The method includes a
Python package (PathogenTrack) for intracellular patho-
gen identification and an R package (Yeskit) for integra-
tion, clustering, differential gene analysis, functional
annotation, and visualization of single-cell data. Our
algorithm has been tested on various simulated and real
scRNA-seq data sets and performed robustly. Taking the
scRNA-seq data of two severe COVID-19 patients as an
example, we used PathogenTrack to identify microbial
infected cells at the single-cell level and used Yeskit to
explore the biological functions that may be related to
SARS-CoV-2 infection.

Materials and methods

The PathogenTrack workflow

The first step of PathogenTrack is to extract cell barcodes
(CBs) and unique molecular identifiers (UMIs) and add
them to the header of the sequenced reads. Many existing
tools for whitelisting CBs are available, such as cellranger
[1], alevin [10], and UMI-tools [11]. Since cellranger and
alevin are designed for scRNA-seq quantification and
generate more reliable CBs, it is recommended to use
cellranger or alevin to acquire valid CBs. The CBs and
UMIs are extracted and added to the header of read2 with
UMI-tools. Fastp [12] is an ultra-efficient tool for read
quality control and is employed to remove low-quality or
low-complexity reads. After quality control, reads not
aligned to the host reference genome with STAR [13] are
kept for taxonomy classification. Kraken2 [14] is a read-
level taxonomy classification tool with high precision and
speed and is employed in PathogenTrack. Since strains
from the same species may have shared genomic
sequences, the k-mer based method like kraken2 would
not accurately classify all reads at the species level [14]. To
solve this problem, PathogenTrack corrects the taxonomy
IDs with less read support to those supported by the most
abundant reads under the same species level. Reads with
assigned taxonomy IDs are deduplicated and then
quantified with UMIs. Finally, a quantification matrix of
pathogen species with UMI counts is generated.

The Yeskit package

Yeskit is an R package designed for single-cell gene
expression data importation, integration, clustering, differ-
ential analysis, functional analysis, and visualization. It
consists of 17 functions, including data importation and
integration (scRead, scIntegrate, and scOne), differential
analysis (scDGE and scPathogenDGE), functional analy-
sis (scGO, scPathogenGO, and scMSigdbScoring), visua-
lization (scDimPlot, scDensityPlot, scPopulationPlot,
scVizMeta, scPathogenRatioPlot, scVolcanoPlot, scGO-
BarPlot, scGODotPlot, and scScoreDimPlot). Yeskit
obeys the default data structure of Seurat [15], and stores
pathogen expression data and pathway enrichment scores
in the obj@meta.data slot and stores differential gene
analysis results and GO enrichment results in the
obj@misc slot.
The scRead function is designed for reading 10x

Genomics single-cell count matrix and filtering out low
quality cells. Besides, two features (reading pathogen
count matrix and handling PDX model) were included to
fulfill the corresponding circumstances. If the pathogen
count matrix was specified, scRead will read and store the
pathogen-by-cell count matrix into the obj@meta.data slot.
If the input file was a scRNA-seq count matrix from
xenografts samples (PDX model with human and mouse
genomes), scRead can distinguish human cells and mouse
cells by the threshold fraction (a minimum of 90% host-
specific reads by default) of reads to separate human and
mouse cells. In the quality control step, soft thresholds of
the number of expressed genes (99-th quantile), and the
percentage of mitochondrial genes (99-th quantile) were
used instead of hard thresholds.
The scIntegrate function is a wrapper for the Seurat

standard workflow. It can be used to merge two or more
Seurat object together, normalize the data, select features,
scale the data, perform linear dimensional reduction
(PCA), cluster the cells, run nonlinear dimensional
reduction (UMAP/tSNE), and return an integrated Seurat
object. Since the heterogeneity among clinical samples is
always very large, the robust and time-efficient batch effect
removing method Harmony [16,17] is included in the
scIntegrate function. If the project has only one sample,
scOne function can be used instead of scIntegrate to
complete the Seurat standard workflow.
The scDensityPlot function is used to visualize the cell

density between various samples. The dark red area
indicates that the cell density in this area is high, and the
white area indicates that the cell density in this area is low.
It is routine to calculate marker genes in each cluster or

differentially expressed genes between two conditions.
Seurat’s FindMarkers function is very useful for finding
markers (differentially expressed genes) for identity
classes. The scDGE function is a wrapper of FindMarkers,
which is used to detect differentially expressed genes in
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each cluster between two groups. The scPathogenDGE
function is also a wrapper for FindMarkers, used to detect
genes differentially expressed between pathogen-positive
and pathogen-negative (or pathogen-bystander) cell
groups.
The scGO function is designed for annotating the Gene

Ontology functions of each cluster with the topGO [18]
package. For cell markers generated by FindAllMarkers
from the Seurat package, only the function of upregulated
genes can be annotated, while for results generated by
scDGE, both the functions of up- or downregulated genes
can be annotated.
The scVizMeta function can be used to display any

numerical column stored in the obj@meta.data slot in
UMAP/tSNE/PCA embeddings.
The scMSigdbScoring function is used to calculate the

pathway scores from MSigDB [19] and store them in the
obj@meta.data slot. It uses the AddModuleScore function
of Seurat to calculate and stores gene module scores in the
obj@meta.data slot.

Single-cell RNA-seq data sets simulation

Simulation is a compelling benchmarking strategy since
the ground truth is known when the data are generated,
making it possible to evaluate the performance of various
methods. We need a scRNA-seq data set that mimics host
cells infected with pathogens. There are two main
processes in the scRNA-seq read simulation stage:
single-cell count matrix preparation and single-cell
sequencing read generation.
During the preparation of single-cell expression data, the

host single-cell count matrix and the pathogen count
matrix must be generated separately. To make the
simulated host scRNA-seq data closer to the real data
set, the publicly peripheral blood mononuclear cells data
set (pbmc 4k) from 10x Genomics website [1] was used as
the host single-cell count matrix. The pathogen single-cell
count matrix was generated by Splatter [20]. Splatter is a
powerful count-level simulation method that can generate
scRNA-seq count data robustly. We obtained 20 clinically
common pathogenic species with complete sequenced core
genomes from the list of human infectious pathogens at
Wikipedia website and retrieved their gene sequences from
NCBI. Since prokaryotic genomes vary greatly in gene
size and number of genes, to ensure that each species is
fully simulated, we randomly selected up to 50 genes for
each species. To simulate host cells infected with
pathogens at different levels, Splatter’s default parameters
were used except the library size parameter (lib.loc) was
set between 1 and 5, with an increment of 1. After the
pathogen single-cell count matrix is generated, the host and
pathogen single-cell count matrices were combined into
one count matrix for the single-cell reads generation
process.

In the single-cell reads generation process, minnow [21]
was chosen to simulate scRNA-seq reads. Since numerous
simulation methods have been introduced for scRNA-seq
data [21–25], minnow is a powerful simulator that can
currently be used for read-level simulation of single-cell
experiments. It can mimic the single-cell sequencing
process, such as randomly assigning UMIs to molecules,
simulating PCR duplicates based on real reads distribution,
imputing sequencing errors, and generating random start
positions from transcripts. Therefore, we employed
minnow to simulate single-cell reads guided by the
single-cell count matrix. Since the start position of the
reads simulated from each transcript obeys the truncated
normal distribution N(μ,σ), to avoid repeated sampling
reads from the same start position, we run minnow with the
default parameters, except that the standard deviation σ
was changed [26].
To systematically simulate host cells infected with

pathogens under various conditions, technical features
including UMI length, read length, PCR cycles, and reads
coverage were considered. In more detail, we repeated
simulations with two UMI lengths (10 and 12 bp,
characteristic of the 10x Genomics Single Cell 3′ Version
2 and Version 3, respectively), three read lengths (from 50
to 150 bp, at 50 bp increments), three σs (the standard
deviation of start position from 25 to 75 in increments of
25), three PCR cycles (from 4 to 6 in increments of 1), five
incremental pathogen infection levels (Splatter’s library
size location parameter from 1 to 5 in increments of 1, to
indicate the infection level of bacterial or viral reads) and
three replicates per simulation. In total, this represents 810
simulations (2 UMI lengths � 3 read lengths � 3 σs �
3 PCR cycles � 5 infection levels � 3 replicates). We
have limited our assessment to smaller simulated data sets
consisting of 100 cells by down sampling the PBMC using
geosketch [27] to save computational resources.
In the “time and memory evaluation” step, to save

calculation time, we randomly sampled 18 data sets. The
detailed simulation parameters are as follows: (1) UMI
length was set to 10; (2) Read length was set to 100;
(3) PCR cycle was set to 5; (4) Pathogen infection level
was set to 3; (5) The σ was set to 50; (6) The number of
cells was set to 100, 500, 1000, 2000, 3000, and 4000 each
time, and each simulation was repeated three times.

Performance evaluation on simulated data

The simulated data sets were processed with Viral-Track
and PathogenTrack. Viral-Track uses UMI-tools to detect
valid barcodes, while PathogenTrack uses barcodes
generated by alevin or cellranger. Alevin is an accurate
and fast end-to-end tool for processing droplet-based
scRNA-seq data from fastq to count matrix. It performs
better in CB detection and UMI deduplication. To make a
fair comparison between Viral-Track and PathogenTrack,
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we replaced the default barcode file of Viral-Track with the
barcode file generated by alevin.
The accuracy of cells infected by a particular pathogen is

evaluated by converting the detection results into a binary
matrix. Each column represents a specific pathogen, and
each row represents a cell. Then we record whether each
cell is classified as pathogen infection (1) or not (0). Since
we know the actual cells infected by specific pathogens in
the simulation data set, we can evaluate each pathogen
species’ sensitivity and specificity.
For each pathogen detection method, we calculated the

number of true positive (TP; pathogen-infected cells were
correctly classified), false positive (FP; non-infected cells
were classified as pathogen-infected cells), true negative
(TN; non-infected cells were classified as non-infected
cells) and false negative (FN; pathogen-infected cells were
classified as non-infected cells). We then calculated the
sensitivity of each method as TP/(TP+ FN) and specificity
as TN/(TN+ FP). The sensitivity of each classified
pathogen was calculated and recorded. To make a fair
comparison of these two methods, we only used pathogens
in the simulated data for the benchmark.

Computation time and memory-usage estimation

To benchmark the methods’ performance, we implemented
these detection tools in multiple high-performance com-
puting platforms. “/usr/bin/seff” was used to record the run
time and the maximum memory consumption.

Data and code availability

Any relevant data are available from the authors upon
reasonable request. The scRNA-seq data used in this
manuscript are all publicly available, and they are
summarized in Table S1. The PBMC data sets are available
at 10x Genomics’s official website. The PathogenTrack
pipeline and the Yeskit package are publicly available at
GitHub websites. For simple installation, PathogenTrack
has been deposited in the Bioconda channel and the PyPI
repository.

Results

PathogenTrack: unsupervised characterization of the
intracellular microbiome from scRNA-seq data

PathogenTrack is an unsupervised computational pipeline
that uses unmapped reads to characterize intracellular
pathogens at the single-cell level (Fig. 1A). PathogenTrack
includes the following steps: (1) Pre-processing scRNA-
seq reads with single-cell quantification software (such as
cellranger or alevin) to obtain the gene quantification
matrix and CB file (Fig. 1B). The CB file is taken as the

whitelist file for UMI-tools to extract the CB and UMI
from Read1 and is added to the header of Read2 (barcoded-
read2). (2) Removing low quality or low complexity reads
in barcoded-read2 using fastp. (3) Aligning the remaining
reads, which passed the quality control, to the host
reference genome (such as hg38) using STAR algorithm.
The unmapped reads are reserved for further use.
(4) Metagenomic classification of the unmapped reads
using Kraken2 algorithm. The taxonomy identifiers (IDs)
are appended to the header of the corresponding reads.
(5) Reads assigned with taxonomy IDs are subject to de-
duplication, taxonomic correction, and quantification with
UMIs. The output pathogen species-by-cell quantification
matrix with UMI counts is then ready for downstream
analysis (Fig. 1A).

Yeskit: an R-based package for interpreting the
scRNA-seq data

Next, we come up to a method named Yeskit (Yet another
single-cell analysis toolkit) to integrate and interpret the
host gene expression data and the intracellular pathogen
quantification data at the single-cell level (Fig. 1C). Yeskit
is an R package designed for single-cell gene expression
matrix importation, data integration, clustering, differential
analysis, functional analysis, and visualization. Since
Yeskit does not change the default data structure of Seurat,
it can be easily integrated into most existing scRNA-seq
analysis workflows. Yeskit can be used to read other
information (such as gene mutation-by-cell matrix, patho-
gen count-by-cell matrix) and store them as additional data
in the Seurat obj@meta.data slot. Moreover, it calculates
MSigDB pathway enrichment scores and stores them in the
obj@meta.data slot. In addition, it performs differential
gene analysis between groups or between pathogen-
infected (Pos) and bystander (Neg) cells in each cluster.
Furthermore, it performs GO enrichment analysis and
stores their results in the obj@misc slot. Besides, when
there are many points in the vector diagram, editing
becomes difficult. To deal with the challenge, most
visualization functions in Yeskit have the option to
rasterize the point layer and keep all axes, labels, and
text in vector format.

Decoding SARS-CoV-2 infection in COVID-19 patients
with PathogenTrack and Yeskit approach

To evaluate the applicability of our workflow for detecting
and decoding intracellular pathogens in human single-cell
data, we took the BALF data sequenced by 10x Genomics
technology from two severe COVID-19 patients (SRA
accession number: SRP250732) as an example [28]. Gene
expression data were obtained by cellranger, and pathogen
quantification matrices were generated by PathogenTrack.
We then used Yeskit to integrate the host and the pathogen
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quantification matrices and explored the lesions of
biological functions related to SARS-CoV-2 infection
(Fig. 2). A total of 13 138 high-quality single cells were
ultimately obtained. Four major cell lineages were
identified: macrophages, neutrophils, lymphocytes, and
epithelial cells (Fig. 2A). The cell distribution can be
visualized by density plot, and the distribution of cell
populations per samples were shown in Fig. 2B and 2C.
We visualized the distribution of SARS-CoV-2 positive
cells in each sample. In both samples, the sequence of

SARS-CoV-2 could be found in epithelial cells and
immune cells (Fig. 2D and Fig. 2E).
Secondary bacterial infections were reported to cause

serious complications associated with worse outcomes in
COVID-19 patients. PathogenTrack is optimally designed
to systematically profile the source of infection or co-
infections in human clinical samples. Interestingly, a small
fraction of cells from one of the COVID-19 patients
(patient C145) revealed the presence of a co-infected
bacterium, Hemophilus parahemolyticus. The bacterium

Fig. 1 An overview of the PathogenTrack workflow and the downstream analysis package Yeskit. (A) The input to the PathogenTrack pipeline are
sample-demultiplexed FASTQ files, and there are several steps required to process this data and obtain per-cell pathogen species level quantification
estimates. The output count matrix is a dense matrix, where rows stand for pathogens and columns stand for barcodes of cells. (B) scRNA-seq reads
are processed by cellranger or alevin, and the output barcode file is used as input to the PathogenTrack workflow. (C) The host gene-by-cell count
matrix and the pathogen species-by-cell count matrix are taken as input of Yeskit for single-cell integration analysis. Yeskit contains 17 functions for
importing, integrating, analyzing, and visualizing the host-pathogen interactions at the single-cell level.
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Fig. 2 Application of the PathogenTrack and Yeskit in the scRNA-seq analysis of COVID-19. (A) Overview of the cell clusters of 13 138 single
cells derived from two severe COVID-19 patients. Clusters were named based on the cluster-specific gene expression patterns. (B) Density plot
depicting projection of cells on the 2D map shown in (A). (C) Proportion of subpopulations in each sample. (D) Viral load of SARS-CoV-2 in each cell
quantified by PathogenTrack. (E) Proportion of SARS-CoV-2 infected (Pos) and bystander (Neg) cells in each cluster. (F) Bacterial load of
Hemophilus parahemolyticus in each cell quantified by PathogenTrack. (G) Volcano plot showing differentially expressed genes between neutrophil
cells with or without SARS-CoV-2 RNA detected. Differentially expressed (> 0.5 absolute log2 fold change) and statistically significant (adjusted P
value < 0.05) are colored in green (downregulated) or purple (upregulated). (H) Enriched Gene Ontology (GO) terms in genes highly expressed in
SARS-CoV-2-positive neutrophil cells shown in (G). (I) Scores of the interferon alpha response gene module across all cells, projected on the 2D map
shown in (A). Color scale represents the average expression level of the gene module subtracted by the aggregated expression of control feature sets.

256 Identify intracellular pathogen in scRNA-seq data



was enriched in neutrophils and macrophages (Fig. 2F).
Hemophilus parahemolyticus has been reported to cause
acute respiratory distress syndrome and septic shock [29].
Differential gene expression analysis between SARS-CoV-
2-RNA-positive and negative neutrophil cells indicated
that SARS-CoV-2 positive cells exhibited elevated expres-
sion of a diverse set of genes required for monocyte
activation, such as G-CSF receptor (CSF3R), CD16
(FCGR3B), and interferon-induced transmembrane protein
2 (IFITM2) (Fig. 2G). These genes were enriched in
pathways such as “type I interferon signaling pathway,”
“negative regulation of viral genome replication,” and
“neutrophil degranulation” (Fig. 2H). Additionally, we
scored the potential enriched pathways of all cells.
Interestingly, the type I interferon response gene module
was enriched in the neutrophil cell cluster (Fig. 2I). These
results suggest that the SARS-CoV-2 activates the IFN
response pathway in neutrophil cells.
Altogether, our analysis depicted the distribution of

SARS-CoV-2-infected cells and Hemophilus parahemoly-
ticus-infected cells in BALF samples and revealed the
activated IFN response by SARS-CoV-2.

Performance of PathogenTrack under various
conditions

Next, we systematically evaluated various factors that may
affect the detection performance of our method. Since there
was no “gold standard” data to assess the accuracy of
pathogen detection at the single-cell level, we evaluated
our method on simulated data sets. We employed minnow
to simulate 810 data sets of host cells infected with
pathogens under various simulation parameters. 20
microbes, including 10 bacteria (the Gram-positive
Clostridioides difficile, Clostridium perfringens, Coryne-
bacterium diphtheriae, Listeria monocytogenes, and
Staphylococcus aureus; the Gram-negative Chlamydia
trachomatis, Helicobacter pylori, Legionella pneumo-
phila, Salmonella enterica, and Vibrio cholerae) and 10
viruses (EBV, HIV, Human metapneumovirus (hMPV),
Human papillomaviruses (HPV), Herpes simplex virus
(HSV), Molluscum contagiosum virus (MCV), Middle
East respiratory syndrome coronavirus (MERS), Rabies
virus, SARS-CoV-2, and Varicella-zoster virus (VZV)),
were involved in the stimulation. The technological
features including UMI length, read length, PCR cycles,
pathogen infection levels, and σ (the standard deviation of
start positions) were considered. As shown in Fig. 3A–3C,
UMI length, PCR cycles, and σ have almost no effect on
the performance of our method. The performance increases
with the augmentation of read length or pathogen infection
level (Fig. 3D and 3E). Read length over 100 bp showed
good performance. In addition, we analyzed the accuracy
of our method. A good agreement between the number of

pathogen-infected cells predicted by our method and the
expected genuine was shown in Fig. 3F.

Comparison with existed tools on simulated scRNA-seq
data sets

Since Viral-Track [9] was the only single-cell intracellular
virus detection tool, we compared the sensitivity of our
algorithm with Viral-Track on the 810 simulated data sets.
The performance statistics of Viral-Track are illustrated in
Fig. S1. As is depicted in Fig. S1A, PathogenTrack
performs as good as Viral-Track in virus detection. More
importantly, PathogenTrack has the ability in detecting
bacteria with high sensitivities (Fig. S1A).
To reduce the computational time when evaluating the

time and memory consumptions of both methods, we
randomly sampled 100 to 4000 cells. Benchmarking
showed a roughly linear relationship between the number
of cells and the processing time required, and the
maximum memory consumption of PathogenTrack is less
than that of Viral-Track (Fig. S1B).

Performance of PathogenTrack and Yeskit in real
scRNA-seq data sets

To compare the performance of Viral-Track and Pathogen-
Track for detecting pathogenic reads in real human
samples, we next compared the results on several real
human scRNA-seq data sets (Table S1). These data sets
consist of a variety of tissues and cell lines (blood, lung,
intestine, stomach, and lymphoblastoid cell lines) and
various well-known viruses and bacteria: influenza A
(H1N1 and H3N2), human immunodeficiency virus 1
(HIV-1), severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), Epstein-Barr virus (EBV), and Helico-
bacter pylori (H. pylori). Since cellranger or alevin
provides more reliable CBs than UMI-tools, we used the
default parameters to run these two methods, except that
the input whitelist file was changed to barcode file
generated by cellranger (applicable to the 10x Genomics
platform). Because the pathogenic microbes and their
infected cells were not aware in real data sets, only the
well-known pathogens in each data set were evaluated.

PathogenTrack is robust in detecting pathogens at the
single-cell level

We observed that the number of virus-infected cells
predicted by PathogenTrack was close to that of Viral-
Track’s, but there were a few differences (Fig. 4). In the
in vitro influenza A data (Cal07), PathogenTrack obtained
nearly equal virus-infected cells to Viral-Track in infected
samples, but fewer or none in controls (Fig. 4A). It may
imply PathogenTrack has higher specificity in detecting
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Fig. 3 Performance of PathogenTrack under various simulation parameters. (A–E) The impact of UMI length, PCR cycles, Sigma, read length, and
infection level on the performance of the PathogenTrack. In each panel, only one simulation parameter is varied, as shown on the x-axis. (A) UMI
length showed no impact on the performance. 10 bp and 12 bp UMI length were used for simulation. (B) PCR cycles showed no impact on the
performance. 4–6 PCR cycles were used for simulation. (C) Sigma showed no impact on the performance. Three different Sigma, the standard
deviation of start positions, were used simulation. (D) Longer read length showed better performance. The 50 bp, 100 bp, 150 bp read lengths were
used for simulation. (E) Higher infection level showed better performance. Five infection levels (levels 1–5) were used for simulation. (F) Accuracy of
the PathogenTrack in pathogen detection. Scatter plot shows the relation of the number of pathogen-infected cells predicted by PathogenTrack and the
expected genuine.
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virus-infected cells. Besides, the Viral-Track failed to
detect any bacteria, such as H. pylori (Fig. 4A). Next, we
calculated the correlation of the UMI counts of the
intracellular pathogens predicted by both methods for
each sample. The results show that pathogen UMI counts
are in good agreement between these two methods
(Fig. 4B).
We further tested the applicability of PathogenTrack in

tracing bacterial reads in human clinical samples. We ran
PathogenTrack on 13 gastric antral mucosa biopsy scRNA-
seq data sets (SRA accession number: SRP215370).
Helicobacter pylori was detected only in two samples
(Fig. 4A, last two venn diagram), which was consistent
with the clinical information in the original paper [30].

Subsequently, we asked if the pathogen-infected cells
only predicted by PathogenTrack are reliable. Since it
seems impossible to conduct experiments at the single-cell
level to verify pathogen infection events, we used
bioinformatics tool to address this question. As Pathogen-
Track provides pathogenic sequences that support each cell
infection event, we randomly selected a few pathogenic
reads and verified the predictions by performing BLAST
searches on the Nucleotide database.
The time and memory consumption of these two

methods are illustrated in Fig. 4C. PathogenTrack
consumed almost constant memory (~30 Gb) and reason-
able time on all real data sets, while Viral-Track consumed
up to 128 Gb of memory in Cal07_Infected data and ran

Fig. 4 Performance evaluation on 13 real scRNA-seq data sets (VT, Viral-Track; PT, PathogenTrack). (A) Venn diagram shows the logical relation
between the number of pathogen-infected cells detected by Viral-Track and PathogenTrack. (B) Scatter plot shows the correlation between the UMI
counts of pathogen-infected cells generated by Viral-Track and PathogenTrack (UMIs ≤ 100). (C) Time and memory performance of Viral-Track and
PathogenTrack on 13 real data sets. Note that sample Perth09_Infected ran out of memory when running on a computer with 180 Gb RAM.
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out of memory in Perth09_Infected data (> 180 Gb
RAM). One reason could be that PathogenTrack detects
pathogens at read-level while Viral-Track consumes more
memory when assembling a virus genome.

Discussion

The last few years have witnessed emerging of many
computational methods on detecting microbe-derived
sequences in human clinical samples. However, methods
for thoroughly identifying and interpreting intracellular
pathogens at the single-cell level are rarely documented. In
this study, we propose a computational method for
identifying (PathogenTrack) and exploring (Yeskit) intra-
cellular pathogens (viruses and bacteria) at the single-cell
level from unmapped scRNA-seq data. PathogenTrack
performed robustly on simulated and clinical data sets;
Yeskit provided valuable information about pathogen
infection status and pathogen-induced pathways. The
currently accessible human clinical single-cell transcrip-
tome data provide us with an excellent opportunity to
identify these pathogen species and explore their functions
in disease progression. These pathogens may indicate
disease states and shed new lights on drug targets.
Using COVID-19 as an example, we showed the SARS-

CoV-2 existed in neutrophils, lymphocytes, macrophages,
and epithelial cells. In addition, SARS-CoV-2 positive
cells exhibited distinct gene expression patterns compared
to those bystander cells. Although the SARS-CoV-2
mainly enter the host cell via the ACE2 protein, which is
primarily expressed in type II alveolar epithelial cells, the
SARS-CoV-2 might also enter immune cells owing to the
following reasons: (1) viral overload; (2) the SARS-CoV-2
might be swallowed via endocytosis, trogocytosis, and
phagocytosis. SARS-CoV-2 positive neutrophils showed
an enhanced expression of genes related to interferon
response and antigen-presenting; (3) ACE2 was found to
be expressed on the surface of pulmonary macrophages
[31], which might serve as an entry path for SARS-CoV-2
into these cells. As a result, there could be viral
proliferation in the pulmonary macrophage, leading to a
vicious cycle of severe pulmonary viral infection and/or
cytokine release syndrome. Alternately, pulmonary macro-
phage may play a role in antigen processing/presentation to
other immune cells [31,32]. Analysis of the BALF data
suggests the SARS-CoV-2 may trigger distinct transcrip-
tional programs related to aberrant immune response in
COVID-19.
In addition to infectious disease, emerging studies have

also unveiled the intracellular pathogens, including viruses
and bacteria, in the progression of malignant diseases [33–
35]. Generally, the pathogenic microbiome is present in the
digestive tract and respiratory tract [36–40]. Studies have
also found that certain microbiomes may exist in cells and

contribute to the occurrence and development of malignant
diseases [37,41]. For instance, many pathogens have been
reported to be key regulators in malignant diseases, such as
EBV, HBV, and HPV. However, how these viruses
engaged in tumorigenesis remains unclear. We have
shown the PathogenTrack can detect these pathogens at
single-cell levels. In the current study, SARS-CoV-2 was
enrolled as an example to illustrate the capacity of the
PathogenTrack and Yeskit. Future studies focusing on
other pathogen-related disease, such as malignant disease,
might be conducted to unveil the potential regulatory role
of pathogen in disease progression at the single-cell level.
We might establish an online database for pathogens at
single-cell level in multiple pathogen-related disease, such
as EBV-related lymphoma, HBV-related hepatocellular
carcinoma, HPV-related cervical cancer, and bacteria in
multiple cancers. Currently, our method might only be
applicable to the 10x Genomics and microwell-based
scRNA-seq data sets, which are the most commonly used
method to conduct scRNA-seq, and we might expand the
application of our tools in future.
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