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1 Introduction

Coastal wetlands provide a critical interface between
terrestrial and marine habitats and are among the most
productive systems on Earth (Liu et al., 2010; Li et al.,
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H I G H L I G H T S

• In sediments, the transformation of sulfides may
lead to the release of heavy metals.

• In the rhizosphere, sulfur regulates the uptake of
heavy metals by plants.

• In plants, sulfur mediates a series of heavy metal
tolerance mechanisms.

•Explore interactions between sulfur and heavy
metals on different scales is needed.
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G R A P H I C A B S T R A C T

A B S T R A C T

The interactions and mechanisms between sulfur and heavy metals are a growing focus of
biogeochemical studies in coastal wetlands. These issues underline the fate of heavy metals bound in
sediments or released into the system through sediments. Despite the fact that numerous published
studies have suggested sulfur has a significant impact on the bioavailability of heavy metals
accumulated in coastal wetlands, to date, no review article has systematically summarized those
studies, particularly from the perspective of the three major components of wetland ecosystems
(sediments, rhizosphere, and vegetation). The present review summarizes the studies published in the
past four decades and highlights the major achievements in this field. Research and studies available
thus far indicate that under anaerobic conditions, most of the potentially bioavailable heavy metals in
coastal wetland sediments are fixed as precipitates, such as metal sulfides. However, fluctuations in
physicochemical conditions may affect sulfur cycling, and hence, directly or indirectly lead to the
conversion and migration of heavy metals. In the rhizosphere, root activities and microbes together
affect the speciation and transformation of sulfur which in turn mediate the migration of heavy metals.
As for plant tissues, tolerance to heavy metals is enhanced by sulfur-containing compounds via
promoting a series of chelation and detoxification processes. Finally, to further understand the
interactions between sulfur and heavy metals in coastal wetlands, some major future research
directions are proposed.

© The Author(s) 2022. This article is published with open access at link.springer.com and journal.hep.
com.cn



2017). In the past few decades, with increasing human
activities, such as industrial developments and mining,
coastal wetlands have suffered serious and multiple
environmental issues (e.g., heavy metal contamination)
(Table 1 and Table 2). Most heavy metals are primarily
stored in anaerobic sediments in the form of insoluble
phases, like metal sulfides (Rickard and Morse, 2005;
Zhang et al., 2014; Sun et al., 2015; Gao et al., 2016).
There are two major pathways for these non-bioavailable
heavy metals in the sediments to transform and migrate to
other components of wetland ecosystems, such as pore
water, rhizosphere, sediment surface, and water column
(Fig. 1). One is via changes of pH and Eh in the sediments
and sulfur mediated heavy metal biogeochemical cycles
(Liu et al., 2010; Rickard et al., 2017); the other is through
plant root uptake and litter decomposition (Shi et al., 2019;
Costa-Böddeker et al., 2020).
Sulfur, a common biogenic element, plays a vital role in the

speciation, transformation, and migration of heavy metals in
sediments, which greatly affects the fate of heavy metals, i.e.,
either they are stored in the sediments or released to pore
water and water column (Man et al., 2004; Joseph et al.,
2019; Zhang et al., 2020). In anaerobic sediments, heavy
metal oxides are reduced and tend to combine with S2– to
form metal sulfides with relatively low solubility (e.g., at
25°C Ksp of CdS = 8� 10–28, Ksp of CuS = 6� 10–37 and Ksp

of PbS = 3 � 10–28) and bioavailability (Rickard et al., 2017;
Gao et al., 2020). On the other hand, environmental
fluctuations (e.g., pH, Eh) may cause metal sulfides
oxidation, releasing heavy metals back to the environment
(Liu et al., 2010). Also, the increasing fluctuations in the
sulfur pool of sediments may cause more heavy metals to be
immobilized (Fan et al., 2010). In plant tissues, sulfur
regulates the immobilization and detoxification of heavy
metals by mediating the speciation, transformation, and

migration of heavy metals (Li et al., 2017; Cao et al., 2018;
Wu et al., 2020). Therefore, sulfur is an important factor in
studies focusing on the biogeochemical cycles of heavy
metals in coastal wetlands, it is imperative to clarify the
interactions and mechanisms between sulfur and heavy
metals, especially in the context of their speciation,
transformation, and migration in coastal wetlands.
Numerous biogeochemical cycles of different elements,

including heavy metals and sulfur, occur or operate at
different organizational levels of wetlands (Zhou et al.,
2011; Thomas et al., 2014), e.g., sediments, rhizosphere (a
micro-interface between sediments and plants), and
vegetation. Both heavy metals and sulfur migrate in the
path of sediments-rhizosphere-vegetation and subse-
quently back to sediments (Wang et al., 2013; Li et al.,
2017; Zhang et al., 2021). The processes and character-
istics of the interactions may differ at each of the three
organizational levels (Zhou et al., 2011; Gao et al., 2016;
Pardue and Patrick, 2018).
To the best of our knowledge, although there have been

several studies focusing on the interactions between sulfur
and heavy metals in coastal wetlands, there are currently
no review articles that systematically summarized them,
particularly from the perspective of three components of
wetland ecosystems. Thus, we conducted a detailed review
of the studies on the interactions between sulfur and heavy
metals in coastal wetlands published in the past four
decades and summarized the information based on
sediments, rhizosphere, and vegetation. First, we reviewed
the current progress of knowledge on heavy metal and
sulfur biogeochemical cycles. Then, we focused on how
sulfur mediates speciation, transformation, and migration
of heavy metals among sediments, rhizosphere, and
vegetation. Finally, we proposed some major future
research directions.

Fig. 1 The transformation and migration of heavy metals in the coastal wetland ecosystem.

2 Front. Environ. Sci. Eng. 2022, 16(8): 102



2 Sulfur and heavy metals in coastal wet-
lands

Sulfur is a crucial biogenic element that widely distributed
in nature. Major sources of sulfur in coastal wetlands
include anthropogenic activities (such as sewage, acid rain,
fertilizer), material exchange caused by natural tides, and
sediment decomposition. In general, most sulfur com-
pounds need to be transformed to inorganic states (sulfide,
sulfate), usually through microbial and plant root activities,
to be available for plant utilization and participate in the
biogeochemical cycle of multiple elements (Edwards,
1998). Therefore, the oxidation of sulfide and the reduction
of sulfate together are considered as a “bridge” that
connects microbes, sediments, and plants.
Generally, the concentration of heavy metals in nature is

relatively low. However, in the last few decades, with the
development of industry and mining, large amounts of
heavy metals were introduced into estuarine and coastal
zones through rivers, groundwater, and atmospheric
deposition. Thus, coastal wetlands have become a natural
“habitat” for heavy metals (Doyle and Otte, 1997; Zhang
et al., 2007). Heavy metals in sediments can transfer to
rivers and oceans with natural tides. Besides, heavy metals
may cause a series of damages to wetland plants and
eventually result in plant growth retardation and low
biomass (Yadav, 2010; Chai et al., 2014a). Wetland plants
uptake and store heavy metals in their tissues, and these
stored heavy metals may then be transferred to the food
chain, accumulating over time and may ultimately pose a
risk to human health (Hempel et al., 2008). Thus, coastal
wetlands are considered to be both a “sink” and a “source”
of heavy metals.

2.1 Biogeochemical cycle of sulfur in coastal wetlands

In coastal wetlands, the biogeochemical cycle of sulfur
mainly includes sulfur oxidation and sulfate reduction
(Fig. 2). Sulfur oxidation is a process in which sulfides,
elemental sulfur, and other reduced sulfur are oxidized
(Tourova et al., 2010). In anaerobic sediments, sulfur
oxidation is generally mediated by sulfur-oxidizing
bacteria (SOB) that utilize nitrate as an electron acceptor
(Yang et al., 2017; Guo et al., 2020). In this process, the
reduced sulfur is ultimately oxidized to sulfate and nitrate
is reduced to N2 (Zhang et al., 2019b). Taking the most
common sulfide mineral in sediments, ferrous sulfide (FeS)
(Rickard., 2017; Hu et al., 2020), as an example, SOB
oxidize sulfide while reducing nitrate through the follow-
ing pathway (Li et al., 2016c):

5FeSþ 8NO3
– þ 4H2O↕ ↓

4N2 þ 5SO4
2 – þ 5Fe2þ þ 8OH – (1)

NO3
– þ 5Fe2þ þ 6Hþ

↕ ↓1=2N2 þ 5Fe3þ þ 3H2O (2)

The overall reaction can be expressed as the following
equation:

10FeSþ 18NO3
– þ 16H2O↕ ↓

9N2 þ 10SO4
2 – þ 10FeðOHÞ3 þ 2Hþ (3)

In addition to promoting the biogeochemical cycle of
sulfur, as reviewed by Hu et al., (2020), in anaerobic
environments, the oxidation of FeS and simultaneous
denitrification processes mediated by SOB play critical
roles in linking the cycles of sulfur, nitrogen, iron, and
other biogenic elements. Besides, the distribution of SOB
was reported to be stimulated by radial oxygen loss (ROL),
litter decomposition, and root exudates of plants. There-
fore, SOB is mainly distributed in the rhizosphere, where
root activity is very high (Zheng et al., 2017). For
example, Spartina alterniflora was reported to promote
SOB activity in sediments (Thomas et al., 2014), and
higher transcriptional activity of SoxB was obtained in the
rhizosphere of Kandelia obovata than that of mudflats (Li
et al., 2021). Additionally, some plants can directly oxidize
sulfides. According to a previous study, in a mangrove
forest in Fujian Province, China, the ROL of roots
facilitates the oxidation of pyrite, leading to the release
of sulfate and increasing the acidity of sediments (Deng
et al., 2019).
In coastal wetlands, the reduction of oxidized sulfur

includes assimilatory reduction and dissimilatory reduc-
tion (Fig. 2). In the assimilatory reduction process,
inorganic sulfur is reduced by plants and microbes.
Cysteine, methionine, and other sulfur-containing amino
acids are synthesized through a series of processes
catalyzed by enzymes in plants. Cysteine is the first
amino acid synthesized by plants and an essential
precursor of numerous biomolecules (Takahashi et al.,
2011). The thiol group (R-S-) in cysteine is relatively
reactive and closely related to the structure and folding of
proteins that directly affect its stability and function (Haag
et al., 2012). Methionine is also a precursor of many
biological macromolecules and a key amino acid for
protein synthesis (Romero et al., 2014). In addition, some
salt marsh plants can also synthesize “special” sulfur-
containing compounds (e.g., Dimethylsulfoniopropionate,
also known as DMSP) (Rousseau et al., 2017). In S.
alterniflora, DMSP not only regulates osmotic pressure
and maintains the stability of the intracellular environment,
but also acts as an antioxidant, scavenging heavy metal-
induced reactive oxygen species (ROS). In previous
research on S. alterniflora, the ratio of DMSO (dimethyl-
sulfoxide) to DMSP and foliar metals together were
considered to be accurate and effective when assessing the
degree of environmental stress, the DMSO/DMSP ratio

Yueming Wu et al. Sulfur mediated heavy metal biogeochemical cycles in coastal wetlands: A review 3



was higher under stress, owing to the oxidative stress and
disturbances caused by heavy metals (McFarlin and Alber,
2013). As mentioned above, S. alterniflora synthesizes and
stores DMSP in plant tissues, and the decomposition of
litter and residues may lead to increased sulfur storage in
the sediment. As a result, DMSP is seen a “chemical
weapon” that aids invasive species in competing with
native plants (Xia et al., 2015; Luo et al., 2019).
In sediments, sulfide is mainly derived from SRB

activities. About 288 million tons of sulfide are produced
annually in sediments and associated waters through SRB
activities (Rickard et al., 2017). Additionally, in sedi-
ments, SRB-mediated reduction is also one of the most
important pathways of organic mineralization (Jørgensen,
1982; Roychoudhury et al., 2013), in which process, the
organic matter as the electron donor is oxidized and the
sulfate as the electron acceptor is reduced (Singleton,
1993; Barton and Fauque, 2009). Previous studies have
shown that in coastal wetlands, anaerobic mineralization of
organic matter is achieved mainly through methanogenesis
and sulfate reduction. In such processes, methanogenic
bacteria and SRB compete for substrates (hydrogen and
acetate, etc.) as electron donors, while SRB utilizes a
variety of organic matter as substrates and therefore have a
higher affinity (Nedwell et al., 2004). In a coastal wetland
dominated by S. alterniflora, the abundance of SRB was

two orders of magnitude higher than methanogenic
bacteria (Zeleke et al., 2013). This was consistent with
the findings of Pallud and Van Cappellen (2006) and Pester
et al. (2012), who found that the major pathway for
anaerobic mineralization of organic matter in coastal
wetlands is sulfate reduction.

2.2 Heavy metals in coastal wetlands

As previously stated, coastal wetlands are both a “sink”
and a “source” of heavy metals. Human activities have
impacted or contaminated coastal wetlands around the
world to varying degrees (Table. 1). Heavy metals induced
by human activities and natural processes are concentrated
in sediments in various chemical speciation. Some of these
heavy metals are in relatively stable speciation (complexed
with large organic molecules, adsorbed or occluded by
precipitated oxides, etc.), while water-soluble and
exchangeable heavy metals could migrate into water and
wetland plants through a series of transformations (Du
Laing et al., 2009). Coastal wetland sediments are
typically divided into aerobic layers, aerobic-anaerobic
interfaces, and anaerobic layers. In the surface oxidizing
environment, heavy metals tend to co-precipitate or bind to
oxides. The binding level of heavy metals to oxides tends
to be increased with the increase of sediment oxidation

Fig. 2 The sediment-plant cycle of sulfur in coastal wetlands.
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(Guo et al., 1997), while the decomposition of oxides due
to reduced redox potential might cause the release of heavy
metals (O’Geen et al., 2010). In contrast, in the deeper
anaerobic layers, heavy metals generally exist in the form
of insoluble phases like sulfides (Rickard et al., 2017),
whereas the fluctuation of Eh and pH may lead to the
transformation and migration of heavy metals.
In the coastal wetland ecosystem, plants directly or

indirectly affect the speciation and migration of heavy
metals and hence, may increase the activity of heavy
metals in sediments. In the study of Zhou et al. (2011), the
root activity of mangrove plants decreased the pH of
sediment, which caused the leaching of heavy metals.
Moreover, changes in sediment pH and Eh caused by root
oxygen secretion results in the migration of heavy metals
were also reported by Pardue and Patrick (2018). Besides,
in the study of MacFarlane et al. (2003) on a mangrove, the
concentration of Cu and Zn in sediments increased over
time due to the ion adsorption of litter and microbial
activity. Furthermore, our previous research and other
studies have demonstrated that in sediments, high
bioavailable forms of heavy metals can be absorbed
directly by plant root cells through specific or generic
ionophore and channel proteins, and accumulated in plant
tissues (Viehweger, 2014; Li et al., 2015; Ghori et al.,
2019). Additionally, microbes also affect the speciation,
migration, and bioavailability of heavy metals in sedi-
ments. In a Brazilian mangrove forest, the methylation of
mercury (Hg) was partially attributed to the activities of
sulfate-reducing bacteria (Correia and Guimarães, 2017).
In another study, the accumulation of selenium (Se) and Hg
in Scirpus robustus tissues was decreased after antibiotic
inhibition of microbial activity in sediments (De Souza
et al., 1999). As the interface between root and sediment,
in the rhizosphere, mycorrhiza was reported to absorb and
fix heavy metals, and thereby decreasing the uptake of
heavy metals by plants and improving its stress tolerance
(Hildebrandt et al., 2007). Overall, wetland plants play a
“sink-source” function, as they uptake heavy metals from
sediments and accumulate them in tissues. These heavy
metals accumulated in tissues are further released into the
natural environment when they become litterfall.

3 Interaction between sulfur and heavy
metals in coastal wetlands

Coastal wetlands are rich in sulfur, an essential element
that performs important biological and physiologic func-
tions in plants and animals. The transformation and
migration of sulfur is the “bridge” for the interactions
among microbes, sediments, and plants in the ecosystem.
For example, the speciation, transformation, and migration
of heavy metals in sediments; heavy metals migrated to the
rhizosphere, absorbed by the root, and redistributed in
plant tissues are all closely related to the sulfur cycle.

3.1 Mediation of sulfur on the speciation and migration of
heavy metals in sediments

Generally, coastal wetland sediments are anaerobic and
reductive (Rickard and Morse, 2005; Rickard et al., 2017).
Sulfate reduction may occur in sediments with a redox
potential below – 100 mV (O'Geen et al., 2010). In this
reduction process, sulfates obtain electrons and are reduced
to sulfides which could directly bind to metal cations in
sediments to form relatively stable metal sulfides.
Numerous studies have shown that in anaerobic sediments,
the formation of metal sulfides is an important way to
immobilize and retain heavy metals. In the study by
Harbison (1986) on Avicennia marina, sulfate reduction in
anaerobic sub-surface sediments was found to contribute to
the retention of metals as sulfides. Griffin et al. (1989)
reported that in Chesapeake Bay marshes, sulfide pre-
cipitation controls the distribution of cadmium (Cd),
copper (Cu), nickel (Ni), and zinc (Zn) in sediments. In a
greenhouse study, Kerner and Wallmann (1992) simulated
the alternate anaerobic and aerobic conditions of intertidal
sediments and followed the mobilization of Cd and Zn.
Both Cd and Zn were removed from pore water by forming
sulfide precipitation during the anaerobic period and
released from sediments during the aerobic period. The
release of heavy metals under aerobic conditions was
attributed to the mineralization of organic matter and
sulfide oxidation. In subsequent research, in sediments, the
active sulfide was described as acid volatile sulfide (AVS),
which is operationally defined as the sulfur convert into
H2S and released by the addition of HCl (Rickard and
Morse, 2005):

MSþ 2HCl ↕ ↓H2SþM2þ þ 2Cl –

ðM ¼ Metals, MS ¼ Metal sulfidesÞ (4)

AVS is one of the most active sulfide species in coastal
wetland sediments and affects the speciation and migration
of heavy metals by forming insoluble and bio-unavailable
heavy metal sulfides (Youssef and Saenger, 1998). Due to
the presence of radial oxygen loss by plants and the surface
atmosphere, the AVS concentration is generally lower in
the rhizosphere and sediment surface. Our previous studies
have evidenced that root exudates such as phenols and
flavonoids secreted by A. marina were able to act as
antioxidants and promote the formation of AVS. Simulta-
neously, AVS can bind heavy metals, reduce their
bioavailability as well as lead to the decrease of redox
potential, which would further stimulate the formation of
AVS and increase the AVS concentration in sediments (Li
et al., 2015; Li et al., 2016b; Youli et al., 2020).
Simultaneously extracted metals (SEM), similar to AVS,
are all operationally defined methods for analyzing sulfide
and associated metals in coastal wetland sediments (Allen
et al., 1993). The SEM/AVS ratio is widely used to
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evaluate the bioavailability and potential biotoxicity of
heavy metals in sediments. At present, it is commonly
assumed that when this ratio is less than 1, there is no
potential risk of heavy metal toxicity in the sediments.
However, when it is greater than 1, there might be potential
toxicity (Chai et al., 2015). Some study results of different
coastal areas based on the SEM/AVS method were
summarized (Table 2). In the study of Mangrove in
Zhangjiang Estuary, China, by Liu et al. (2010), the AVS
concentration in forest sediments was lower than that in
mudflat sediments. The SEM/AVS ratio might be higher
than 1, in which AVS cannot bind all the reactive metals
and may be a threat to animals and plants. In the Shenzhen
Futian mangrove, the SEM was distributed evenly, while
AVS distributions were more variable. The main compo-
nent of SEM was Zn (69.7% – 94.2%), while the highly
toxic Cd accounted for less than 1% (Chai et al., 2015).
Wang et al. (2015a) showed that AVS concentrations
varied with seasons in Yangtze Estuary. Compared with
other estuaries, SEMCu and SEMNi were abnormally high
and had potential toxicities. Similarly, in a study by
Shyleshchandran et al. (2018) in Vembanad Lake Estuary
Indian, the SEM/AVS ratio varied during seasons. The
ratio in post-monsoon, pre-monsoon and monsoon seasons
decreased sequentially. In the post-monsoon season, 91%
of study sites showed high bioavailability of metals which
may result in toxicity to aquatic biota, while 66% of sites
showed similar bioavailability in the pre-monsoon season.
In a study conducted in Asaluyeh, Iran, AVS concentra-
tions of sediments in the industrial region were greater than
those in the urban area due to the discharge of industrial
effluents. In the autumn, 20% of sampling stations were
reported to have a potential biotoxicity, while in the spring
this percentage was increased to 47% (Arfaeinia et al.,
2016). Nizoli and Luiz-Silva (2012) studied the sediments
in the Marrao estuary, Santos-Cubatao, Brazil. They found
that the SEM of sediments in the Marrao estuary was not
high, but the SEM/AVS ratio was greater than 1 when AVS
was low in summer. It reflected the potential biotoxicity
and also indicated the priority and importance of the
combination of AVS and heavy metals. In summary, the
concentration of AVS mainly depends on the sediment
redox and pH conditions, mediated by tidal, plant root, and
microbial activities, seasonal changes, and human activ-
ities.
Additionally, iron sulfides are one of the primary sulfide

deposits in wetland and marine sediments (Rickard., 1995;
Hu et al., 2020). The formation of iron sulfides is mainly
due to the reduction of iron oxides and oxyhydroxides in a
reducing environment and is a part of the iron-sulfur cycle,
in which the speciation, transformation, and migration of
heavy metals are closely associated with iron sulfides
(Cutter and Velinsky, 1988; Alongi, 2010; Jiang et al.,
2019). In wetland sediments, iron sulfides mainly include
ferrous sulfide (FeS), pyrite (FeS2), and greigite (Fe3S4)
(Karimian et al., 2018). FeS is a crucial intermediate in the

formation of pyrite, compared with pyrite, the formation of
FeS is more rapid (Neretin et al., 2004). In a reducing
environment, free Fe2+ and hydrogen sulfide (H2S) form
FeS first, and later with the participation of H2S or S0, the
FeS can be further reduced to FeS2 (Rickard, 1975). The
formation of pyrite can also be summarized as the
reduction of iron oxide to Fe2+ under anaerobic conditions
and the reduction of sulfate to sulfide catalyzed by SRB,
which then together eventually form pyrite (Johnston
et al., 2004). Numerous studies showed that iron sulfides
could adsorb and fix heavy metals under reducing
conditions. Heavy metal nanoparticles were discovered
in the matrix of deformed and polycrystalline pyrite using
electron microscopy (Deditius et al., 2011). Mackinawite,
a kind of nano-crystalline of ferrous sulfide, was also
reported to fix heavy metals. For example, Cd and Pb
replaced up to 29% of Fe in mackinawite to form sulfides
in addition to being directly adsorbed on the surface of
mackinawite, according to the study conducted by Coles
et al. (2000). Niazi and Burton (2016) found that with the
presence of PO4

3–, mackinawite can fix 99% of arsenic.
Similarly, nickel can also be adsorbed and fixed by
mackinawite (Wilkin and Beak, 2017). Moreover, the
fluctuation of environmental factors in sediments may
cause the oxidation of iron sulfides. As mentioned above,
the oxidation of iron sulfides is mainly mediated by SOB,
in which sulfides are oxidized to sulfates. The oxidation
process promotes the sulfur cycle in sediments. On the
other hand, it decreases the pH and increases the acidity of
sediments (Li et al., 2016c; Karimian et al., 2018). There-
fore, this oxidation process may cause the release of heavy
metals that have been adsorbed and fixed by iron sulfides
and increase the bioavailability of heavy metals in
sediments.

3.2 The interaction between sulfur and heavy metals in the
rhizosphere

Compared with sediments, the biogeochemical cycle of
various biogenic elements in the rhizosphere microenvir-
onment fluctuates more, and the interaction between sulfur
and heavy metals is more complicated due to the effects of
roots activities, microbes, and other factors. A large
number of previous studies have shown that the presence
of plants affects the distribution of heavy metals in coastal
wetland sediments, especially in the rhizosphere where
plant roots were active (Lacerda et al., 1997; Yang et al.,
2010; Chai et al., 2014b; Li et al., 2016a). When plant
roots selectively absorb ions from the sediments or some
ions freely diffused in the sediments, the concentration
gradients would cause the migration of essential and non-
essential elements from the non-rhizosphere to the rhizo-
sphere (Peralta-Videa et al., 2009). In previous rhizobox
cultivation, we have found that root activities of K.
obovata significantly increased the reducible heavy metals
while reduced acid-extractable and oxidizable heavy
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metals (Li et al., 2016a). Besides, another study on S.
alterniflora marshes and mudflats showed that the heavy
metal concentration in the S. alterniflora marsh (5 – 15 cm
depth) was four times higher than that in mudflats (Lacerda
et al., 1997). In Bohai Bay, China, a similar result was
obtained by Chai et al. (2014b) that S. alterniflora marsh
may have a higher heavy metal concentration than
mudflats. Oxygen excretion from plant roots would affect
the redox conditions in the rhizosphere, which in turn
affect the presence of sulfides and the speciation of heavy
metals (Yang and Ye, 2009). In the study of Liu et al.
(2010), compared with mudflats, the AVS of mangrove
sediments was significantly lower due to plant root
activities, and this phenomenon was pronounced at the
15 – 45 cm depth where the root activity was the highest,
and the amount of AVS was too low to bind all the reactive
metals as sulfides. Another study reported that the
rhizosphere of waterlogged sediments had a higher soluble
iron concentration and higher Eh when compared with
mudflats (Wright and Otte, 1999). Radial oxygen loss by S.
alterniflora roots was observed to affect the AVS
concentration and the conversion of pyrite and ferric
oxides in the rhizosphere, and hence, mediate the
formation of iron plaque (Kostka and Luther, 1995;
Zhang et al., 2021). Iron plaque is the first physical barrier
for heavy metals to enter the root from the rhizosphere. In
the study conducted by Lin et al. (2018), the addition of
20 mM Na2SO4 (as a sulfur amendment) significantly
promoted the oxygen release from the root aerenchyma
and significantly increased the concentration of DCB-
extractable iron in the rhizosphere, and finally enhanced
iron plaque formation. With the “fence effect” and
adsorption effect, the iron plaque effectively decreased
the absorption of heavy metals in plant roots. Similarly, our
previous research on mangroves also found that sulfur
promoted the formation of iron plaque on the root surface
of K. obovata (Li et al., 2016a; Li et al., 2017). For rice,
sulfur supply significantly enhanced the formation of iron
plaque and alleviated the accumulation of Cd in plant
tissues (Cao et al., 2018). Besides, plant root exudates,
such as phenols and flavonoids, may act as antioxidants, as
previously indicated. In contrast, some other plant root
exudates, like low molecular weight organic acids, were
reported to decrease the pH of sediments (Lu et al., 2007;
Xie et al., 2013), thereby affecting the speciation and
migration of sulfur, changing the transformation and
migration of heavy metals.
The activities of SRB are not only associated with the

biogeochemical cycle of sulfur, but also directly affect the
speciation, transformation, and migration of heavy metals.
In general, the presence of SRB mediates the formation of
heavy metal sulfides and fixes them to reduce their
biotoxicity (Lin et al., 2010; Niu et al., 2018; Li et al.,
2019b). In a study conducted by Niu et al. (2018), the SRB
abundance in the rhizosphere of Scirpus triquter was
significantly higher than those in the non-rhizosphere, and

the majority of metals were immobilized by the SRB in the
rhizosphere. However, many bio-derived metal-sulfide
nanoparticles were found both in the rhizosphere and
tissues of S. triquter, indicating the potential bioavail-
ability of the nanoparticles. It was further reported that in
the rhizosphere of S. triquter, SRB significantly improved
the absorption of Ag0-nanoparticles by transforming them
into Ag-sulfide nanoparticles (Niu et al., 2020). The higher
absorption was attributed to the size of nanoparticles
smaller than 10 nm, which can be effectively absorbed by
plants and accumulated in tissues, causing biotoxicity and
may transfer via the food chain (Wang et al., 2015b). In
recent years, metal-containing nanoparticles have been
found in various environments and are considered to be a
new type of contamination. However, previous studies
have mainly focused on the effects of metal oxide
nanoparticles on terrestrial plants (Du et al., 2017; Yang
et al., 2021), whereas research on metal sulfide nanopar-
ticles in wetland plants is scarce. Coastal wetland
sediments are relatively anaerobic, reductive, and rich in
sulfide. Hence, further research should focus on the
transformation and migration of metal sulfide nanoparti-
cles (especially highly toxic heavy metals), elaborate the
role of SRB in this process and further reveal the
biogeochemical behavior of sulfur and heavy metals
under the coupling of microbes and plants at the
microscopic level. Moreover, studies are urgently needed
to evaluate the toxicological effects of these nanoparticles
on plants and the potential risks to other organisms caused
by their bioaccumulation via the food chain.
For wetland plants, iron plaque formation through radial

oxygen loss has been widely studied and recognized as the
main cause of heavy metal sequestration in the rhizo-
sphere. However, the contribution of microbes to heavy
metal fixation in the rhizosphere is not fully understood. In
previous studies, various microbes were found in the
rhizosphere and rhizoplane of plants, mainly sulfur-
oxidizing bacteria (SOB), sulfate-reducing bacteria
(SRB), iron-oxidizing bacteria (FeOB), and iron-reducing
bacteria (FeRB) (Chi et al., 2018; Zecchin et al., 2019;
Zhang et al., 2021). As shown in Fig. 3, the current
hypothesis suggests that the rhizoplane biofilm structure
mainly includes an aerobic inner layer and an anaerobic
outer layer (Li et al., 2019b), which is due to the oxygen
diffusion caused by ROL and induces a decreasing
gradient from the root surface to the sediments (Yama-
guchi et al., 2014). Because of the gradient of redox
conditions, SRB, SOB, and other microbes are distributed
in this heterogeneous biofilm (Stewart and Franklin, 2008).
In the inner aerobic area, with the presence of ROL, pyrite
is oxidized by SOB, then Fe2+ is further oxidized by FeOB
to form goethite and ferrihydrite, both of which are the
main components of iron plaque (Hansel et al., 2001).
Meanwhile, the oxygen supply decreases with increasing
distance from the rhizoplane in the outer layer and forms
an anaerobic layer, in this anaerobic area, SO4

2– diffused
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from the oxidizing area is reduced to S2– by SRB. As
mentioned above, root activities may cause the migration
of heavy metal ions from the non-rhizosphere to the
rhizosphere. Due to the low solubility of metal sulfides,
heavy metal ions can easily form metal sulfide precipita-
tions with S2– when heavy metal ions reach the biofilm's
outer reducing area. Therefore, most heavy metal ions are
immobilized and fixed in the outer layer of the biofilm.
However, the structure of the biofilm still needs to be
confirmed as well as microbial community composition.
The interactions among the iron plaque, microbes, and
heavy metals are still unclear. To reveal the biogeochem-
ical behavior of sulfur and heavy metals in the rhizoplane,
and the sediments-plant micro-interface, further studies
should focus on determining the composition, structure,
and characteristics of the heterogeneous biofilm and
elaborating the interaction among sulfur, iron, and heavy
metals mediated by microbes and plants.

3.3 Effects of sulfur on the tolerance and detoxification of
heavy metal stress in plants

In plants, compared with sediments and rhizosphere, the
interactions between sulfur and heavy metals are different.
In sediments and rhizosphere, sulfur mediated the specia-
tion, transformation, and migration of heavy metals,
together with other factors such as microbes and root
exudates. However, in plants, sulfur directly or indirectly
mediated the uptake, transformation, and translocation of
heavy metals via different physiologic and metabolic
pathways. When different heavy metals enter plants, their
transformation and migration mechanisms are also differ-
ent (Fig. 4). Arsenic is a kind of metalloid element with
biotoxicity due to its chemical similarity with phosphate.
As(V) is absorbed and transported through phosphate
transport channels (Tripathi et al., 2007). In plant tissues,
As(V) is reduced to As(III), which has less mobility but is

Fig. 3 A conceptional model of biofilm and metal-sulfur cycle in the rhizoplane of root (*Figure adapted from Li et al., 2019b).

Fig. 4 The mediating role of sulfur in plant absorption and transport of heavy metals from the rhizosphere.
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more toxic (Dhankher et al., 2012). Meanwhile, As(III)
can form complexes with various organic acids and also
form As-sulfur complexes with thiolate ligands and
transported in the form of As(III)-tris-glutathione complex
(Peralta-Videa et al., 2009; Kumar et al., 2019). Due to
their high affinity with As(III), thiol-containing com-
pounds may reduce As translocation, and As(III)-thiol
complexation is considered to play a key role in the
immobilization of inorganic As species (Kumarathilaka
et al., 2018). Cadmium is a highly toxic heavy metal with
very low natural concentrations. However, due to human
activity such as industrial production, it is released into the
environment, causing some serious environmental hazards.
The electrochemical potential gradient of the plasma
membrane drives Cd into root cells (He et al., 2017). As
mentioned above, Cd competes with other cations for ion
carriers or channels to enter the cell, such as Ca and Fe
channels. Chai et al. (2013) reported that an increase in the
Ca2+ concentration in sediments significantly decreased
the absorption of Cd by S. alterniflora due to the
competition for channels to enter the cell. The uptake of
Cd by root was enhanced under iron deficiency for
Amaranthus mangostanus (Zou et al., 2020) and Oryza
sativa (Nakanishi et al., 2006). Similarly, we have
demonstrated that sulfur can significantly improve the
bioavailability of iron in the rhizosphere of K. obovata and
enhance the tolerance of the plant to Cd contaminants in
the surrounding (Li et al., 2017). The improvement of Fe
bioavailability directly promoted the formation of iron
plaque on the root surface. On the other hand, it improved
the iron absorption and the process of competing with Cd
for ion channels decreased the absorption of Cd by plants
(Li et al., 2019a). Chromium, another highly biotoxic
heavy metal element, in nature, the most stable and
common valences of Cr are Cr(III) and Cr(VI). A trace
level of Cr(III) (less than 1 mg/L) was reported to promote
plant growth, while a higher available concentration may
lead to the inhibition of biosynthesis and low biomass
(Peralta-Videa et al., 2009). Meanwhile, Cr(VI) is gen-
erally more toxic to plants compared to Cr(III) due to its
higher mobility in sediments and stronger oxidizability,
which may damage root membranes and induce the
formation of free radicals (Yu et al., 2017). Cr(III) enters
plant tissues through passive mechanisms and is poorly
translocated to aerial parts and accumulated in root tissues,
while Cr(VI) is absorbed through active mechanisms and
was reported to be hampered by the uptake of SO4

2– and
Ca2+ (González et al., 2014). In the study by Zandi et al.
(2020) on rice, sulfur supply remarkably decreased the
bioavailability of both Cr(III) and Cr(VI) by improving the
barrier effect of iron plaque and competing for SO4

2–

carriers. Lead (Pb) also enters the roots passively via Ca2+

permeable channels, which indicates competition between
Ca2+ and Pb2+ for channels to enter cells (Huang et al.,
1996). However, the molecular level of uptake and

translocation mechanisms are still unknown. Moreover,
like other heavy metals, the absorption of Pb is inhibited
significantly by the iron plaque on the root surface (Ashraf
et al., 2015).
In terms of the submicroscopic structure of plant cells,

heavy metals may alter physiologic processes at the
cellular and molecular level by displacing essential
elements, blocking functional groups of molecules,
inactivating enzymes, and damaging the structure of the
membrane system (Fryzova et al., 2018). Heavy metal
tolerance and detoxification strategies are presumably
found in all coastal wetland plant species. Thiol-containing
compounds, including cysteine, glutathione (GSH), and
metallothionein (MT), are the keys to plant tolerance and
detoxification (Fig. 5). Cysteine is initially synthesized in
plant cells and then utilized as a precursor for synthesizing
MT and GSH. MT is a family of cysteine-rich proteins that
plays an important role in heavy metal immobilization due
to its active thiol group (Fig. 5), and several studies have
also shown that MTs can act as ROS scavenging enzymes
(Yamauchi et al., 2017). GSH is a low molecular weight
tripeptide, which eliminates excess ROS through the
glutathione-ascorbate (GSH-AsA) pathway and alleviates
the oxidative stress caused by heavy metals (Dai et al.,
2017; Wu et al., 2021). Meanwhile, GSH is also the
precursor for the synthesis of phytochelatins (PCs). PCs
are thiol-rich peptides with the structure (γ-Glu-Cys)n-Gly,
where n is generally between 2 and 5 (Negrin et al., 2017).
Numerous studies showed that PCs bind heavy metals
effectively through thiolate coordination and reduce their
biotoxicity in cells (Dai et al., 2017; Nikalje and
Suprasanna, 2018; Wu et al., 2020). Subsequently, heavy
metal-PCs complexes are generally translocated to cell
walls and vacuoles where metabolism is relatively inactive
and minimizes the damage. Although the tissue distribu-
tion of heavy metals varies among different plant species,
in general, wetland plants can fix most of the heavy metals
in the below-ground roots to protect the above-ground
tissues (leaves, stems, etc.). For example, the distribution
of Cd concentration in S. alterniflora tissues was fine
roots>inflorescences>rhizomes>stems>leaves (Chai
et al., 2012); while in P. australis tissues was roots>rhi-
zomes≥leaves>stems (Bonanno and Giudice, 2010);
roots>hypocotyls>stems and leaves for K. obovata
(Weng et al., 2012); but, for A. marina the order was
roots>stems>leaves (Li et al., 2019a). This may be due to
the redistribution strategy in plant tissues in which heavy
metals are complexed and immobilized by thiol-containing
compounds like MTs and PCs in root cells. In summary,
due to the active thiol groups, thiol-containing compounds
are important factors that mediate plant cell tolerance to
heavy metal stress and detoxification, participate in heavy
metal fixation, translocation, and redistribution in plant
tissues.
Additionally, in plant tissues, hydrogen sulfide (H2S) is
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considered a gaseous signal molecule. With the help of a
flame photometric detector, plants were first detected to
synthesize and emit H2S by Wilson et al. (1978). In
subsequent researches, H2S was found to be a gasotrans-
mitter that regulates diverse physiologic processes in
plants. Previous reviews have summarized and discussed
how H2S mediates plant response to different abiotic stress
(He et al., 2018; Hancock, 2019). Numerous studies have
found that H2S enhances plants’ tolerance to heavy metal
stress via the following pathways: inducing the activation
of antioxidant enzymes and increasing antioxidant capa-
city (Mostofa et al., 2015); promoting low molecular
weight organic acids secretion; alleviating ultrastructural
changes (Ali et al., 2014); improving photosynthetic
parameters and nutrient uptake; upregulating the GSH-
AsA cycle (Singh et al., 2015); activating heavy metal
chelators, and may react with heavy metals directly (He
et al., 2018). However, recent studies have mainly focused
on terrestrial crops (Triticum aestivum, Hordeum vulgare,
O. sativa, etc.) and there is no research focus on coastal
wetlands that have a relatively high H2S emission
(averaged at 0.035 g S/m2/yr) due to the high SO4

2–

concentration and activity of SRB (Yu et al., 2019). As a
result, to further understand the interaction between sulfur
and heavy metals in different components and organiza-
tional levels, future work may focus on elaborating the
effects and mechanisms of H2S in regulating plant
metabolism and stress tolerance in coastal wetlands
contaminated by heavy metals.

4 Conclusions and future research direc-
tions

A thorough review of the literature reveals that coastal
wetlands could function as either a “sink” or a “source” of
heavy metals, which largely depends on environmental
factors and conditions. In particular, sulfur plays a critical
mediating role in the heavy metal cycle in coastal wetland
ecosystems, affecting the speciation, transformation, and
migration of heavy metals from sediments, rhizosphere, to
vegetation and surrounding environments, and as well as
regulating tolerance of plants to heavy metals.
To further understand the biogeochemical cycles of

various biogenic elements in coastal wetlands, compre-
hensively assess the impact of human activities on coastal
wetland ecosystems, and evaluate the potential fluctuations
and risks, it is imperative to clarify the interactions
between sulfur and heavy metals and their mechanisms
from the different organizational levels and scales of
coastal wetlands. Future studies are suggested on the
following aspects:
1) Further explore the role and mechanisms of H2S as a

gaseous signal molecule, explain the mechanisms of H2S-
mediated heavy metal tolerance in coastal wetland plants.
This could improve the knowledge of the interaction and
mechanism between sulfur and heavy metals in plants.
2) Thus far, the interactions between sulfur and heavy

metals in the rhizosphere are not fully understood. Studies
are needed to elucidate the processes and mechanisms of

Fig. 5 Sulfur-containing compounds mediate heavy metal transport, immobilization and detoxification in plant cells.
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various interactions among sulfur, heavy metals, plant
roots, microbes, and other factors in the micro-interface
between sediments and plants.
3) To systematically assess the environment of coastal

wetlands, predict potential contamination risks, and
improve management strategies, it is necessary to establish
a dynamic biogeochemical cycle model of sulfur and
heavy metals in coastal wetlands on a macro and even
global scale using big data from field studies and machine
learning technology.
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