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ABSTRACT

An efficient and meshfree approach is proposed for the bending analysis of thin plates. The approach is

based on the choice of a set of interior points, for each of which a basis function can be defined. Plate deflection is then
approximated as the linear combination of those basis functions. Unlike traditional meshless methods, present basis
functions are defined in the whole domain and satisfy the governing differential equation for plate. Therefore, no domain
integration is needed, while the unknown coefficients of deflection expression could be determined through boundary
conditions by using a collocation point method. Both efficiency and accuracy of the approach are shown through
numerical results of plates with arbitrary shapes and boundary conditions under various loads.
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1 Introduction

As a structural member, plate components are widely
used in civil, mechanical, and aeronautical engineering
due to light weight and high load-carrying capacity. To
analyze the bending problems of plate, various methods
have been developed, including both analytical and
numerical approaches. Analytical methods are applicable
only for plates with regular geometries and simple loads
[1]. Therefore, analytical solutions are not available in
most cases, and numerical approaches are required.

In the past decades, the finite difference method (FDM)
[1], finite element method (FEM) [2] and boundary
element method (BEM) [3] have been the most important
numerical approaches for plate problems. Among them,
FEM is commonly used in both research and engineering
communities. FEM has attracted many scholars’
attention, and improvements have been made (for
example, see Refs. [4-10]). When FEM is applied,
discretization over the entire domain of a plate is
necessary to generate a quality mesh, which is usually a
time consuming process. To overcome the disadvantage
of FEM, a meshless or meshfree method [11-15] has
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been developed recently. This method does not need any
discretization of domain, and a local basis function is
defined for appropriately chosen interior points. The
approximated plate deflection may be constructed by
using a technique such as moving least square. However,
this process of construction is complex and time-
consuming. As an improvement, an alternative form of
meshfree method, called the line element-less method,
has been introduced for the bending analysis of plates
without any holes [16,17]. Several neoteric numerical
methods, such as isogeometric analysis [18], numerical
manifold method [19,20] and deep learning methods
[21-23], have also been developed.

Presently, an efficient and meshless approach is
proposed for the analysis of thin plates with arbitrary
geometries and boundary conditions under various loads.
The principle is based on selection of a set of points in the
plate domain, and then for each point constructing a basis
function. The basis function covers the whole domain and
satisfies the governing differential equation of plate
bending. Plate deflection is then approximated as the
linear combination of those basis functions, while the
unknown coefficients in the approximation can be
determined directly through boundary conditions by using
a collocation point method. Since the approximated
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deflection satisfies the governing differential equation
exactly, no domain integration is needed, which will
largely reduce calculation.

The remaining of this paper is organized as follows:
Section 2 presents the governing differential equation of
plate bending, as well as the expression of internal forces.
Section 3 derives the formulation of the present method
in detail. In Section 4, boundary collocation point method
is introduced to determine unknown coefficients. Section
5 shows numerical results and discussions. Section 6
makes a conclusion.

2 Governing differential equations of plate
bending

Consider the bending of a homogeneous isotropic thin
plate. The governing differential equation for deflection
of plate in Cartesian coordinates is
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is the Laplacian operator. g(x,y) is the transverse load.
The internal forces can be written in terms of the
deflection w as follows:
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To facilitate derivation, it is convenient to express the
governing differential equation and internal forces in
polar coordinates. The Laplacian operator takes the form
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The governing differential equation Eq. (1) becomes
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The moments, twisting moments and shear forces can
be written as
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3 Formulation of the present method

According to the theory of differential equations, the
general solution for the governing differential equation
Eq. (1) can be obtained by the superposition of a particu-
lar solution of the equation and the general solution of a
corresponding homogeneous equation.

Firstly, a particular solution is obtained due to a
concentrated force. Referring to Fig. 1, assume that a
concentrated force P acts at an arbitrary point Ay(x,,Y,).
In this case, the differential equation Eq. (1) can be
written as

DVV2w = P-§(A, Ay), (©6)
where 6(A,A,) is the two-dimensional §-function, and
5(AA)=0(A % Ay, [[84,40d8 =1. ()

where dS = dxdy. The particular solution of Eq. (6) could
take the following form [12]

P
Wi (x,y) = &I_DRZ InR, (8)

where R? = (x — x,)* + (y — yo)~.
Using the above equation, the particular solution due to
generally distributed loading ¢(x,,y,) is then obtained, as

Fig.1 Thin plate subjected to a concentrated force.
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W, (x,y) = H {% [Ge=x0) + = 30)’]
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Specially, for uniform loads, the particular solution
could take the simple form

Wy (x,y) = 621‘—°D(x2 ). (10)

Next, the homogeneous equation DV?V?w =0 is to be
discussed. Its solution can take the form [1]

wo (r,0) =(ao+ajInr+byr* +byr’Inr)
+(ayr+a;r' +b,r’ +birinr)cosf

n
+ Z (akr" +ar*+brt+b; rz‘k) coskd
k=2
+(eir+cir'+d,r +d;rinr)sing

+ Z (ckr" +ort+drt + d,frz”‘) sinkd, (11)
k=2
where a;,a;, b, b;, ¢, c;,dy, d; are unknown coefficients.

If the origin of the coordinate system is located in the
domain of the plate, Eq. (11) can be simplified further. In
this case, the deflection w,, the slope dw,/dr and the
moment should be finite at r=0. Moreover, the
deflection w, is independent of # when r=0. Thus,
ay=a;=b;=c;=d;, =0(k>1),and Eq. (11) becomes

wo (r,0) =ay +bor” + b’ Inr

+ an (akr" + bkrz”‘) cosk6

k=1

+ Z (ckrk +d, r2+k) sinké.

k=1

(12)

Note that wy(r,6) only represents the effect of boundary
on deflection and should contain no effect of loading.
Therefore, when a closed-circuit integral is performed for
the lateral shear force in Eq. (5) along a small circle
around r = 0, there should be

2n 6
QSQrds =— |, D5 (Vw)-rdo = ~8aDb; = 0. (13)

Thus, b; = 0. The solution (12) is simplified as

wo (r,0) = Zn: (akr" + bkrz”‘) coskf+ Zn: (ckr* + dkrz*k) sinkf.

k=0 k=1
(14)

The above deflection representation in polar
coordinates could be converted to Cartesian form.
According to the theory of complex analysis, harmonic
polynomials are defined as follows

P,(x,y) = r*cosk = Re(x +iy)";
Q(x,y) = r'sinkf = Im(x +1iy)", (15)
where ‘Re’ and ‘Im’ represent the real and imaginary part
of a complex wvariable, respectively. They have the
following recursive form

P(x,y) = xP_y —yQy_i;

Oi(x,y) =yPi i +x0y (Yk>0), (16)
where Py,=1, Qy=0, and P,=x, Q,=y. Their
derivatives can also be expressed recursively as

0P, oP

(9_): =kP_y, (9_yk = _ka—l’

00, 0

% ko Zkp, k>0, a7
0x ay

Substituting Eq. (15) into Eq. (14), wy(r,6) could be
recast as

wo(x,3) = D [aPi(x,y) + b ( +3°) Pulx,y)]

k=0

) [0y +d (2 +y) Q)] (18)
k=1
Clearly, Yx;y,(j=1,2,...,m, as shown in Fig.2),
w;(x,y) =wo(x—x;,y—y,) satisfies the biharmonic
equation DV*V?w = 0. Hence, w;(x,y)(j = 1,2,...,m) can
be chosen as the basis functions. The general solution of
DV>V*w = 0 is expressed as

P = 3w = > we-xy-v,

j=1 j=1

19)
where m denotes the number of interior points.

For convenience, assume that X;=x—x;, ¥,=y—y,.
w;(x,y) can be written as

wi(x,y) = 00j+b0/(X/2' + le)
+ 2 [ak_iPk (X;.Y)) + by (ij + YJZ) Pe(X;, Yj)]
k=1

+ Z e 0 (X, Y) +dy (X2 + V2) Qi (X, V).
! (20)

Fig. 2 Distribution of interior points.
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Substituting the above equation into Eq. (19), we obtain

w(x,y) =a,+ i by, (X,z + Y/z)
=1

m n

+ Z Z [aijk (X, Y;) + by, (ij + Y_?)Pk (X Y,)]
j=1 k=1
53

j=1 k=1

n

|cu0u (X, Y)) +dy (X3 +77) 0u(X,, V),

@n
Where ay = do; +a02 + - +a0m.
Finally, the plate deflection can be represented as
w(x,y) = w(x,y) +w(x,y), (22)

where Ww(x,y) is given in Egs. (8), (9), or (10) for
differently  distributed loads. The  coefficients
ay, byj, i, by, ¢, dy; in Eq. (22) are unknown and remain
to be determined through boundary conditions.

The simplified form Eq. (14) of general solution
Eq. (11) requires that the plate domain includes the origin
r = 0. However, the introduction of interior points lifts the
constraint, as these interior points play the role of local
origins. As a result, the final general deflection
expression Eq. (22) is independent of the choice of
coordinate system.

It should be noted that Eq. (22) is quite different from
the traditional meshless method in that the present
approximation of deflection satisfies the governing
differential equation Eq. (1) exactly. The unknown
coefficients in Eq. (22) could be determined through
boundary conditions only, and therefore no domain
integration is needed, which will reduce the cost of
calculation hugely.

Further, introducing the following expressions

Xf. + Yf
Pk(X/9 Y/)
Nj(xsy) = (ij + Yf)Pk(X]7 Y]) b
00X, Y)
X:+Y)0(X,,Y))
P (k_l’z’ ’”) (23)
i - ki = ..
ckj ] - 1’2’ 7m
dy;

Equation (22) could be rewritten in compact matrix
form as

w(x,y) =w(x,y)+[N]{6}, (24)
where [N]=[1,NT,NZ,--- ,N"1, {8} = [a,,67,67,--- ,67]".

4 Boundary collocation point

To determine the unknown coefficients in Eq. (22),
boundary conditions should be considered. At present, the
boundary conditions are imposed by the collocation point
method. Assume that the residual along the plate
boundary is R(s). Choose N discrete boundary points
s,(y=1,2,...,N) and let R(s,) =0, which leads to a
system of linear algebraic equations for the unknown
coefficients.

For a generally curvilinear edge, suppose that n and ¢
are the outward unit normal and tangent vectors at a point
on the edge, and « is the angle between n and the x axis,
resulting in the following boundary conditions.

(i) Clamped edge

ow ow . Ow
w=0, — =cosa— +sina— = 0.
on ox ay
These equations are imposed at N, discrete points
s,(x,,y,) on the edge, leading to a system of linear
algebraic equations

(25)

ow(x,,y,)
w(x,,y,) =0, #:0 (y=1,2,....,N)). (26)
(i1) Simply-supported edge
w=0, M, =0, 27)

where M, (x,y) denotes the bending moment at normal
direction

M, = M,cos’a + M,sin’a + M, sin2a. (28)

Substituting Eq. (2) into Eq. (28), M,(x,y) could be
expressed as

u, =[O P (29)
" Yot oy U oxdy)
where
I, = u+(1-p)cos’a,
L =pu+(1-psin’a,
L = (1 p)sin2a. (30)

The boundary conditions at N, discrete points s,(x,,y,)
have the form

w(x,.y,) =0, M,(x,,y,)=0 (y=1,2,...,N,). (31)
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(iii) Free edge

oM,,
ds

where V,(x,y) is the effective shear force, M, (x,y) and
0.(x,y) represent the twisting moment and the shearing
force

M,=0,V,=0,+ 0, (32)

M, =(M,—M,)cosasina+ M, cos2e,

0, = Q,cosa+ Q,sina. (33)
Introducing Eq. (2)
(93 63W 83W 63W
16 3 2793 (9 axay (9 6 ( )
where
H, = cosa + (1 —p)cosasin’a,
= _ 3 - 2
H; = cosa+ (1 -p)(cos’a—2cosasin’a), (35)

H, = sina+ (1 —u)cos’asina,
H, = sina + (1 — ) (sin’a — 2cos’asina).

The boundary conditions at N; discrete points s,(x,,y,)
become

M,(x,,y,)=0, V,(x,,y,) =0 (y=1,2,...,N;5). (36)

In the above equations, N, + N, + N; = N. By solving
the linear algebraic system of Egs. (26), (31), and (36)
together, the unknown coefficients are obtained. Further
substitution in Eqs. (22) and (2) leads to the complete
solution of plate deflection and internal forces.

5 Numerical examples

This section proposed the approach to analyze a few
benchmark examples. The obtained results are compared
with exact solutions or FEM numerical solutions given by
ABAQUS. Remarkably, the proposed approach
demonstrates excellent computational efficiency as its
computational time is less than one-tenth that of FEM by
ABAQUS with these benchmark tests.

5.1 Circular plate subjected to an eccentric concentrated
load

As shown in Fig. 3, a circular plate with clamped edge is
subjected to a unit concentrated load P =1 at point
Ay(a/2,0). The radius of the plate is r = a.

The boundary conditions referring to Fig.3 are
represented by

w),_,=0, (dw/dn),_,=0. (37)
In this case x, = a/2, y, = 0. According to Egs. (8), (21),
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and (22), the deflection has the form
—PRZIR mb X +Y?
w(x,y)—gn—D n +a0+z oj( Tt j)
j=1

+ zml z": ak,Pk (X5, Y)) +by; (Xf + Y,Z) P(X;, Y./)]

j=1k=1

+ Z ijQk (X, Y))+dy (XJ2 + sz) 0. (X, Y_,-)],

=1

\

(38)

where R*> = (x—a/2)* +y.
We choose n =5, m=1, and (x;,y;) = (0,0). Following
the procedure described in Section 4, the unknown

coefficients can be obtained. When a =1, the exact
solution [24] of this problem is

w*(r,0) =

o+ 1 —rcosf
16 D 4

r+1/4 rcosf 3

M 7/4—rcoso 4(1_”} (39)

Figure 4 shows the contours of the deflected surface.
This figure clearly shows the variation of deflection in the
whole domain, with the maximum deflection appearing
near the loading point. Figure 5 exhibits the deflection
profile at y=0. In comparison with the analytical
solution, good agreement of present results can be
observed.

Figure 6 checks the convergence rate of the present
method. Let &,,, denote the relative error of the
maximum deflection. It can be seen that with the increase

P=1

Fig.3 Circular plate.

%107 Pa?/D

Fig. 4 Contours of the deflected surface.
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0.006 |

w(x,0)

0.000
-1.0

-0.5 0.0 0.5 1.0
Xla

Fig. 5 The deflection profile at y = 0.

x1073

glm\x

Fig. 6 Convergence rate analysis.

of both terms n and the number of interior points m,
present results converge rapidly to the exact solution.
Specifically, for a definite m, the absolute value of &,
decreases almost monotonically with the increase of n,
and becomes negligible when n is greater than 5. For a
definite n greater than 3, the absolute value of &,
decreases monotonically with the increase of m, and
becomes negligible when m is greater than 3.

Figures 7 and 8 show deflection variation along the
boundary. Since the deflection on the boundary should be
zero, the two figures represent the absolute errors of
deflection on the boundary, reflecting both the
convergence and accuracy of present results. Again, the
absolute errors are negligible. The present method can
achieve good convergence and accuracy, even with very
few terms and interior points.

5.2 Sectorial plate subjected to uniformly distributed load

A sectorial plate (Fig.9) with radius r=a has two
clamped straight edges 6 = +n/4 and a free circular arc
edge. Suppose that a uniformly distributed load g, =1 is
applied, and the Poisson’s ratio u = 0.3.

The boundary conditions are

x10~° Pa?/D

w(a,0)

Fig.7 Deflection on the boundary for n =5.

x10~* Pa?/D

Fig. 8 Deflection on the boundary for m = 1.

(W)HZiI(/4 =0, (aw/an)HZiﬂ/4 =0, (40)
(M), _, =0, (Qn " aM’”) -0, @1
as r=a

According to Eqgs. (10), (21), and (22), the deflection is
assumed to be

) = e 3 (14 )

J=1

* Zm: Zn: [ak-fpk (X;. ) + by (sz + Yf)Pk (X;, Y.i)]

j=1k=1

+ZZ e 0. (X,.7) +dy (X2 +Y2) 0.(X,.7)].

j=1k=1
(42)
The unknown coefficients are obtained with n =20,
m=1and (x;,y;) = (0,0). Figure 10 shows the contours of
deflected surface. In this case, the maximum deflection
occurs at the middle point of the circular arc edge. From
the deflection profile at y=0 (Fig. 11), excellent
agreement is observed with the FEM solution obtained by
ABAQUS (with 128 quadratic quadrilateral plate
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Fig.9 Sector plate.
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8

~
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Fig. 10 Contours of the deflected surface.

x goa'/D

present solution b
* FEM solution

0.010

0 0.5 1
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Fig. 11 The deflection profile at y = 0.

elements and 421 nodes). The relative error of maximum
deflection is only —0.15%.

5.3 Cantilever rectangular plate subjected to concentrated
loads

A cantilever rectangular plate is shown in Fig. 12.
Suppose that the plate is subjected to a pair of unit
concentrated loads P =1 at the points (+3a/8,3b/4)
symmetrically or anti-symmetrically. The Poisson’s ratio
u=0.3.

The boundary conditions for the clamped edge and free
edges are

W)y_o=0; (Ow/dy),_, =0 (—a/2<x<al2), (43)

Fig. 12 Cantilever rectangular plate.

oM,

(Mx))c:ia/Z = O’ (ch + _) = O’ (0 < y < b) (44)
ay x==a/2

oM,
M,),_, =0, (Qy + W) =0. (—a/2<x<a/2) (45)

At two corners (+a/2,b), it needs to satisfy

(6*w/0x0y) =0. (46)

x=za/2,y=b

The deflection has the following form

P P
w(x,y) :&[_DR% ]an + 81[_DR§ lnRz +ay

+ii [aijk(Xj,Yj)+bkj(X]2-+ Y?)Pk(Xj,Yj)]

j=1k=1

+iboj(xf.+Yf)
j=1
£

j=1k=1

e 0. (X, 7) +dy (X2 +7?) 0u(X,.7)):

(47)

where R =(x—3a/8)*+(y—3b/4)*, R:=(x+3a/8)+
(y—3b/4)*. Consider the case of a=b. Choose four
interior points located at (+£0.2a,0.3a) and (£0.2a,0.7a).
The unknown coefficients are obtained with n =16 and
m=4.

Figures 13 and 14 show the deflected surfaces of
symmetric and antisymmetric deformations, respectively.
It is observed that the maximum deflections in both cases
appear at the free corners. The deflection profile at x =0
for symmetric deformation (Fig.15) and x=a/2 for
antisymmetric deformation (Fig. 16) are in good
agreement with the FEM solution obtained by ABAQUS
(with 256 quadratic quadrilateral plate elements and 833
nodes). The absolute value of relative errors for
maximum deflections are all within 0.5%.

5.4 Cantilever triangular plates subjected to concentrated
load

Shown in Fig. 17 is a cantilever isosceles triangular plate
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x Pa*/D

0.5

24 0.0
0.0 —05 Xla

Fig. 13 The deflected surface for symmetric deformation.

x Pa?/D
0.2

0.5
0.5

& 0
0205 Xla

Fig. 14 The deflected surface for antisymmetric deformation.

x Pa*D

— present solution
* FEM solution

0.5

041

03}

w(0.,y)

0.0 : : : :
00 02 04 06 08 1.0

Y/b

Fig. 15 The deflection profile along x = 0 for symmetric
deformation.

with clamped bottom edge subjected to a unit lateral
concentrated load P = 1 at the point (0,5/2). u=0.3.
The boundary conditions are

W)y 20 =0, (OW/dy),., =0, (ma<x<a) (48)

oM,
(Mn)lxlmﬂ,:b =0, (Q,, + —) =0. (—ra<x<a)
6S |x|cotg+y =b

2
O.ISXPa/D

— present solution
* FEM solution

0.10f

w(al2,y)

0.05r

0.00 . : . '
0.0 0.2 0.4 0.6 0.8 1

Y/b

Fig. 16 The deflection profile along x = a/2 for antisymmetric
deformation.

Fig. 17 Cantilever triangular plate.

At the corner (0, b),
ow L [(Pw Pw

L-L)—+ 2| ——-— =0. 50

[( a2 (6y2 ox’ )]x_o,y_b 0

The deflection expression takes the same form as the
circular plate, as shown in Eq.(38), where R?=x’+
(y — b/2)*. Further, assume that a = b. Choose (0,a/3) and
(0,2a/3) for (x;y;). The unknown coefficients are
obtained with n = 12 and m = 2.

Figure 18 shows the deflected surface. The maximum
deflection occurs at the corner. Again, the deflection
profile along the symmetry axis x=0 agrees well
(Fig. 19) with the solution of FEM by ABAQUS (168
quadratic quadrilateral plate elements and 549 nodes).
The relative error of maximum deflection is —0.29%.

5.5 Nonhomogeneous cantilever rectangular plate under
uniform load

A nonhomogeneous cantilever rectangular plate (Fig. 20)
is subjected to a uniform pressure of intensity g, = 1. The
ratio of flexural rigidity between the two domains is
D, /D, =0.512. The Poisson’s ratio u = 0.3.

Referring to Fig. 20, the boundary conditions for
domain I are as follows:

Wi1)yo=0, (Ow/8y),_, =0 (-a/2<x<al2), (51)
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0
00 -1 Xla

Fig. 18 The deflected surface.
x Pa?/D

— present solution
* FEM solution

0.10

w(0.)
j=}
S

0.00 . . . .
0.0 0.2 0.4 0.6 0.8 1.0

Yib

Fig. 19 The deflection profile at x = 0.

al2 al2

ol X
b2 v D,
b2 2

Fig. 20 Nonhomogeneous cantilever rectangular plate.
1 1 6M)IW
(Mx)xzﬂl/z:O; 0.+ 3 - =0. (0<y<b/2)
y x==za/2

(52)

The boundary conditions for domain II can be written
as

i

I -0 I aMXy _
(M), =0; [OV+ —= =0, (b/2<y<b)
. 6y x==al2
(33)
oM™
(m)) _ =0; (Q‘,‘ - —) =0. (~a/2<x<a/2)
y=b Y ox
y=b
(34

At two corners (xa/2,b),

Pw, )
=0. (55)
(6)“9)’ x=ta/2y=b
The connection conditions along the line
y=b/2(-a/2 < x<a/2)are
(w, Wz)y=g =0,
(aw1 6w2) B
ady ay b2
(M) M;I)y: =0, (56)
1 _ gl
(M, M),X)) ., =0,
I Al —
(-2 _, =0
In domain I, the deflection w, takes the form
wi(x,y) = L (x* +y2)2 t+ap
64D,
+ 20> auPe(X,, ¥) + by (X2 +Y2) P(X,, V)|
j=1k=1

+iboj(Xf. + Yf)

j=1

* i Zn: [cka" (X;.Y)) +dy (Xf + Y,Z) O (X;, Yj)],

(57)
where X; =x—x;, ¥, =y-y,
In domain II, the deflection w, is

9o
64D,

m n

2  aiPu (X, Y) + by (X3 + Y2) P (X, Yy)|
+ Zm: by, (X['j + Yj)

|60 (X,.Y,) +d, (32 +77) 04 (X,.,)-

(58)

wa(x,y) =—— (> +*) +a,

where X, = x—x3, Y3 =y —y;.

Assume that a = b and D, = D. Choose interior points
(ta/4,a/4) and (0,a/4) for (x;y;), (+a/4,3a/4) and
(0,3a/4) for (xzyz). The unknown coefficients are
obtained with n =20 and m = 3.

Figure 21 shows the deflected surface, with the
maximum deflection at the middle point of free edge
y=>b. The deflection profile at x=0 (Fig.22) is in
excellent agreement with the FEM solution obtained by
ABAQUS (with 256 quadratic quadrilateral plate
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Fig. 21 The deflected surface.
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Fig. 22 The deflection profile at x = 0.

elements and 833 nodes). The relative error of maximum
deflection is 0.29%.

The numerical calculation was also made by using
n=2381 and m = 1. The relative error obtained is &, =
—0.52%, reflecting that the number of terms n can be
effectively reduced by increasing interior points m.

From the above analyses, it can be seen that the present
approach is efficient in solving complex problems of
plate bending, and good accuracy can be achieved with
less calculation. Since this approach uses the whole-
domain defined basis functions, which satisfy the
governing differential equation of plate bending exactly,
the deflection function can be approximated as the linear
combination of basis functions, simply and directly. The
unknown coefficients in the approximated deflection can
only be determined with boundary conditions, and due to
this, no domain integration is required. Moreover, the
final deflection and internal forces are given in analytical
form, allowing easy calculation.

In comparison with the traditional meshless methods,
the main difference lies in the choice of basis function.
The traditional meshless methods use radial basis
functions [12,13], which are locally defined and do not
satisfy the governing differential equation of plate
bending. Because of this feature, a technique, e.g.,

moving least square method, is needed to construct the
deflection function. The construction process is usually
complex and time-consuming. When the principle of
virtual work is applied to consider equilibrium conditions,
domain integration becomes necessary, leading to a high
cost of calculation.

6 Conclusions

A new meshless approach is proposed for the bending
analysis of thin plates. Through definition of a set of
points in plate domain, this work constructs a series of
basis functions, each of which satisfies the governing
differential equation of plate bending exactly. Plate
deflection is then approximated as the linear combination
of those functions, while the unknown coefficients in the
approximation are determined through boundary
conditions by using a collocation point method. With this
approach, the solutions of both deflection and internal
forces are given in analytical form.

This approach is further applied to analyze plates with
arbitrary shapes and boundary conditions subjected to
various loads. Numerical results show that the approach
is simple and efficient in solving complex problems of
plate bending, and good accuracy can be achieved with
less calculation.

Theoretically, the approach could be extended to solve
other problems, for example, plane elastic problems. This
work is still in progress.
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