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ABSTRACT Proven research output on the behavior of structures made of waste copper slag concrete can improve its
utilization in the construction industry and thereby help to develop a sustainable built environment. Although numerous
studies on waste copper slag concrete can be found in the published literature, no research has focused on the structural
application of this type of concrete. In particular, the variability in the strength properties of waste copper slag concrete,
which is required for various structural applications, such as limit state design formulation, reliability-based structural
analysis, etc., has so far not attracted the attention of researchers. This paper quantifies the uncertainty associated with the
compressive-, flexural- and split tensile strength of hardened concrete with different dosages of waste copper slag as fine
aggregate. Best-fit probability distribution models are proposed based on statistical analyses of strength data generated
from laboratory experiments. In addition, the paper presents a reliability-based seismic risk assessment of a typical waste
copper slag incorporated reinforced concrete framed building, considering the proposed distribution model. The results
show that waste copper slag can be safely used for seismic resistant structures as it results in an identical probability of

failure and dispersion in the drift demand when compared with a conventional concrete building made of natural sand.

KEYWORDS waste copper slag, quantification of variability, goodness-of-fit test, seismic risk assessment, PSDM

1 Introduction

Managing industrial waste through recycling is the best
way to protect environmental health and conserve natural
resources. The utilization of industrial waste as supple-
mentary raw material in concrete production contributes
towards efficient waste minimization [1-9]. Furthermore,
the use of industrial waste in concrete compensates for
the lack of natural resources and safeguards nature.
Efficient substitute materials to fine aggregates, like iron
slag, waste foundry sand, waste copper slag (WCS),
imperial smelting furnace slag, etc., in concrete produc-
tion, have been carried out for over a decade now [3,4].
Among them, WCS is found to be pozzolonically active
industrial waste and can produce ultrahigh performance
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concrete [10]. Many investigators [11-14] have also tried
to use WCS as supplementary cementitious material in
concrete making. However, the physico-chemical
properties of WCS, generated during the smelting and
pyrometallurgical extraction of copper from its ore, are
found to offer a fine aggregate that is superior to natural
sand, for several reasons [15-24]. It is reported [16,19,21]
that WCS can be effectively utilized as a substitute for
natural sand to acquire mortar and concrete of good
strength and durability. The positive impact of utilizing
WCS as a substitute for natural sand on the physical,
chemical, and mechanical properties of high-strength
concrete have been reported in published literature [10].
Up to 40% replacement of natural sand with WCS can
accomplish a concrete strength better than the control
blend [17] due to the superior compressibility of WCS
which partially mitigates the stress concentration. Despite
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such research efforts, the practical use of WCS in
concrete construction has not been satisfactorily finalized.
Therefore, design and safety of WCS incorporated
concrete structures need due focus in order to help
improve practical use.

Limit state design philosophy is widely used for the
design of reinforced concrete (RC) structures. The partial
safety factor for the strength of materials used in the limit
state design depends on the characteristic values of
material strength, its dispersion, and the probability
distribution [25]. Similarly, variability in the strength
properties influences the risk or safety assessment of any
structure. Experimental evaluations of the probability
distribution of strength parameters for common structural
materials (e.g., conventional concrete, steel reinforce-
ment) have been reported in the literature. Compressive
strength data of concrete cores are statistically charac-
terized to recommend the probability distribution function
for describing variability [26]. Variability analysis for
compressive- and split tensile strength for conventional
concrete has been studied by many investigators [27-34].
Multiple statistical norms and several distribution
functions were developed to categorize the variability
analysis of compressive strength of concrete by Chen
et al. [31]. Such studies for conventional concrete may
not be appropriate for correctly assessing the variability
of WCS concrete as the inherent properties of WCS and
natural sand are not alike. Although a significant
variation in the strength properties of the WCS concrete
are reported in the published literature, no research
attempt has been found to transform these variations into
a statistical distribution which is essential for the
formulation of the limit state/reliability-based design of
WCS concrete structures. Furthermore, all past research
on WCS concrete has focused primarily on material
testing for strength and durability, ignoring the issue of
associated structural behavior.

Therefore, the present study investigates the variability
associated with structural concrete made with WCS as an
alternative to natural sand. Strength properties of WCS
concrete were experimentally evaluated and probability
distribution functions that fit the experimental data best
were recommended. A systematic performance assess-
ment of structure made of WCS can determine the accep-
tability for its practical use, which formed an important
motivation of the present paper. Accordingly, a case
study of probability-based seismic risk assessment was
conducted for a selected RC-framed building made of
WCS concrete, considering the experimentally obtained
material properties and recommended variability models.

2 Research significance

The actual usage of WCS concrete at the construction site
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is low, even though several published literatures have
confirmed that WCS can be used as a replacement of
natural sand in concrete construction. This may be due to
the lack of available research output on the aspects of
design and safety of WCS-incorporated concrete
structures. All of the past studies on WCS concrete are
based only on material testing in terms of strength and
durability. This paper is the first attempt to evaluate and
report the variability of different strength properties of
WCS concrete necessary for the formulation of the limit
state/reliability-based design of WCS concrete structures.
In addition, this paper investigated the seismic risk of a
typical building made of WCS concrete and reports that
the WCS can be safely utilized for seismic resistant
structures.

3 Experimental programme

The primary objective of this work is to conduct a seismic
risk assessment of a typical RC framed building made
using WCS. The probability-based seismic risk
assessment methodology requires consideration of
uncertainty in loading and strength of the structure. The
variability models of conventional concrete available in
past literature may not be suitable for WCS concrete as
WCS poses different material characteristics in
comparison with natural sand. Hence, this section focuses
on the uncertainty quantification of the strength
properties of WCS concrete through an experimental
program and proposes the most appropriate distribution
functions to describe the variability in considered strength
parameters. Compressive-, flexural-, and split tensile
strengths are considered here as representative strength
parameters of WCS concrete. The WCS used in the
present study was collected from only one source: the
Indian copper complex at Ghatsila, a refinery of
Hindustan Copper Ltd. (India). Portland cement of 43
grade conforming to ASTM CI150 [35], the coarse
aggregate of angular grades with a nominal size of 20 mm
and natural sand conforming to ASTM C33 [36] were
used along with WCS for the preparation of concrete
specimens. Further details about the Physico-chemical
properties of sand and WCS are given in Table 1 and also
found in available literature [37].

The experimental program considered a mix design as
reported in published literature [37]. Six different
concrete mixes were prepared by partial or full
replacement of natural sand with WCS and designated as
MO, M20, M40, M60, M80, and M100, respectively,
where ‘M’ presents the mix and number denotes the
volumetric percentage replacement of natural sand with
WCS. Table 2 gives the mixture proportions considered
in this study.

Concrete cubes of 150 mm, prisms of 100 mm % 100 mm X
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700 mm, and cylinders of 150 mm diameter x 300 mm
height were cast following ASTM C192 [38] from each
of the six WCS concrete mixes for compressive-, flexure-
and split tensile strength tests respectively. Compressive-,
flexure- and split tensile strengths of WCS concrete were
evaluated experimentally after 28 days of water curing
following the guidelines of IS 516 [39], ASTM C496
[40], and ASTM C293 [41], respectively. Photographs of
typical test specimens are shown in Fig. 1.

4 \Variability assessment

Thirty specimens for each of the six mixes (a total of 180
specimens) were tested under each of the three selected
strength categories. Table 3 presents the mean, standard
deviation (SD), and range of strength properties obtained
from the experimental results. The three selected strength
properties of WCS concrete were found to be enhanced
by increasing the dose of WCS content up to 80%. This
result supports the conclusions of some of the earlier
studies on WCS concrete [37]. Better grading of WCS
than of natural sand results in better concrete strength

Table 1 Physico-chemical properties of fine aggregates
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through improved particle packing; also the presence of
Class-N pozzolana in WCS can help achieve better
concrete strength [37].

When the WCS proportion is greater than 80%, the free
water in the cement matrix increases considerably due to
the low water absorption capacity of the WCS, which
causes an increase in voids and, consequently, a decrease
in the strength of hardened WCS concrete. The observed
mean values of compressive-, flexural-, and split tensile
strength of WCS concrete are shown in Figs. 2(a), 2(b),
and 2(c), respectively.

The variability in any strength property needs to be
expressed in terms of a statistical distribution to be used
for probability-based structural analysis. Therefore,
experimentally obtained results were analysed using four
non-parametric goodness-of-fit (GOF) tests: Kolmogorov-
Smirnov (KS), Kolmogorov-Smirnov-Lilliefors (KSL),
Anderson-Darling (AD), and Chi-Square (CS) and the
best-fit statistical distributions for each of the three
selected strength parameters were evaluated. The
methodology of all GOF tests is to measure the difference
between the observed and the theorized cumulative
distribution function (CDF), which is known as the

material physical property chemical property

fineness  relative density water co-efficient SiO, + ALO; + MgO SO, CaO

modulus (kg/m®) absorption (%)  of uniformity Fe,0; (% by mass) (% by mass) (% by mass) (% by mass)
sand 4.68 3.89 0.36% 3.05 92.23 1.89 1.45 1.05
WCS 2.89 2.6 0.80% 2.32 58.15 - - 0.48
Table 2 Details of selected WCS concrete mixes
component MO M20 M40 M60 M80 M100
WCS replacement by volume (% of sand) 0 20 40 60 80 100
cement (kg/m3) 450 450 450 450 450 450
natural sand (kg/m") 608 486.4 364.8 2432 121.6 0
WCS (kg/m®) 0 177 353 530 706 883
coarse aggregate (kg/m®) 1215 1215 1215 1215 1215 1215
water (kg/m”) 180 180 180 180 180 180

(b) ©

Fig. 1 WCS concrete specimens for evaluation of strength properties. (a) Cubes for compressive strength; (b) prisms for flexural strength;
(c) cylinders for split tensile strength.
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‘statistic’. It should be noted that a lower ‘statistic’ value
indicates a smaller difference between the actual and the
theorized CDF, and therefore a better performance of the
chosen distribution in the variability modelling. The
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Fig.2 Mean strength of concrete versus WCS replacement. (a)
Compressive strength; (b) flexural strength; (c) split tensile
strength.

Table 3 Strength properties of WCS concrete

Front. Struct. Civ. Eng. 2022, 16(1): 117-130

‘statistic’ value must be lower than a ‘critical’ value
corresponding to the selected significance level. The
estimations of the ‘statistic’ and the associated ‘critical’
values differ in different GOF tests. The KS test does not
depend on sample size and performs better for continuous
distributions. The KSL and KS are identical in terms of
the statistic but different in terms of the critical values
[42]. However, both of these two tests are sensitive near
the middle of the distribution than at the tails [43]. AD is
a modified version of the KS test which is more sensitive
to the tail region [44]. The CS test is more efficient when
a large number of random variables are used.

Two-parameter probability distribution functions are
assumed to be representative of the variability of strength
properties of WCS concrete. Six two-parameter distribu-
tion functions, those previously proven [45-49] to be
useful in modelling the strength properties of brittle
materials, were selected in the present study. Detailed
formulations of the selected distribution functions are
available in the published literature [5S0]. The test statistic
was determined for each of the selected distribution
function and ranked based on the statistic value. For each
probability distribution function, the test statistic was
determined and ranked. Commercial software EasyFit
Professional [51] was used for all the statistical analyses.
Tables 4—6 present the location, shape, and scale
parameters of selected distribution functions estimated
from the experimental results.

Similarly, Figs. 3—5 present the CDF of the selected
distribution functions along with the experimental data.
Tables 7 to 9 present the statistic values for each of the
selected probability distributions obtained from the GOF
tests and the corresponding rankings based on their
statistic values for compressive, flexural and split tensile
strength data.

It can be observed from Tables 7 to 9 that the selected
GOF test criteria (KS/KSL, AD, and CS) do not agree
with one single probability distribution for modelling the
variability of strength properties of WCS concrete. For
example, KS/KSL and AD ranked the normal distribution
as the best-fit variability model for compressive strength
whereas CS ranked Gumbel max as the best fit for the
same strength property as shown in Table 7. Similarly,
multiple distributions were ranked as the best-fit

specimen compressive strength (MPa) split tensile strength (MPa) flexural strength (MPa)
mean SD range mean SD range mean SD range

MO 46.3 0.79 45.0-47.9 3.87 0.22 3.64.2 5.22 0.27 4.9-5.6
M20 46.4 0.99 45.9-48.5 3.39 0.21 3.6-4.3 5.26 0.27 4.9-5.6
M40 47.8 1.48 46.1-50.7 4.30 0.20 3.9-45 5.41 0.24 5.0-5.7
M60 50.2 1.48 48.1-52.5 433 0.19 4.0-4.7 5.54 0.24 5.1-5.8
MS80 53.9 2.56 50.0-57.0 4.42 0.22 4.1-4.8 5.84 0.21 5.3-5.9
M100 46.0 0.94 44.4-47.8 4.12 0.19 3.8-4.4 5.23 0.21 4.9-5.7
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Table 4 Parameters of probability distribution functions for compressive strength (MPa)
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distribution

parameter
MO M20 M40 M60 M80 M100
normal n=46.25 u=46.41 u=47.81 u=>50.23 u=>53.86 u=46.01
o=0.79 o=0.99 =148 o=147 o=2.56 o =0.94
lognormal ©=3.83 ©=3.83 1=3.866 1=3.916 1=3.98 ©=3.82
o=0.02 o =0.02 o=0.03 o=0.03 0=0.05 o =0.02
Gamma a=3416.7 a=2179.5 a=1046.4 a=1156.0 a=4427 A=2415.9
£=0.01 £=0.02 £=0.04 £=0.04 B=0.12 B=0.02
Weibull a=66.61 a=>52.14 a=34.88 a=37.32 a=22.57 a=56.88
B =46.56 B=46.81 B =48.42 B=50.85 B=54.99 B=46.37
Gumbel max n=45.89 n=45.96 n=47.14 ©=49.56 pu=>52.71 u=45.59
o =0.62 o=0.77 o=1.15 o=1.15 o=1.99 c=0.73
Gumbel min 1= 46.60 1=46.86 n=48.47 1=150.89 ©=>55.02 p=46.44
o =0.62 o=0.77 o=1.15 o=1.15 o=1.99 o=0.73
Notes: & continuous location parameters; a: continuous shape parameters; 3, o: continuous scale parameters
Table 5 Parameters of probability distribution functions for flexural strength (MPa)
distribution parameter
MO M20 M40 M60 MS80 M100
normal u=1523 u=>5.25 u=541 u=5.54 u=5.84 u=5.23
o=0.26 o=0.27 o=0.25 =024 o=0.21 o=0.27
lognormal u=1.65 1=1.66 1=1.69 p=1.71 n=1.76 u=1.65
o =0.05 o =0.05 o =0.04 o =0.04 o =0.03 o =0.05
Gamma a=387.75 a =388.56 a=490.11 a=517.60 a=770.97 a=377.07
£=0.02 B=0.02 B=0.01 B=0.01 B=0.01 B£=0.02
Weibull a=2231 a=22.52 a=24.25 @ =25.64 a=31.27 a=22.36
B=533 B=5.36 B=552 B=5.64 =593 =533
Gumbel max u=5.10 u=5.13 u=>5.30 pu=>5.43 u=>5.74 u=>5.11
oc=0.20 o=0.20 o=0.20 o=0.19 o=0.16 o=0.21
Gumbel min u=>5.34 u=>5.37 u=>5.52 u=5.65 u=593 u=>5.35
o=0.20 o=0.20 o=0.20 o=0.19 o=0.17 200=0.21
Notes: (£ continuous location parameters; «: continuous shape parameters; 3, o: continuous scale parameters
Table 6 Parameters of probability distribution functions for split tensile strength (MPa)
distribution parameter
MO M20 M40 M60 M80 M100
normal n=3.87 ©=3.98 n=430 pn=433 pu=441 pu=4.12
=022 o =021 o=0.12 o=0.18 0=0.20 o=0.19
lognormal u=135 p=138 p=145 p=1.46 pu=1.48 pn=141
o =0.05 o=0.05 o =0.04 o =0.04 o =0.04 o=0.04
Gamma a=309.88 a=355.09 a =468.63 a=541.77 a=467.71 a=458.75
B£=0.01 £=0.01 £=0.01 B=0.01 B=0.01 B=0.01
Weibull a=19.85 a=21.62 a=24.36 a=26.98 a=24.26 a=23.83
B=3.95 B=4.07 B=4.38 B=4.40 B=4.49 B=4.20
Gumbel max u=3.77 n=3.89 =421 pu=4.24 u=431 n=4.03
o=0.17 o=0.16 o=0.15 c=0.14 o=0.15 o=0.15
Gumbel min u=3.97 n=4.08 p=4.39 pu=4.42 u=4.50 n=4.21
o=0.17 o=0.16 o=0.15 c=0.14 o=0.15 o=0.15

Notes: (£ continuous location parameters; «: continuous shape parameters; 3, o continuous scale parameters

variability model for flexural- and split tensile strength by
different GOF tests (refer to Tables 8-9). It can also be
seen that the best-fit variability model of WCS concrete
changed with the change in percentage replacement of
WCS. The material characteristics of hardened WCS
concrete varied with the percentage replacement of WCS.
However, the statistic values of some of the high-ranking
distributions were very close. Also, a change in the data
pool may alter the ranking of the distributions slightly.
Therefore, any of the high-ranking distributions from

Tables 7-9 could be used for the structural analysis. A
total statistic, which is defined as the square root of the
sum of the squares of individual test statistics
corresponding to each GOF test, was considered in the
present study to select a single best-fit distribution.
Table 10 presents the recommended variability models
for strength properties of WCS concrete.

It is to be noted here that construction at a practical site
may have additional variability arising out of the raw
materials obtained from different sources, different
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Fig.3 CDF plot of WCS concrete compressive strength with selected distribution function. (a) M0; (b) M20; (c) M40; (d) M60; (e) M80;

(f) M100.

climatic conditions, differences in quality control, etc.
which are not included in the present study. In the
absence of a comprehensive study, the variability models
recommended in Table 10 can be treated as the estimates
of the expected variability. A microstructural analysis of
WCS concrete may be of importance, especially to
understand the reason behind the variability in the
strength properties as well as to evaluate the
characteristics of the interfacial transition zone in terms
of its transport properties and corrosion resistance
[52-54]. However, the microstructural characterization

remains outside the scope of the present study in order to
keep the focus on the statistical modeling of the
variability in the strength properties of WCS concrete and
its suitability for seismic resistant structures.

5 Seismic response assessment

This section reports on investigation of the seismic
performance of a typical RC framed building made of
WCS concrete. The purpose of this study was to check
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Fig. 4 CDF plot of WCS concrete flexural strength with selected distribution function. (a) MO0; (b) M20; (c) M40; (d) M60; (e) M80; (f)

M100.

the applicability of the WCS concrete in the seismic-
resistant building structure. A probability-based seismic
evaluation method [55] using incremental dynamic
analysis (IDA) was employed for this purpose. Peak-
ground acceleration (PGA) and maximum inter-storey
drift (ISD) were considered as ground motion intensity
measure (/M) and engineering demand parameter,
respectively. The seismic performance was evaluated
through the probabilistic seismic demand model (PSDM)
and fragility curves. The fragility function represents the
probability of exceedance of a selected demand parameter

beyond the chosen structural limit state at a particular /M.
It can be expressed in the closed-form [56] as follows:

In(D) —In(C)

\Boun + B+,

where @ is the standardized Gaussian CDF, D is the drift
demand, C is the drift capacity at a chosen limit state; P,
and € are median of demand and chosen limit state,
respectively. The values of C for the performance level of

P(C<D|IM)=® )
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Fig. 5 CDF plot of WCS concrete split tensile strength with selected distribution function.

RC moment-resisting frame are considered from
published literature [56-58] as 1%, 2%, and 4%. Bpuu,
B., and S, are the dispersions in intensity measure,
capacity, and modeling, respectively. Nonlinear time
history analysis (NLTHA) was conducted to obtain
maximum ISD, which was the demand parameter
considered in the present study. This method used two
analytical approximations. The first one was the power-
law relationship between median drift demand and the
intensity measure [56].

D =a(IM), ()

where a and b are the constant coefficients. The second
approximation was that the drift demand, D is distributed
log-normally [55] with a dispersion Sy, about the
median. A regression test was performed and a power-
law relation (Eq. (2)) was established to obtain a, b, and
B pum from the NLTHA results.

A typical eight-storey four-bay RC framed building
(Fig. 6) was considered in the present study with a
uniform storey height of 3.5 m and uniform bay width of
5 m. The building was considered to be symmetric in plan
and elevation, and a representative central frame was
considered for the analysis. The building was designed
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Table 7 GOF test results for compressive strength of WCS concrete
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mix distribution KS/KSL AD CS total statistics final rank
stat. rank stat. rank stat. rank
MO normal 0.142 2 0.653 1 0.045 1 0.669 1
lognormal 0.147 5 0.674 3 0.066 3 0.693 3
Gamma 0.142 2 0.653 1 0.050 2 0.670 2
Weibull 0.110 1 1.012 4 0.920 5 1.372 4
Gumbel max 0.181 6 1.412 5 2.615 6 2977 6
Gumbel min 0.146 4 1.474 6 0.819 4 1.693 5
M20 normal 0.147 3 0.809 4 1.955 2 2.121 2
lognormal 0.144 1 0.806 3 2.302 3 2.443 3
Gamma 0.145 2 0.786 2 2.345 4 2.477 4
Weibull 0.173 5 1.511 5 9.532 6 9.653 6
Gumbel max 0.152 4 0.780 1 0.297 1 0.848 1
Gumbel min 0.218 6 2.403 6 8.966 5 9.285 5
M40 normal 0.141 4 1.089 4 3.006 4 3.200 4
lognormal 0.135 2 1.064 3 1.820 3 2.112 3
Gamma 0.137 3 1.035 2 1.693 2 1.989 2
Weibull 0.168 5 1.844 5 3.845 5 4.267 5
Gumbel max 0.107 1 0.539 1 0.252 1 0.604 1
Gumbel min 0.211 6 3.264 6 5.004 6 5.978 6
M60 normal 0.106 1 0.620 2 1.950 3 2.049 3
lognormal 0.111 3 0.650 3 2.049 4 2.153 4
Gamma 0.106 2 0.608 1 1.934 2 2.030 2
Weibull 0.125 4 0.849 4 2.848 5 2.974 5
Gumbel max 0.144 6 0.949 5 1.719 1 1.968 1
Gumbel min 0.142 5 1.601 6 5.017 6 5.268 6
MS80 normal 0.160 2 1.235 2 2.964 1 3.215 1
lognormal 0.165 4 1.302 4 3.186 3 3.446 3
Gamma 0.161 3 1.247 3 3.051 2 3.299 2
Weibull 0.140 1 1.036 1 3.345 4 3.504 4
Gumbel max 0.195 6 1.984 6 8.148 6 8.388 6
Gumbel min 0.169 5 1.651 5 4.617 5 4.906 5
M100 normal 0.086 2 0.230 2 0.424 1 0.490 1
lognormal 0.088 3 0.254 3 0.479 3 0.549 3
Gamma 0.084 1 0.229 1 0.431 2 0.495 2
Weibull 0.095 4 0.509 4 0.584 4 0.781 4
Gumbel max 0.142 6 0.704 5 2.981 6 3.066 6
Gumbel min 0.139 5 0.841 6 1.437 5 1.670 5

using IS 1893 [59] for seismic load associated with the
highest seismic zone of India (with a peak ground
acceleration of 0.36g under a maximum magnitude
earthquake). Characteristic compressive strength of
concrete and characteristic yield strength of reinforce-
ment steel were considered for the design as 40 and

415 MPa, respectively. The dead load of the building
included the self-weight of the members, 125 mm thick
slab load, and 230 mm thick infill wall load. The imposed
load on the floors and roof was considered following the
guidelines of IS 1893 [59]. The building models were
designed using commercial software SAP 2000 [60]
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Table 8 GOF test results for flexural strength of WCS concrete

mix distribution KS/KSL AD CS total statistics final rank
stat.. rank stat.. rank stat.. rank
MO normal 0.115 1 0.410 1 0.096 3 0.437 1
lognormal 0.120 3 0.460 4 0.096 4 0.485 3
Gamma 0.118 2 0.439 3 0.095 2 0.464 2
Weibull 0.126 4 0.426 2 2.492 5 2.532 5
Gumbel max 0.155 5 1.365 6 0.037 1 1.375 4
Gumbel min 0.171 6 0.635 5 9.142 6 9.166 6
M20 normal 0.109 2 0.290 1 1.803 4 1.830 4
lognormal 0.115 4 0.331 3 0.099 3 0.364 2
Gamma 0.112 3 0.312 2 0.098 2 0.346 1
Weibull 0.104 1 0.367 4 2.601 5 2.629 5
Gumbel max 0.151 6 1.126 6 0.033 1 1.137 3
Gumbel min 0.147 5 0.602 5 5.135 6 5.173 6
M40 normal 0.133 3 0.635 3 1.345 5.00 1.493 2
lognormal 0.142 5 0.737 5 1.319 3.00 1.518 4
Gamma 0.139 4 0.701 4 1.331 4.00 1.510 3
Weibull 0.112 2 0.426 2 1.754 6.00 1.808 5
Gumbel max 0.193 6 2.362 6 1.215 2.00 2.663 6
Gumbel min 0.091 1 0.274 1 0.463 1.00 0.546 1
M60 normal 0.112 2 0.470 3 0.794 3 0.929 3
lognormal 0.120 4 0.555 5 0.711 1 0.910 2
Gamma 0.117 3 0.525 4 0.711 2 0.892 1
Weibull 0.091 1 0.306 1 2.776 6 2.794 5
Gumbel max 0.180 6 2.058 6 1.972 5 2.855 6
Gumbel min 0.133 5 0.324 2 1.158 4 1.210 4
MS80 normal 0.172 3 1.001 3 2.094 3 2.327 3
lognormal 0.180 5 1.093 5 3.163 4 3.352 4
Gamma 0.177 4 1.059 4 3.752 5 3.903 5
Weibull 0.143 2 0.730 2 0.523 2 0.910 2
Gumbel max 0.243 6 2911 6 6.395 6 7.031 6
Gumbel min 0.137 1 0.664 1 0.456 1 0.817 1
M100 Normal 0.080 2 0.167 1 0.178 1 0.257 1
Lognormal 0.090 4 0.192 3 0.195 2 0.288 2
Gamma 0.086 3 0.178 2 0.198 3 0.280 3
Weibull 0.078 1 0.366 4 0.472 4 0.602 4
Gumbel max 0.150 6 0.826 6 3.693 6 3.787 5
Gumbel min 0.113 5 0.687 5 2211 5 2318 6

following the guidelines of IS 456 [61].

Selected buildings were modeled and analyzed using
the open-source software Open SEES [62] for NLTHA. A
force-based nonlinear beam-column fiber element was
used for the modeling of beams and columns, which
considered the spread of plasticity along the element.

Each element was divided into five integration points. In
the present study, uncertainty in loading was considered
by selecting 22 pairs (44 ground motions) of far-field
ground motions [63]. The details of selected ground
motions are also available in the published literature [64].
The uncertainty in the compressive strength of WCS
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Table 9 GOF test results for split tensile strength of WCS concrete
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mix distribution KS/KSL AD CS total statistics final rank
stat. rank stat. rank stat. rank
MO normal 0.138 4 0.478 1 3.079 1 3.119 1
lognormal 0.135 3 0.523 4 3.230 3 3.275 3
Gamma 0.134 2 0.487 2 3.122 2 3.162 2
Weibull 0.134 1 0.522 3 4.466 4 4.499 4
Gumbel max 0.151 5 1.043 6 4.976 5 5.086 5
Gumbel min 0.180 6 0.919 5 6.037 6 6.109 6
M20 normal 0.091 3 0.334 3 2.330 4 2.355 4
lognormal 0.089 2 0314 2 2.258 2 2.281 2
Gamma 0.086 1 0.300 1 2.270 3 2.292 3
Weibull 0.103 5 0.788 5 2.558 5 2.679 5
Gumbel max 0.096 4 0.395 4 0.110 1 0.421 1
Gumbel min 0.153 6 1.413 6 4.747 6 4.955 6
M40 normal 0.131 1 0.538 2 1.453 1 1.555 1
lognormal 0.133 3 0.595 4 1.541 3 1.657 3
Gamma 0.131 2 0.563 3 1.495 2 1.603 2
Weibull 0.139 4 0.469 1 3.328 4 3.364 4
Gumbel max 0.152 5 1.448 6 3.907 5 4.169 5
Gumbel min 0.153 6 0.702 5 5.450 6 5.497 6
M60 Normal 0.080 2 0.197 3 0.315 2 0.380 1
lognormal 0.081 3 0.191 2 0.481 4 0.524 4
gamma 0.078 1 0.177 1 0.422 3 0.464 2
Weibull 0.089 4 0.657 5 0.725 5 0.982 5
Gumbel max 0.105 5 0.396 4 0.237 1 0.473 3
Gumbel min 0.126 6 1.171 6 2223 6 2.515 6
MS80 normal 0.112 4 0.551 4 1.718 2 1.808 2
lognormal 0.110 3 0.543 3 1.968 4 2.044 4
Gamma 0.107 2 0.513 2 1.799 3 1.873 3
Weibull 0.122 5 0.987 5 2.774 5 2.947 5
Gumbel max 0.100 1 0.487 1 1.129 1 1.233 1
Gumbel min 0.169 6 1.784 6 5.070 6 5.377 6
M100 normal 0.108 2 0.495 2 2.304 5 2.359 5
lognormal 0.113 4 0.551 4 2.254 4 2.323 4
Gamma 0.109 3 0.511 3 2.158 3 2.220 3
Weibull 0.100 1 0.481 1 1.006 1 1.119 1
Gumbel max 0.147 6 1.314 6 3.706 6 3.935 6
Gumbel min 0.125 5 0.900 5 1.716 2 1.942 2

concrete was considered by selecting the recommended
distribution as per Table 9. The strength properties of
reinforcement steel and other modelling properties were
considered at their mean values. Forty-four selected
ground motions were linearly scaled to have PGA from
0.1g to 1.0g. Using the sampling technique 44 different

values of concrete compressive strength were generated
to create 44 building models. Each of the 44 building
models was analysed for one randomly selected ground
motion with randomly selected PGA using NLTHA. The
demand parameter (ISD) obtained from the NLTHA and
the corresponding intensity measure (PGA) are plotted in
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Table 10 Recommended variability models for strength properties (MPa) of WCS concrete

mix compressive strength flexural strength split tensile strength
MO normal (46.25, 0.79) normal (5.22, 0.26) normal (3.87,0.22)
M20 Gumbel max (45.96, 0.77) Gamma (388.56, 0.02) Gumbel max (3.89, 0.16)
M40 Gumbel max (47.14, 1.15) Gumbel min (5.52, 0.20) normal (4.3, 0.198)
M60 Gumbel max (50.89,1.15) Gamma (517.6, 0.01) normal (4.33, 0.18)
M80 normal (53.86, 2.56) Gumbel min (5.93, 0.17) Gumbel max (4.31,0.15)
M100 normal (46.01, 0.94) normal (5.23, 0.27) Weibull (23.83, 4.20)

Note: Values in parenthesis present shape and scale parameters for each distribution

Fig. 7. The power-law relation between ISD and PGA
was developed through regression analysis, which
represented PSDMs for the selected building. A higher
value of ISD corresponded to the higher vulnerability of
the building. It can be seen from Fig. 7 that no significant
change in the ISD was observed for the building frame
modelled with WCS concrete as compared to the control
mix (MO). The fragility curves were developed for the
selected building at the chosen performance limit states,
as shown in Fig. 8.

It can be seen from Fig. 8 that the percentage
replacement of WCS did not change the fragility curves
of the selected building substantially which was in
agreement with the results of PSDMs. The building
modeled with 100% replacement of WCS was found to
be the most fragile among the considered models
although the differences were very small. The order of the
building models in terms of increasing probability of
failure was found to be M80 < M60 < M40 < M20 <
MO < M100, which follows the hierarchy of mean
compressive strength as evident from Table 3. These
results confirm that the WCS concrete can be used in
seismic resistant structures safely as WCS results in an
identical probability of failure and dispersion in the drift
demand when compared with the conventional concrete
building.

6 Conclusions

The use of WCS as an alternative to natural sand can
bring increased sustainability to concrete construction by
utilizing waste and conserving natural resources.
However, the utilization of WCS in the construction
industry is low. This paper aims to build confidence
among the stakeholders by providing research output on
the behavior of both concrete and structure incorporating
WCS. The paper addresses two important aspects: (i)
modeling the strength uncertainty of WCS concrete
required to formulate the limit state and reliability- based
design and (ii) the performance of WCS concrete in
seismically resistant RC framed buildings.

Quantification of uncertainty associated with the
strength of WCS concrete was investigated and the best-

4 bays @ 5 m

8 storeys @ 3.2 m

Fig. 6 Geometry of the selected RC frame.
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Fig. 8 Fragility curves for WCS incorporated RC frames.

fit distribution functions that perform well in describing
the variability in different strength properties of WCS
concrete are recommended. The information of variability
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in the strength properties is essential for the formulation
of limit-state design and safety assessment of structures
made of WCS concrete. It is to be noted here that
construction at a practical site may have additional
variability resulting from raw materials obtained from
different  sources, different climatic conditions,
differences in quality control, etc., which are not included
in the present study.

Seismic risk of a selected RC framed building
incorporating various dosages of WCS as fine aggregate
was assessed using an accepted probability-based
methodology. Estimated seismic risk, in terms of PSDM
and fragility curve, shows that WCS concrete results in an
identical probability of failure and dispersion in the drift
demand when compared with the conventional concrete
made of natural sand. Therefore, it can be concluded that
WCS concrete will create seismic resistance similar to
that of conventional concrete in RC framed buildings.
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