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Abstract Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents
provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the
crucial traits of the cellular microenvironment, ECM substitutes mediate cell–matrix interactions to prompt stem-
cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However,
these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D
cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture
development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining
better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ
regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid
culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-
derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue
culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the
wound-healing process are reviewed.
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Introduction

As a three-dimensional (3D) network in biology, extra-
cellular matrix (ECM) provides a microenvironment to
cells for homeostasis, ingrowth, tissue formation, and
repair [1]. Each tissue or organ has its own ECM with a
distinct composition, which is generated in the early stages
of embryonic development and constantly remodeled to
control 3D tissue homeostasis [2]. Tissue-specific ECM
offers optimal cell–cell and cell–ECM interactions by
mimicking native signaling events [3]. Cell–ECM inter-
actions are crucial for modulating cell behaviors, func-
tions, and fates [4]. During tissue repair, quantitative and
qualitative changes occur in ECM compounds during 3D
tissue remodeling, which is regulated by specific enzymes,
including matrix metalloproteinases (MMPs) [5].

The principle of cell-based bioengineering aims to
(1) develop in vitro 3D culture models, such as organoid
formation; and (2) regenerate damaged tissues and organs
with a combination of cells and ECM scaffolds. Previous
studies have reported the use of various synthetic scaffolds
mimicking the 3D ECM for tissue regeneration. For
example, the pLOXL1-Lipo@PLCL-HA co-delivery sys-
tem reportedly promotes pelvic-floor repair in rabbits [6],
and 3D electrospun short fibrous sponges are demonstrated
to possess good 3D adhesion onto chronic diabetic wounds
in rats [7]. However, clinical applications for biomaterials
remain hampered probably because of the “inertness” of
synthetic ECM scaffolds [8,9]. Conversely, natural ECM
contains useful structural and biochemical information,
providing sufficient bioactive cues to trigger cell functions
needed for tissue regeneration [10,11]. Natural ECM
scaffolds are generated from decellularized ECM
(dECM), either from decellularized cells (C-ECM) or
decellularized tissue-specific ECM (TS-ECM) [12].
Considering the numerous advantages of dECM for cell

growth and differentiation because of the retention of
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biochemical cues, dECM products have become an
attractive platform for several bioengineering applications
[13]. Nowadays, dECM applications in pioneering scaf-
fold-manufacturing techniques such as 3D cell printing and
electrospinning also bring the field closer to clinical
translation. 3D cell printing, also known as bioprinting,
enables the recapitulation of the unique features of human
tissues and organs through the design of bioink and
polymerization techniques [14,15]. Bioink is a formulation
of cellular components and biomaterials [14,16]. These
biomaterials could satisfy the requirements to print cell-
laden constructs; however, tissue- and organ-specific
dECM-based bioinks can recapitulate a cell-supportive
microenvironment niche in 3D cell-printed constructs [16].
The use of the bioprinting method for printing of cell-laden
structures can reportedly provide an optimized micro-
environment for 3D-structured tissue growth [17]. Thus,
the new paradigm of dECM-based bioinks has been
deemed as a powerful modern technology. Recently,
electrospinning has attracted notable attention as another
scaffold manufacturing technique. Electrospinning is a
high-throughput technique that fabricates high-porosity
fibrous scaffolds with nano-/microsized ultrafine fibers,
whose morphology and structure mimic those of natural
ECM [13,18,19]. The retention of architecture in electro-
spinning is beneficial for cell growth and alignment, but
the biomechanical components in dECM may play a great
role in cell differentiation [13]. Moreover, dECM is often
difficult to scale up to clinically desired shapes due to its
physiochemical properties. Thus, the combination of
dECM and electrospinning can reduce the limitations of
dECM scaffolds and provide them with tunability.
Despite the broad use of ECM, its exact mechanisms for

tissue repair remain elusive. This review discusses the
characteristics and mechanisms of tissue- or cell-specific
ECM, along with the preparation for 3D organoid models
and preclinical applications of tissue repair. Furthermore,
we address challenges in clinical application and future
directions.

Physiologic roles of TS-ECM in organ formation

ECM remodeling is crucial to organ formation and
development. Among various organs, the intestine is an
example of how ECM regulates normal organ morphogen-
esis [5]. In anurans tadpoles, the basement membrane of
the tubular intestine thickens during intestinal metamor-
phosis. When induced by thyroid hormone, ECM proteins
(including collagen, laminin, and fibronectin) increase,
thereby inhibiting epithelial cell apoptosis in tadpoles [20].
Similarly, ECM remodeling is observed to play a central
role in intestinal morphogenesis in rat [21] and mouse [22]
models. Alternatively, other organs such as the lungs and
the mammary and submandibular glands develop by
epithelial branching. The branching process establishes

the structure of these organs, and this process involves the
repetitive formation of epithelial clefts and buds. The
formation invades adjacent embryonic ECM, and the ECM
composition and distribution shift over time. Thus, ECM
remodeling provides structural integrity and regulates
multiple cellular processes, such as cell growth, cell
motility, and cell shape [23]. Meanwhile, the dysregulation
of ECM components, structure, stiffness, and abundance
may contribute to pathological conditions and exacerbate
disease progression. For example, heavy scar formation is
associated with abnormal ECM deposition [24], whereas
osteoarthritis is linked to excessive ECM degradation [25].

ECM composition

ECM displays a 3D macromolecular network providing
both structural support and biomechanical signaling to
mediate cell behaviors, such as adhesion, proliferation,
migration, and differentiation [26–28]. ECM consists of
collagens, fibronectin (FN), laminins, elastin, proteogly-
cans (PGs), glycosaminoglycans (GAGs), and several
other glycoproteins [29].
In mammalian tissues, ECM is generally divided into

two types based on location and composition: (1) the
interstitial connective tissue matrix, which surrounds and
supports most stromal cells, thereby providing structural
scaffolding for tissues, such as skeletal, and smooth muscle
tissues [5]; and (2) the basement membrane, which
primarily supports the epithelium and separates it from
the environmental stroma, such as tubular and hollow
structure tissues [5,30]. Although the ratios of ECM
composition and structure vary among different organs or
tissues, common biomacromolecules have been exten-
sively studied (Table 1). The most dominant and abundant
protein within tissue ECM is collagen [31]. Specifically,
collagen type I functions in forming fibrils, collagen type II
is rich in cartilage, and collagen type IV serves as a
constituent part of the basement membrane [32]. Collagen
types I and II are the main components of ECM. FN is a
ubiquitous ECM glycoprotein that plays a critical role in
attaching onto cells through binding between ligands and
receptors. Thus, FN can provide molecules within the
ECM with adhesion sites, such as collagens, integrins,
proteoglycan, and heparan sulfate [29]. Laminins also
serve as adhesive sites for ECM biomacromolecules and
receptors located on the cell surface [29]. Elastin fibers are
large ECM structures that undergo repeated stretching
forces and thus provide recoil to tissues [33]. GAGs are
usually covalently bonded to proteins to form PGs, which
are vital molecules in tissue development and homeostasis
[34]. Hyaluronan (HA) is a linear form of GAG containing
repetitive disaccharide units of N-acetyl-D-glucosamine
and D-glucuronic acid. As a major constituent of the
pericellular matrix of many cell types, HA attaches onto its
cellular receptors or binds to its own synthases, thereby
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influencing various cell functions [35].
The composition of ECM is constantly updated. Matrix-

bound nanovesicles, a subgroup of extracellular vesicles,
have been recently found within ECM. They are embedded
within it and have a tissue-specific microRNA cargo and
membrane lipid structure that can play a significant role in
the regulation of inflammation and healing processes [40].

Role of ECM in inducing stem-cell fate

Accurately guiding stem cells to give rise to target cells is
challenging due to the lack of defined inductors. As a
natural niche, ECM provides a dynamic microenvironment
for cell replication and differentiation when stem cells are
activated [36]. The dynamic interaction in the microenvir-
onment is also deemed as “dynamic reciprocity” [41]. With
cell–ECM communication, ECM regulates stem-cell fate
through structural support, biochemical composition,
growth factors, and biomechanical factors [4] (Fig. 1)
(Table 2).
First, ECM provides structural support for cells

primarily because of the following: (1) the 3D structure
of ECM allows an interconnected porous structure, and
(2) the cross-linked fibrillar network and other large
molecules provide rich cell-adhesion points [42]. Struc-
tural support is essential for cell adhesion, growth, and
differentiation [43]. In 2020, Satyam et al. [44] reported a
cell-derived ECM platform that could support podocyte
proliferation, differentiation, and maintenance of the native
phenotype.
With regard to biochemical composition, cells interact

with the biochemical composition of ECM through
transmembrane receptors. Integrins are the predominant
transmembrane receptors on the surface of cells, connect-
ing ECM proteins to the cytoskeleton within cells. They
play crucial roles in various cellular activities, such as

adhesion, proliferation, migration, differentiation, and
homing [45–49]. Various integrin types are associated
with the interactions between the cells and ECM, such as
integrin α6β1, integrin α9, integrin β1, and integrin αvβ3
[48]. In 2020, Lu et al. [50] reported that integrin β1
knockout inhibits induced pluripotent stem cells (iPSCs)’
adhesion and migration across activated endothelial
monolayers. In 2021, Han et al. [51] demonstrated that
anti-human integrin β1 antibody could specifically target
human iPSCs and differentiate into various lineages in a
mouse model.
Furthermore, ECM proteins can bind and regulate

growth-factor bioavailability, serving as a growth-factor
reservoir. ECM proteins such as FN, collagens, and PGs
alone or combined with heparin sulfate can connect to
various growth factors, such as fibroblast growth factor
(FGF), hepatocyte growth factor (HGF), and vascular
endothelial growth factor (VEGF) [52]. Compared with
unbounded growth factors, binding with ECM can
potentiate their bioactivity. The phenomenon has already
been observed in HGF, bone morphogenic protein (BMP)-
2 and -4, acidic FGF, and insulin like growth factor (IGF)-1
[42,53]. ECM can also serve as microanatomic compart-
ments. For example, due to the restrictions of basement
membrane, asymmetric sequestration of bioactive factors
occurs [52]. Thus, decellularized ECM having specific
interactions with growth factors may generate dynamic and
functional niches. In 2019, Ullah et al. [54] reported that
replenishing human kidney ECM with VEGF results in
more efficient differentiation of human iPSCs into
endothelial cells (ECs).
Biomechanical factors including physical and mechan-

ical forces can modulate the topography and microstruc-
ture of ECM in the local stem-cell microenvironment.
Biomechanical factor changes can lead to variations in
stem-cell shape and geometry. The microstructure of

Table 1 Composition of ECM
ECM protein Tissue sources Functions

Collagen Resists tensile and shearing forces, affects various cellular
functions [29,36]

Collagen I (80%)
Collagen II
Collagen III
Collagen IV
Collagen V

Skin, tendon, internal organs, organic parts of bone
Cartilage
Bone marrow, lymphoid tissues
Basement membrane
Hair, surfaces of cells

Fibronectin Plasma, surfaces of cells Cell adhesion sites, influences cellular behaviors [29,37]

Laminin Basal lamina, placenta Cell adhesion sites [29]

Elastin Blood vessels, ligaments, skin, lung, bladder, elastic
cartilage

Recoil [33]

Proteoglycans Connective tissues, intracellular compartments, surfaces
of cells

Resists compressive forces, provides recoil and participates in
cell signaling and cellular behaviors [29,36]

Hyaluronan Placenta, amniotic fluid, vitreous body, articular cartilage,
dermis of skin

Lubricates, absorbs shock, affects cellular behaviors and
signaling molecules [38,39]
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substrates could reportedly affect ECM protein binding
[55,56]. Additionally, ECM stiffness has been identified as
an important element in determining stem-cell fate in terms
of lineage commitment [57,58] and self-renewal capacity
[59]. For mesenchymal stem cells (MSCs), increased
substrate stiffness enhances the osteogenic differentiation
of MSCs [60,61], whereas soft matrix is inclined to induce

chondrogenesis and adipogenesis [3]. ECM elasticity is
another factor. In 2018, Hirata et al. [62] reported that the
cardiac differentiation of iPSCs prefers highly elastic
substrates in vitro. In 2020, Muncie et al. [63] demon-
strated that substrates recapitulating embryo elasticity
could promote human embryonic stem cells (ESCs) self-
organization.

Fig. 1 Role and composition of stem-cell niche. The stem-cell niches retain the stemness of adult stem cells in a quiescent state. When tissue is
injured, the surrounding microenvironment actively signals stem cells to promote either self-renewal or differentiation to form new tissues. The niches
include cell–matrix, cell–protein, protein–matrix, cell–cell interactions, hypoxia, and metabolism. Among these niche factors, cell–matrix interactions
play a key role in prompting cell adhesion, migration, proliferation, and differentiation for tissue regeneration. The matrix regulates stem-cell behavior
through structural supports, biochemical signaling, growth factor induction, and biomechanical regulation during tissue repair.

Table 2 Role of ECM in inducing stem-cell fate
Role Mechanism(s) Function(s)

Structural support Porosity, mechanical properties,
cell–matrix communication

Regulating cell adhesion, growth, differentiation and forming 3D tissue
structures [43]

Biochemical regulation Integrins Regulating cell proliferation, adhesion, migration, differentiation, homing
[45,46,49,64]

Growth factor regulation Reservoir, gradients, sequestration,
activation, autocrine, paracrine

Regulating growth factor bioavailability dynamically [52]; maintaining
stem-cell survival, self-renewal, differentiation [64–66]

Biomechanical regulation ECM topography, microstructure,
stiffness, elasticity

Modulating cell shape, tissue elongation, cell–ECM interactions; regulating
stem-cell fate [55–57,59,62–64]
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Recently, we have developed 3D human cell-based
systems to replace the use of two-dimensional (2D) cell
culture or animals for studying renal cytotoxicity [64]. To
induce human urine-derived stem cells into renal tubular
epithelial cells in 3D organoid culture, decellularized
porcine kidney ECM is used as a culture supplement. Their
results demonstrated that the levels of renal injury markers
(CYP2E1 and KIM-1) in 3D organoids significantly
increase in response to nephrotoxic agents (acetone and
cisplatin). This 3D culture system with human stem cells
and kidney-tissue ECM offers an alternative approach to
renal-cytotoxicity testing [64].

Preparation of dECM

Decellularization is a bioengineering technology used to
isolate ECM scaffold from the cells inhabiting it. The ECM
scaffold product possesses bioactive molecules from native
tissue, which can be used for tissue regeneration and
disease remodeling. The goal of ECM decellularization is
to retain ECM compounds and structure and remove

xenogeneic cell compounds, thereby avoiding immunor-
eaction. Thus, assessing changes quantitatively and
qualitatively in ECM is critical. ECM can also be mediated
by certain enzymes, which are responsible for ECM
degradation after implantation in vitro, such as MMPs.
Currently, commercially used ECM scaffolds are applied
in wide-ranging bioengineering applications and are
typically divided into C-ECM and TS-ECM (Table 3).

Decellularization of cell-derived ECM

With various available treatments for decellularization, the
careful monitoring of the combinations of physical,
chemical, and enzymatic treatments is essential for the
retention of the biochemical, biological, and biophysical
properties of ECM [12]. Each of these methods may inflict
damage to the structure and components of ECM, but no
unified criteria exist for decellularization. Physical decel-
lularization methods may be sufficiently harsh to alter
ECM protein structures (e.g., collagen) and mechanical
properties [67–70]. Chemical methods may break the
connections between DNA and proteins, destroy the

Table 3 Methodology of decellularized tissue or cell-derived ECM
Agents/techniques Mode of action Effects on ECM

Physical treatments

Freeze and dry Xenogeneic cellular compounds can be washed away
after microscopic ice crystals disrupt cell membrane

Disrupt or fracture ECM fibers [92–94]

Mechanical-shaking
force

Shaking action promotes cell debris removal from matrix Disrupt ECM structure and clean up the cellular fragments
[95–97]

NTIRE Electrical pulse disrupts cellular membranes Can disrupt ECM [98,99]

scCO2 Deeply penetrates into tissues and solubilizes non-polar
molecules

Can disrupt ECM when the system is rapidly depressurized
[81]

Chemical treatments

Acids and bases Disrupts both intracellular organelles and cell membranes Break down collagen and GAGs and denature proteins or
growth factors [95,100]

Ionic detergents Solubilizes plasma membranes and nuclear membranes Denature proteins via damaging bonds between proteins
[82,101,102]

Non-ionic detergents Disrupts bonds between lipids and between lipids
and proteins

Beneficial to keep the ECM intact, may disrupt ultrastructure
and GAGs [83,101,102]

Enzymatic treatments

Trypsin Cleaves cell adhesion from ECM Extended exposure can destroy the structure of ECM, remove
fibronectin, laminin, elastin, GAG [103–105]

Dispase Cleaves collagen IV and fibronectin Extended exposure can destroy the ultrastructure of ECM
[95,106]

Nuclease
(DNase and RNase)

Degrades nucleic acids Hard to remove, may induce immune reaction [107–109]

FBS (serum containing
DNase and RNase)

Retains bioactive proteins, degrades remaining DNA/RNA Can minimize the loss of major bioactive proteins, decrease
xenogeneic immune response [86–88]

Combined methodologies

Shaking action+ FBS Optimizes approaches to remove xenogeneic cellular
compounds by maintaining bioactive proteins and
ECM structure

ECM, extracellular matrix; GAGs, glycosaminoglycans; NTIRE, non-thermal irreversible electroporation; scCO2, supercritical carbon dioxide; FBS, fetal
bovine serum.
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ultrastructure and growth factors, and denature ECM
proteins [3,67,71–75]. Enzymes such as collagenase,
lipase, trypsin, dispase, thermolysin, and nucleases
[76,77] can remove cell residue or undesirable ECM
components with high specificity. However, one limitation
of enzymatic treatment is incomplete cell removal and
impairment of recellularization [76]. Enzymatic treatments
are insufficient for cell removal alone, so they are often
combined with chemical detergents. Specific decellular-
ization methods need to be optimized according to specific
cell types, cell density, and ECM thickness [76].
Decellularization treatments are introduced systematically
in the following section.

Decellularization of tissue-specific ECM

In TS-ECM, many decellularization methods are designed
to remove all cellular components [78,79]. The ideal
procedure is to lyse cells and then wash away the cellular
compounds from the tissue while retaining the ECM
components and bioactive molecules. Thus, TS-ECM
products retain natural ECM properties to form bioengi-
neered tissues. After decellularization, the xenogeneic
ECM scaffold could be recellularized with stem or
progenitor cells, which differentiate into the original cell
types in the tissue. Given their diverse applications for
tissue regeneration, decellularization techniques must be
tailored and integrated to meet the requirements for
specific tissues. Decellularization methods that have been
investigated include physical, chemical, and enzymatic
treatments. Although some are commonly used, the
optimal combination for decellularization depends on the
tissue’s origin, characteristics, and intended use [76]. As
for perfusion and immersion decellularization techniques
applied to organs or tissues, they are applicable for tissues
with extensive vasculature.

Physical treatments

The most common physical methods used for decellular-
ization are to lyse or break the cell membrane or remove
cells from the tissue matrix through temperature changes,
mechanical force, and non-thermal irreversible electro-
poration (NTIRE). The mechanism involved in tempera-
ture methods is rapid freeze and thaw. After cell lysis,
liquefied chemicals are used to treat the tissue. The purpose
of this step is to degrade and wash out undesirable
components. Temperature methods retain the ECM
physical structure and are most suitable for strong and
thick tissues. Mechanical-shaking force is commonly
applied to organs with natural planes of dissection, such
as the urinary bladder and the small intestine [80]. NTIRE
is another alternative to lyse cells by using electrical
pulses, which can disrupt the plasma membrane. However,
NTIRE technology is suitable only for small tissues.

Interest in supercritical fluid technology to decellularize
tissues is also growing. Supercritical carbon dioxide
(scCO2) easily penetrates into biological tissues, thereby
facilitating the removal of structural components of
cellular membranes (lipids). The main advantages of this
protocol are the significant reduction in processing time
and the sterilizing effects. Nevertheless, the high pressure
in a reactor can lead to the rupture of cells with subsequent
removal of cellular fragments when the system is rapidly
depressurized [81].

Prevalent chemical treatments

The appropriate chemical detergents are selected based on
the tissue’s/organ’s thickness, ECM composition, and
intended use. The prevalent chemical detergents used for
decellularization include acids, bases, ionic detergents, and
non-ionic detergents.
Acids and bases are used for solubilizing cellular

cytoplasmic components and removing nucleic acids,
including RNA and DNA. These chemicals can effectively
disrupt both intracellular organelles, cell membranes, and
some important molecules, including GAGs. Ionic deter-
gents are used for effectively solubilizing plasma mem-
branes and nuclear membranes by breaking protein–
protein interactions [82]. Sodium dodecyl sulfate (SDS)
is commonly used because it can effectively lyse cells
while not damaging ECM significantly. Right after the cell
membranes are lysed by SDS, the genetic contents are
degraded by endonucleases and exonucleases. Non-ionic
detergents disrupt lipid–lipid and lipid–protein interactions
but leave protein–protein interactions intact. Triton X-100
is the most widely used non-ionic detergent [83].

Enzymatic treatments

Enzyme methods are used to destroy attachments between
nucleic acid bonds. They interact with cells via adjacent
proteins or other components of the cells. Collagenase,
lipase, trypsin, dispase, thermolysin, and nuclease have
been used to remove cells [76]. Serum has also been
successfully used for decellularization due to the existence
of nucleases [30].
Collagenase is appropriate for producing ECM scaffolds

only when unbroken collagen structures are not required.
Lipase is applicable when generating decellularized skin
scaffolds. The function of lipase acids in the decellulariza-
tion of skin dermis is degreasing and breaking the bonds
among lipidized cells. Trypsin, a kind of serine protease, is
also a common enzymatic agent for decellularization.
Dispase is effective in separating undesired cells from
ECM scaffold for its use in preventing cell aggregation.
However, enzymes such as dispase and thermolysin are
ineffective for removing cells inside tissues; they are more
effective in combination with mechanical abrasion for
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complete cell removal [84]. Nucleases including DNase
and RNase are often used for the cleavage of nucleic acids.
Thus, nucleases are usually used to remove nucleic acids
after cell lysis with physical pressure and chemical
detergents [85].
Serum is commonly used in cell-culture systems because

it contains many essential components that are beneficial
for cell growth and propagation. The most extensively
used serum is fetal bovine serum (FBS). Serum also
contains serum nucleases, which can degrade the DNA and
RNA remaining after cell lysis. Utilizing serum in
decellularization methods has two extraordinary advan-
tages: (1) retaining bioactive molecules in ECM compared
with other reagents for decellularization [86]; and
(2) degrading the DNA and RNA remaining after cell
lysis, which can potentially induce immune responses [86–
88].
In summary, the optimal decellularization approach is to

minimize the loss of major bioactive matrix components
and the xenogeneic immune responses simultaneously
[30,80]. Single or combined decellularization methods are
applied to achieve optimal efficiency according to the
features of specific tissues and organs.

Handling of decellularized scaffolds

Decellularization yields multiple kinds of decellularized
scaffolds, which can be further recellularized for in vitro
and in vivo studies. Decellularized scaffolds are deemed
the final products if the original ECM architecture is well
retained [89]. Furthermore, decellularized C-ECM could
be used in either its original format, or it can be
fragmented, ground, or solubilized. Either 2D ECM sheets
or complicated 3D structures comprising 3D scaffolds can
be produced from these formats [12]. In other cases, post-
processing techniques are needed to produce various
products and thus meet research and clinical requirements,
including the lyophilization, milling, and digestion of
ECM, resulting in an injectable hydrogel [90]. It can be
further cross-linked with genipin or glutaraldehyde to
enhance the integrity [91].

Applications of dECM

Considering the desired functions of ECM in mediating
cellular behaviors, dECM is extensively used as a coating
agent in 2D or 3D scaffolds [110]. Its utility in tissue
regeneration and stem-cell lineage induction has now been
widely examined among different tissues and organs.
Based on the ECM source, we discuss the applications of
C-ECM and TS-ECM separately.

Cell-derived ECM

C-ECM is commonly used as a coating on biomaterial

surfaces, but more sophisticated approaches exist. For
example, the synthesis products of C-ECM can serve as 2D
substrates for engineering tissues de novo or facilitating
wound healing and regeneration [111]. According to
different applications, C-ECM can be used as a biomaterial
to regenerate tissues or promote cell-lineage commitment
[111].
Compared with TS-ECM, an ideal scaffold material in

tissue engineering, C-ECM is normally considered an
in vitro niche, in which primary cells and MSCs can be
rejuvenated to maintain their proliferation and differentia-
tion capacity [112–114]. For instance, C-ECM has been
demonstrated to refresh tissue-specific stem cells such as
synovium-derived stem cells (SDSCs) [115–122], bone
marrow-derived MSCs (BMSCs) [123–125], umbilical
cord-derived MSCs (UCMSCs) [126,127], infrapatellar fat
pad-derived stem cells (IPFSCs) [128–130], ESCs [131],
periodontal ligament stem cells [132], and neural progeni-
tor cells [133]. C-ECM also refreshes primary cells such as
chondrocytes [134,135], nucleus pulposus cells [136,137],
and hepatic cells [138] in proliferation and redifferentiation
capacities (Table 4). This rejuvenation effect of C-ECM
primarily occurs thorough anti-inflammation and anti-
oxidation [121,122,126,135,139], which can reverse
senescent stem cells and primary cells [127].
To explore the underlying mechanisms, adult human

SDSCs are grown on C-ECM deposited by adult stem cells
with varied chondrogenic capacity, including SDSCs
(strong), adipose-derived stem cells (ADSCs; weak), and
urine-derived stem cells (USCs; none), as well as C-ECM
deposited by dermal fibroblasts (a non-stem-cell control)
[119]. Despite the fact that expansion on C-ECM yields a
large quantity of adult SDSCs with higher chondrogenic
capacity than those on tissue-culture plastic (TCP),
expansion on C-ECM deposited by SDSCs (with stronger
chondrogenic capacity) yields SDSCs with less chondro-
genic potential than those from other C-ECM groups.
Intriguingly, SDSCs grown on C-ECM deposited by USCs
display the highest expression of chondrogenic marker
genes, aggrecan and type II collagen, which may be
associated with the highest expression of basement
membrane proteins. Furthermore, one basement membrane
component, FN, has been evaluated in a recent study for its
effect on the proliferation and differentiation capacity of
stem cells by using CRISPR/CAS9-generated FN-knock-
out (FN1-KO) in human IPFSCs [129]. Wang et al. [129]
found that FN1-KO promotes the proliferative capacity of
human IPFSCs; however, this capacity is reversed during
expansion on C-ECM generated by FN1-KO IPFSCs. The
importance of FN in chondrogenic and adipogenic
differentiation is also indicated in the FN1-KO IPFSCs
and FN– matrix microenvironment.
Another interesting study is to assess the influence of C-

ECM expansion and immortalization on stem-cell prolif-
eration and differentiation [130]. Wang et al. [130] found
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Table 4 Applications of cell-derived ECM for in vitro tissue formation and in vivo tissue repairing

Application ECM types
Cell types and
animal models

Outcomes

Tissue regeneration

Cartilage tissue Porcine SDSCs Porcine SDSCs
In vitro and in vivo
(13 minipigs)

Enhancing SDSCs’ expansion, chondrogenic
potential, and repair of cartilage defects [139]

Human adult vs.
fetal SDSCs

Human adult SDSCs Promoting adult SDSCs’ chondrogenic capacity by
fetal ECM [140]

Human fetal MSCs Human adult MSCs Promoting adult MSCs’ proliferation, multipotency,
and stemness [141]

Porcine chondrocytes
vs. rabbit BMSCs

Rabbit
chondrocytes

Supporting attachment and proliferation of
chondrocytes [142]

Porcine SDSCs Porcine chondrocytes Delaying chondrocyte dedifferentiation and
enhanced redifferentiation [134]

Porcine SDSCs vs. NPCs
vs. SDSCs/NPCs

Porcine SDSCs Guiding SDSCs’ differentiation toward the NP
lineage [137]

Porcine SDSCs Porcine NPCs Rejuvenating NPCs in proliferation and
redifferentiation capacity [136]

Bone tissue Mouse BMSCs Mouse BMSCs
In vitro and in vivo
(nude mice)

Enhancing colony formation ability and retaining
stemness [143]

Human BMSCs Human BMSCs
In vitro and in vivo
(nude mice)

Stimulating MSCs’ expansion and preserving their
properties [144]

Nerve tissue Rat Schwann cells Rat dorsal root
ganglion neurons

Improving axonal growth of dorsal root ganglion
neurons [145]

Lineage commitment

ESC differentiation Murine ESCs line Undifferentiated
murine ESCs

Boosting early differentiation of ESCs [131]

Osteogenic differentiation Rat osteoblasts Human MSCs Inducing osteogenic differentiation [146]

Human BMSCs Human BMSCs Enhancing osteogenesis [124,125]

Human BMSCs Human BMSCs Further enhancing proliferation and osteogenesis
when combined with melatonin [123]

Human USCs Human BMSCs (passage 8) Recharging BMSCs’ capacity in endochondral bone
formation [125]

Human UCMSCs Human UCMSCs Enhancing UCMSCs’ osteogenic differentiation by
protecting from H2O2 induced senescence [127]

Chondrogenic differentiation Rabbit articular
chondrocytes

Human MSCs Guiding chondrogenic differentiation [146]

Porcine SDSCs Porcine SDSCs Promoting SDSCs’ proliferation and chondrogenic
potential [115]

Porcine Porcine SDSCs Maximizing SDSCs’ proliferation while maintaining
chondrogenic potential when combined with FGF2
and low oxygen [116]

Human fetal SDSCs Human fetal SDSCs Enhancing fetal SDSCs’ chondrogenic potential
[118]

Human adult vs.
fetal SDSCs

Human fetal SDSCs Enhancing SDSCs’ proliferation and chondrogenic
capacity in a pellet culture under hypoxia [117]

Passage 5 vs.
15 human IPFSCs

Passage 15 human IPFSCs Promoting IPFSCs’ proliferation and chondrogenic
potential by C-ECM deposited by passage 5 cells
[130]

Human adult SDSCs Human adult SDSCs Enhancing SDSCs’ chondrogenic potential
compared with those in ECM [121]

Porcine IPFSCs
vs. SDSCs

Porcine IPFSCs Enhancing IPFSCs’ proliferation and
chondrogenic potential in both ECM groups [128]

Hepatic differentiation Human liver progenitor
HepaRG

Human DE cells Aiding hepatic differentiation [138]

SDSC, synovium-derived stem cell; MSC, mesenchymal stem cell; BMSC, bone marrow-derived mesenchymal stem cell; NPC,nucleus pulposus cell; BM,
bone marrow; ESC, embryonic stem cell; USC, urine-derived stem cell; UCMSC, umbilical cord-derived mesenchymal stem cell; IPFSC, infrapatellar fat pad-
derived stem cell; DE, definitive endoderm.
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that human IPFSCs transduced with SV40 large T antigen
(SV40LT) yields an increase in proliferation and adipo-
genic capacity but a decrease in chondrogenic potential.
Interestingly, expansion on C-ECM generated by SV40LT
transduced cells yields human IPFSCs with enhanced
proliferation and chondrogenic potential but decreased
adipogenic capacity. This outcome has been demonstrated
to be highly relevant to the expression and distribution of
basement membrane proteins.

Tissue-specific ECM

Despite similar ECM composition among different tissues
and organs, subtle differences in function, ratio, architec-
ture, and stiffness of ECM can affect cellular interactions in
determining cell fate [147]. Unlike C-ECM, which can
refresh tissue-specific and non-tissue-specific stem/pro-
genitor cells and primary cells, TS-ECM tends to function
as a tissue-specific scaffold for stem/progenitor cells and
primary cells in most cases [26]. Even without specific
differentiation media, stem or progenitor cells still possess
specific cell-lineage differentiation capacity based on
particular interactions between cells and ECM [148].
Thus, compared with regular TCPs or natural scaffold such
as collagens, TS-ECM is superior in maintaining [149] and
guiding [150] stem-cell differentiation.
Depending on their application, TS-ECM products are

generally divided by different organs (bone, articular
cartilage, skeletal muscle, skin, and urinary bladder),
different systems (musculoskeletal system, urinary system,
and digestive system), or different germ layers (endoderm,
mesoderm, and ectoderm). To address differences and its
superiority to C-ECM, we classify TS-ECM products into
four categories, namely, cell-culture supplements, cell
sheets, tubular structures, and 3D structures according to
different TS-ECM characteristics and applications
(Table 5).

TS-ECM as supplements for in vitro 3D culture constructs

In vitro models aim to mimic the composition, ratio, and
function of native tissues as closely as possible [151]. TS-
ECM compounds could play a vital role in developing a
proper in vitro cell-culture system. Compared with
universal ECM such as collagen, TS-ECM can provide
desirable cell–substrate interactions [147]. These interac-
tions benefit cell proliferation and cellular functions, such
as the differentiation capacity of stem or progenitor cells.
Here, we focus on two post-processing products of TS-
ECM for cell culture in vitro: powder and hydrogel. 3D
matrix hydrogels often feature a soft, tissue-like stiffness
and mimic the ECM that is naturally present in tissues.
Using 3D ECM for cell-culture models presents several

benefits as it enhances cell attachment and enables proper
carrying of gases, nutrients, peptides, and proteins to the
targeted cells, which promotes cell survival, proliferation,
migration, and differentiation.
Tissue-like 3D cultures provide a promising tool to

study the pathological changes to in vitro microenviron-
ments. Pathogens such as viruses face varying conditions
in vivo; however, suitable 3D tissue environments that
impact pathogen spread need to be established. Recent
studies [152] have developed tissue-like 3D cultures
combining quantification of virus replication with imaging
to study single-cell and cell-population dynamics. Inves-
tigators have analyzed human immunodeficiency virus-1
(HIV-1) spread between primary human CD4 T-lympho-
cytes using collagen as a tissue-like 3D model through
computation technology. This study demonstrates that 3D
environmental constructs restrict infection via cell-free
virions but promote cell-associated HIV-1 transmission.
Experimental validation identifies cell motility and density
as essential determinants of the efficacy and mode of HIV-
1 spread in 3D culture. 3D tissue constructs represent an
adaptable method for the quantitative time-resolved
analyses of HIV replication, spread, and interactions
under in vitro 3D conditions [152].
The separation of ECM from tissues followed by

decellularization and other processes (e.g., milling,
pulverizing, lyophilizing, and freezing) are typical steps
for producing ECM powder. TS-ECM powder derived
from skin, muscle, and liver can be used as coating
substrates for promoting targeted cell proliferation and
maintaining the cell phenotype of the three cell types
[147]. TS-ECM hydrogel is made using solubilized
enzymatic procedures [153], which retain the full bio-
chemical complexity of native tissue. Recent efforts have
focused on recapitulating a wide variety of physiochemical
cues of native ECM [154]. Our studies have demonstrated
that synthetic skeletal muscle ECM (mECM) hydrogel, a
combination of mECM, HA-based hydrogel, and heparin
(HA-Hep), significantly improves the proliferation and
differentiation of skeletal muscle precursor cells (MPCs)
[30,87,88,155,156]. Additionally, TS-ECM from skin
[155], liver [155,157,158], and kidney [64,159] efficiently
induces tissue-specific stem cells to differentiate into
dermal cells, hepatocytes, and renal cells, respectively, in
2D or 3D cultures.
TS-ECM based biomaterials in the bioengineering field

have developed from simply coating cell-culture substrates
to native ECM-mimicking scaffold design, aiming at
recapitulating the exact dynamics, composition, and
structure of native ECM [160]. Based on the different
morphologies and topographical structures of TS-ECM,
the applications can be further divided as cell-sheet tissue
regeneration, tubular organ regeneration, and 3D tissue
regeneration.
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Table 5 Applications of tissue-specific ECM in in vitro tissue construction or in vivo tissue regeneration
Application ECM type Seeded cell types Culture condition(s) Outcomes

In vitro 3D cultures

Powder substrates Acellular rat skeletal muscle
ECM; acellular rat liver
ECM; acellular swine
skin ECM

Rat muscle cells; HepG2;
human foreskin cells

In vitro Promoting cell proliferation
and differentiation [147]

Hydrogel substrates Acellular skeletal muscle
ECM combined with
hyaluronan-based
hydrogel and heparin

MPCs In vitro Promoting MPCs’ proliferation
and differentiation [30]

Cell sheet tissue
regeneration

Skin (dermis) Acellular human
dermal ECM, allogeneic

None In vivo (14 patients) [161];
in vivo (2 patients) [163]

Reducing scar and
contracture [161,163]

Cornea Acellular porcine cornea
ECM, xenogeneic

None In vivo (10 chinchilla
bastard rabbits) [164];
in vivo (six eyes of rabbits)
[165]

Biocompatible with the host’s
epithelium [164,165]

Tubular organ
regeneration

Blood vessels Acellular porcine aorta,
xenogeneic

Human ECs and
myofibroblasts

In vivo (5 Lewis rats) Successfully implanted
subcutaneously in a rat
model [176]

Acellular bovine pericardial
ECM combined with poly
propylene fumarate,
xenogeneic

None In vitro and in vivo
(2 Lewis nude rats)

Remaining patent for two
weeks in rat model [178]

Esophagus Acellular porcine SIS,
xenogeneic

None In vivo (5 patients) Promoting reconstruction of
functional esophageal mucosa
in patients [180]

Acellular porcine SIS Porcine BMSCs In vitro Meeting clinical-grade criteria,
promising for clinical use
[184]

Bladder Acellular porcine SIS,
xenogeneic

None, or seeded with
dog UCs and SMCs

In vitro and in vivo
(22 dogs)

Not achieving the desired
bladder regeneration resulting
in a subtotal cystectomy model
as in the 40% cystectomy
model [185]

Acellular porcine SIS
cross-linked with
procyanidins, xenogeneic

None In vitro and in vivo
(48 New Zealand
white rabbits)

Promoting in situ tissue
regrowth and regeneration of
rabbit bladder [187]

3D organ regeneration

Liver Acellular human liver
ECM, allogeneic

hUVECs, hFLCs In vitro Decellularizing a whole liver
organ for liver regeneration
in vitro [201]

Acellular human liver
ECM, xenogeneic

LX2, Sk-Hep-1, HepG2 In vitro and in vivo
(6 C57BL/6J mice)

Showing excellent viability,
motility, proliferation and
remodeling of the ECM in a
mouse model [204]

Lung Acellular adult rat lung
ECM, allogeneic

Neonatal rat lung
epithelial cells

In vitro and in vivo
(344 rats)

Engineered lungs participated
in gas exchange in a rat model
[85]

Acellular porcine lung
ECM, xenogeneic

Human airway epithelial
progenitor cells

In vitro and in vivo
(3 pigs)

Demonstrating the feasibility of
engineering of viable lung
scaffolds in a porcine model
[208]

Kidney Perfusion decellularization
of rat kidney and mounted
in a whole-organ bioreactor,
autologous

hUVECs, rat NKCs In vitro and in vivo
(68 Sprague-Dawley rats)

The resulting grafts produced
rudimentary urine in an
orthotopic transplantation
model [210]

ECM, extracellular matrix; MPC, skeletal muscle precursor cell; SIS, small intestine submucosa; EC, endothelial cell; BMSC, bone marrow-derived
mesenchymal stem cell; UC, urothelial cell; SMC, smooth muscle cell; HepG2, human hepatocarcinoma cell line; hUVEC, human umbilical vein endothelial
cell; hFLC, human fetal liver cell; LX2, human cell line hepatic stellate cell; Sk-Hep-1, human cell line hepatocellular carcinoma; NKC, neonatal kidney cell.
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TS-ECM as cell sheet for tissue regeneration

Xenogeneic TS-ECM scaffolds, conveniently obtained
using low-cost procedures, are typically fabricated as
single-planar ECM sheets used for 2D tissue regeneration,
such as skin (dermis) [161–163], cornea [164,165], and
urethra mucosa [166,167]. Decellularized small intestinal
submucosa (SIS) (Fig. 2) [168], bladder submucosa, and
dermal matrix show promising results as inductive
substrates for repairing full-thickness burns and postburn
scar contractures [161,163,169]. Furthermore, decellular-
ized porcine corneas using high hydrostatic pressurization
show excellent optical properties without prompting an
immune reaction when implanted into rabbit corneas
[170].

TS-ECM for tubular organ regeneration

TS-ECM materials can be made into tubular scaffolds,

which confer certain potential advantages, such as
improved function or performance. Tubular TS-ECM can
be used to regenerate blood vessels [171–178], esophagus
[179–184], bladder [185–187], urethra [188,189], ureter
[190], urinary conduit [191], bowel [192], and vagina
[193].
SIS is one of the best established and most widely

applied biomaterials [194]. Since it was reported for the
first time in 1966 as a vascular substitute for replacing part
of the aorta or vena cava in dog models [171–173],
extensive research has been performed in the field. SIS-
based scaffolds show good graft patency in small-diameter
grafts [195]. However, they are observed to have a
deficiency in forming intima, thickening media, and
dilating grafts with large diameter [174,175]. Subse-
quently, decellularized vessels are demonstrated as another
vascular scaffold. In 2000, acellular aorta scaffold seeded
with human myofibroblasts and ECs showed great success
following implantation in a rat model [176]. In 2008, the
decellularization and recellularization of a whole heart was
shown as a functional solid organ for the first time [196].
Large- and small-diameter vascular substitutes are pro-
duced from this process, after which the vascular tree could
be recapitulated by relining vascular cells [177]. A recent
study has reported that the integration of pericardial dECM
and poly(propylene fumarate) has robust mechanical
properties, adequate re-endothelialization, and tissue-
growth capacity in vivo [178].
Research on esophageal-tissue engineering has under-

gone rapid development in recent years. In 2000, Badylak
et al. [179] successfully repaired esophageal defects in a
dog model using acellular porcine SIS or urinary bladder
submucosa. In 2011, Badylak et al. [180] first reported that
xenogeneic ECM derived from porcine SIS promotes
functional esophageal mucosa reconstruction for patients
with endoscopic resection. In the same year, Clough et al.
[181] reported that acellular porcine SIS matrix success-
fully repairs traumatic cervical esophageal perforation. In
2014, Syed et al. [182] reported that SIS could be
consistently and reliably made into tubular scaffolds with
good mechanical properties for esophageal-tissue engi-
neering. In 2018, Luc et al. [183] reported a short biologic
scaffold comprising decellularized esophageal matrix in a
pig model, mimicking native esophagus in in vitro and
in vivo characteristics. In 2019, a clinical-grade acellular
matrix study reported an esophagus decellularization
process, retaining native esophageal ECM structural,
biochemical, and biomechanical properties without cyto-
toxicity, thereby meeting clinical-grade criteria and show-
ing promise for clinical use [184].
Urinary-tissue regeneration is anatomically divided into

urinary bladder, urethra, ureter, and urinary-conduit
regeneration. Application of SIS for urinary-bladder
reconstruction is extensively investigated. In 1995,
Kropp et al. [186] reported that SIS could promote bladder

Fig. 2 Cell-seeded decellularized small intestine submucosa scaffolds.
(A) Masson trichrome staining of canine bone marrow stromal stem cells
(red) seeded on SIS scaffolds (blue). (B) Immunohistochemistry staining
of α-smooth muscle actin of bone marrow stromal cells (Brown). The
photomicrograph of cell-seeded SIS scaffolds is adapted from BJU
International [168] with permission.
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regeneration in a rat model. In 2005, Zhang et al. [168]
confirmed the result that SIS is a promising graft for
regenerating the urinary bladder in a dog model (Fig. 3).
Nowadays, natural porous polymer scaffolds are produced
for bladder-bioengineering applications. In 2020, Zhang
et al. [187] reported that SIS cross-linked with procyani-
dins could rapidly promote in situ tissue regrowth and
regeneration of the bladder. As for urethral regeneration,
since Kropp et al. [188] reported that SIS grafts for
urethroplasty promote rabbit urethral regeneration in 1998,
research on urethra regeneration has grown remarkably. To
date, compared with synthetic scaffolds, tubular scaffolds
derived from decellularized tissues can undergo subse-
quent remodeling with no inflammatory response in vivo.
Matrix can be derived from SIS, dermal matrix, corpus
spongiosum matrix (CSM), or bladder submucosa matrix
(BSM). Among these matrices, acellular CSM and BSM
seem to be the most appropriate scaffolds for urethra
bioengineering because they possess molecular composi-
tion and mechanical and structural characteristics similar to
those of native low urinary tract tissue [189]. Similarly,
tubular scaffolds applied in ureteral regeneration are
produced from decellularized native-tissue specimens
such as SIS, amniotic membrane, ureter, blood vessels,
or bladder tissue [190]. As for constructing artificial
urinary conduits, the regeneration of the urinary conduit is
studied primarily in animal models, and only one
registered clinical trial has examined the clinical use of
artificial urinary-conduit construction (unpublished data)
[191].
Similar to urinary-conduit regeneration, research on

bowel and vagina regeneration is also primarily performed
in animals, such as rat [192] and porcine models [193].
However, graft shrinkage and scar-tissue formation are
often observed after in vivo implantation. Apparently,
keeping the lumen open with physical support is critical for
tubular or hollow organ-tissue regeneration. For cell-
seeded tissue, a promptly established blood network is
required for the survival of implanted cells in the host
[185]. Clearly, maintaining cell viability within ECM and
preventing graft contraction after implantation require
further investigation.

TS-ECM for multicellular-organism regeneration in vivo

Multicellular-organism regeneration requires a 3D frame-
work to provide structural integrity and denote functional
tissue boundaries, thereby delineating specific microenvir-
onments [197]. Accordingly, the decellularization of whole
tissues and organs provides scaffolds with tissue-specific
3D microarchitecture, serving as templates for whole-
organ engineering [160]. The basic strategy for transplan-
table human-organ generation involves the venous perfu-
sion decellularization of human or animal organs. The

resulting product is a 3D framework with intact vascu-
lature. Subsequently, the 3D scaffold is maintained in a
bioreactor system to mimic the physiologic conditions of
specific organs, such as electrical conduction, pressure
gradients, pH, temperature, and oxygen concentration
[198]. Next, the recellularization of 3D ECM scaffold
proceeds by seeding appropriate cell types in a concentra-
tion that matches that for native cell distribution. The
achievement of successful perfusion decellularization was
first demonstrated on a whole rat heart in 2008 [198],
followed by the liver, kidney, and lungs [199].
Several studies have reported the decellularization of

liver tissue from animals [199–201]. The 3D ECM
framework obtained from liver tissue has been proven to
retain excellent functionality of multiple liver-cell types to
grow in vitro [202,203]. In 2011, Baptista et al.

Fig. 3 Bone marrow stromal cells-seeded decellularized extracellular
matrix promoted in vivo bladder tissue regeneration. Both autologous
bone marrow stromal cells-seeded (A) and bladder cells-seeded SIS
scaffolds (B) expressed α-smooth muscle actin 10 weeks after
transplantation in a canine model following partial cystectomy, assessed
by immunohistochemistry staining. The images are adapted from BJU
International [168] with permission.
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decellularized a whole cadaveric liver organ by perfusing
detergent through the native-liver vascular network,
fabricating a natural ECM scaffold for liver regeneration
in vitro [201]. In 2015, Mazza et al. [204] decellularized a
whole human liver and successfully assessed in vivo quality
and biocompatibility. Later, in 2017, Verstegen et al. [205]
conducted a clinical series performing the decellularization
process in whole liver. They generated a mild nondestruc-
tive decellularization protocol by using perfusion through
the hepatic artery and the portal vein [205]. This protocol
removes cellular DNA and RNA completely and is
effective for generating constructs from whole human
liver. These constructs contain ECM components, and the
architecture of the liver is maintained. Above all, the
utilization of artificial hepatic scaffold for liver bioengi-
neering is gaining remarkable success. However, recellu-
larization can be further improved using innovations of
more desired bioreactors to better replicate native liver.
The goal of bioengineered lungs is to rehabilitate the

architecture and functionality of the two seeding routes, the
vasculature and the airway [199]. In vivo gas exchange is
the primary outcome for evaluating the efficiency of
artificial lungs. Initially in 2010, Petersen et al. [85]
demonstrated the feasibility of recellularized artificial
lungs based on a rat-transplantation model. In 2011,
recellularized lungs transplanted orthotopically in rats
partially restored respiratory function [206,207]. In porcine
models in 2017, transplanted artificial lungs promoted gas
exchange [208]. However, insufficient vascular barrier
function and increased thrombogenicity resulted in graft
failure [208]. Functional lung regeneration still has a long
way to go even though remarkable achievements have
been made. To build higher-level function, optimizing the
recellularization and maturation of the grafts is necessary.
Moreover, experiments based on large animal models need
to be performed for preclinical trials before translation to
human trials.
The two primary functions of kidneys are to maintain

fluid balance and filter harmful substances, which are vital
for human physiologic function. For patients with end-
stage renal diseases, kidney transplant is deemed the first-
line treatment [209]. In the kidneys, various successful
decellularization and recellularization strategies have been
developed. For example, rat kidneys could produce dilute
urine after recellularization and culture under perfusion
[210]. However, although a piece of tissue like the
structure of renal components is reconstructed in vitro,
the function of renal tissue with a nephron structure has not
yet been determined in vivo [211]. Moreover, the current
techniques still have distinct limitations in precise cell
arrangement, reconstruction of an entire vascular system,
and a continuous urinary-collection system. These limita-
tions impede obtaining complete and functional whole-
kidney organs. Additional studies need to be conducted
prior to clinical applications.

Mechanisms for 3D tissue regeneration

Signaling pathways play crucial roles in substantial
cellular functions (cell survival, self-renewal, attachment,
proliferation, and differentiation) and tissue regeneration.
Understanding the underlying signaling pathways is vital
for 3D tissue regenerative repair. Key signaling pathways
are involved in tissue regeneration in different systems
(Table 6). These signaling pathways regulate stem-cell
differentiation and 3D tissue regeneration in a complex
cross-talk manner.
Recently, the Hippo signaling pathway YAP/TAZ has

been shown to play a pivotal role in regulating 3D tissue
regeneration as a new signaling pathway [273]. The core of
the Hippo pathway is defined as a serine/threonine kinase
cascade, comprising mammal Ste20-like kinase 1 (MST1)
and MST2, Salvador 1 (SAV1), MOB1A, and MOB1B,
large tumor suppressor kinase 1 (LATS1) and LATS2, the
transcriptional co-activators Yes-associated protein (YAP),
and transcriptional co-activator with PDZ binding motif
(TAZ) [274]. The Hippo pathway is regulated by external
changes of stem-cell niche factors, such as mechanical stress
and cell–ECM interaction [274]. The effects of these
upstream signals are mediated by receptors embedded in
the cytoplasm membrane, such as integrin complex (Fig. 4).
After the cells sense the signals, the Hippo pathway is
regulated by an intracellular network, rather than through
dedicated receptors. Thus, following injury, the Hippo
pathway can act as a universal pathway to regulate stem-
cell behaviors for initiating tissue regeneration [273]. The
Hippo pathway regulates stem-cell attachment, proliferation,
self-renewal, and differentiation, such as ESCs [275], iPSCs
[276,277], and MSCs [278], which are important for tissue
regeneration. To date, it is reported to be involved in the
regeneration of multiple organs, such as intestine [279], liver
[280], skin [281], heart [241,282], and nervous system [283].
However, the downstream effects are closely associated with
tumor development [284], thereby increasing the challenge
in targeting the Hippo pathway for tissue regeneration.

Challenges and future directions

Tissue-derived ECM is an elemental part of the body’s
tissues, so it is critical to mimic its properties to develop 3D
organoid models in vitro for drug screening, cell therapy,
or disease modeling. Hydrogels such as collagen and
matrigel are universal products extensively used as
substrates for 3D cell cultures. However, the need for
more special gels requires the development of various
tissue gels. As the porosity, permeability, and mechanical
characteristics of different gels vary, the natural origin of
the ECM of specific tissues or organs needs to be
recapitulated when these ECM gels are designed.
TS-ECM compounds also need to be further characterized,
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Table 6 Mechanisms for 3D tissue regeneration
Function Involved signaling pathway Cell–matrix interaction related with genes and proteins

Musculoskeletal system

Osteogenesis BMP/TGFβ Mesenchymal progenitors-BMP2-deficient mice [212], BMP4-deficient mice [213],
BMP7-deficient mice [214]

Wnt Primary osteoprogenitors in Axin2LacZ/LacZ mice-Wnt protein [215]

Fracture callus tissues-PTH [216]

Mesenchymal skeletal cells-peptide ligand with high affinity integrin (CRRETAWAC) [217]

Notch MSCs-Notch ligand (Jag1) [218–220]

Chondrogenesis Wnt/β-catenin Mesenchymal progenitors-ablation of β-catenin in mesenchymal condensations [221]

Micromass of MSCs-protein kinase C inhibitor (PMA), p38 kinase inhibitor (SB203580) [222]

TGFβ/Smad FSTL1 KO MSCs-exogenous recombinant FSTL1 [223]

Chondrocytes-Adamtsl2 KO growth plate [224]

BMP MSC pellets-BMP inhibitor (dorsomorphin) [225]

BMP/TGFβ hACs and hMSCs-BMP-2, TGFβ1 [226]

SDSCs-BMP-2, TGFβ1 (dexamethasone absent) [227]

IHH Chondrocytes-PPR–/– wild-type chimeric mice vs. Ihh–/–PPR–/– wild-type chimeric mice [228]

BMSCs-IHH, SHH [229]

Skeletal myogenesis Wnt Adult muscle stem cells-combining APC and β-catenin siRNAs [230]

Satellite cells-Islr cKO mice [231]

Wnt/IGF Satellite cell-like reserve myoblasts-GSK-3 inhibitor (LiCl or SB216763), insulin [232]

Notch Adult muscle stem cells-COLV depleted mice (compound Tg: Pax7-CreERT2; Col5a1flox/flox;
R26mTmG(Col5a1 cKO)), CALCR ligand (Elcatonin) injection [233]

Satellite cells-Syndecan-3 ablation [234]

Nervous system

Neurogenesis in CNC PI3K/AKT/mTOR Cerebral organoids-mTOR activators (INSR, ITGB8, IFNAR1) and repressors (PTEN) [235]

Notch Neuronal progenitor cells-NOTCH2NL [236]

hSpS spheroids-Notch inhibitor (DAPT) [237]

Wnt/FGF mESCs-FGF/Wnt agonist (CHIR)/RA [238]

TGFβ/Shh/Wnt Astrocytes-TGFβ, Shh, and Wnt activators [239]

Neurogenesis in PNS c-Myc-TERT Sensory axon-p53 inhibitor (PFTα), p53 activator (Tenovin-6) [240]

Circulatory system

Cardiomyogenesis Wnt Cardiac organoids-Wnt agonist (CHIR) [241–243], WNT inhibitor (IWP2) [243]

TGFβ Cardiac organoids-TGFβ receptor inhibitor (e.g., SB431542) or overexpression of TGFβ
receptor negative form [244,245]

BMP NKX2-5+CD31+ endocardial-like cells from hPSCs-BMP4, CHIR/BMP10, VEGF/BMP10
[246]

Angiogenesis Notch Vascular organoids-Notch inhibitor (DAPT), Notch ligands (Dll4, Notch3) [247]

Wnt/VEGF-A hPSCs aggregates-3D collagen I-matrigel gel driven byWnt agonist (CHIR), BMP-4, VEGF-A,
FGF-2 subsequently [248]

Digestive system

Stomach tissue
reconstruction

Wnt Lgr5+ stem cells-matrigel containing Wnt activator (R-spondin1), Wnt3A [249]

Axin2+/Lgr5– stem cells-Wnt activator (R-spondin3) [250]

Intestine tissue
reconstruction

Wnt Lgr5+ ISCs-Wnt activator (R-spondin1), Wnt ligands [251–253]

Wnt/Notch Lgr5+ ISCs-Wnt inhibitor (IWP-2)/Lgr5+ ISCs-Notch inhibitor (DAPT) [254]

Notch ISCs-Notch ligands driven by transient Yap1 activation [255]

Hepatogenesis Wnt Lgr5+ stem cells-matrigel containing EGF, Wnt activator (R-spondin1) [256]

Lgr5+ stem cells-HGF/Wnt activator (R-spondin1) [257]

Hedgehog Hepatocytes and ductular cells-Hh ligands [258]

Stellate cells-JNK1 [259]

Urinary system

Nephrogenesis Wnt Lgr5+ stem cells-Wnt receptor (Lgr5) [260]

hPSCs-Wnt agonist (CHIR), Wnt inhibitor (DAPT) [261]
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controlled, and standardized to prevent variability in either
C-ECM or TS-ECM.
For tissue repair in the body, ECM plays an important

role in wound healing. As a complex physiologic reaction
in response to trauma, would healing involves cellular and
ECM events, biochemical reactions, growth factors, and
cytokines. The goal for wound healing is scar-free
restoration with less tissue shrinkage. Various possibilities
have rendered ECM-based scaffolding technologies a
turning point in regenerative medicine. To date, animal
models have demonstrated that delayed collagen-deposi-
tion paired ECM remodeling is one of the traits for scarless
wound healing [285]. However, some challenges exist for
preclinical animal models, such as low reproducibility,
ethical problems, and poor translation to humans. More-
over, the most prominent challenge is the inconsistency
between healthy ECM scaffolds and the dysfunctional
matrix that is the result of injuries. Dysfunctional matrix
includes decreased or excessive ECM compounds [286],
often accompanied with a change in soluble factors, such
as transforming growth factor β [287] and cross-linking
enzymes [288]. A proteomic study has also revealed that
the composition of normal and pathological ECM exhibits
a completely different profile [286]. Considering this
finding, whether ECM scaffolds can provide the correct
cues to regulate cell behaviors on pathological tissues is
still unclear. To close the gap in knowledge, pathological
ECM remodeling and genetically engineered ECM scaf-
folds offer two alternatives by improving the function and
biocompatibility of ECM.

ECM remodeling is a healing process that offers
promising therapeutic opportunities for many diseases
[5]. Implanted ECM scaffold with a bioactive molecular
and porous microstructure can enhance wound healing. For
example, the immobilization of signaling molecules on the
porous surface of scaffolds can promote cell proliferation,
differentiation, and cell–matrix adhesion [289,290].
Selecting a specific enzyme to enhance tissue remodeling
is important. One study has shown that curcumin treatment
could accelerate wound healing by suppressing MMP-9 in
a mouse model [291]. Moreover, attempts to genetically
engineer ECM have achieved preliminary success in
animal models. ECM sheets and hydrogels generated
from porcine, which is alpha-gal deficient (with reduced
immune rejection), show that 3D-generated transected
anterior cruciate ligament can form in a goat model [292].
As TS-ECMs of different tissues share a common set of
proteins, the role of individual ECM components in the
unique functions of tissues and the healing process still
needs further investigation. A robust and extensive
proteomic analysis of TS-ECM components is critical to
illustrate the tissue regeneration process induced by TS-
ECM. In summary, a pro-regenerative matrix combined
with the ECM remodeling of pathological tissues may
bring us one step closer to scar-free tissue regeneration.
TS-ECM in tissue repair could bring us closer to scarless
wound healing.
In conclusion, mimicking the microenvironment of

original tissues, TS-ECM and C-ECM possess remarkable
promise for developing in vitro 3D culture systems and

(Continued)
Function Involved signaling pathway Cell–matrix interaction related with genes and proteins

Wnt, FGF hPSCs-Wnt agonist (CHIR), FGF9 [262,263]

Urothelium
regeneration

Hedgehog/Wnt Stromal cells and epithelial cells in bladder-Shh-blocking antibody/stromal cells and epithelial
cells-inactivation of essential component of Wnt pathway (Ctnnb1) [264]

Hedgehog Long-term bladder organoids-smoothened agonist (SAG), Hh inhibitor (vismodegib), genetic
manipulation [265]

Wnt/Notch Urothelial organoids-Wnt agonist (CHIR)/urothelial organoids-Notch inhibitor (DBZ) [266]

Reproductive system

Fallopian tube and
oviduct tissue
reconstruction

Wnt/Notch Fallopian tube organoids-Wnt modulators (Wnt3a, R-spondin1, EGF, FGF10), TGFβ inhibitor
(ALK4/5), BMP inhibitor (Noggin)/fallopian tube organoids-Notch inhibitor (DBZ) [267]

Fallopian tube organoids-Wnt antagonist (PKF118–310)/fallopian tube organoids-Notch
inhibitor (DBZ) [268]

Endometrium Wnt Endometrial organoids-Wnt activator (R-spondin1), Wnt inhibitor (IWP2), WNT3A, WNT7A,
EGF, Noggin [269]

Endometrial organoids-WNT3A, Wnt activator (R-spondin1), EGF, Noggin [270]

Vagina tissue
reconstruction

Wnt Vaginal organoids-EGF, TGFb/Alk inhibitor (A83-01), ROCK inhibitor (Y-27632), PALL
Corporation (Ultraserum-G) [271]

Prostate tissue
reconstruction

Notch Prostate organoids-Notch inhibitor (DAPT) [272]

hAC, human articular chondrocyte; hMSC, human mesenchymal stem cell; SDSC, synovial-derived stem cell; IHH, Indian Hedgehog; PPR, PTH/PTHrP
receptor; BMSC, bone marrow-derived mesenchymal stem cell; CNS, central nervous system; PNS, peripheral nervous system; hSpS, hindbrain/cervical spinal
cord; mESC, mouse embryonic stem cell; ISC, intestinal stem cell;Hh, Hedgehog; hPSC, human pluripotent stem cell.
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cell-based therapy. Tissue bioengineering in organoid
constructions or 3D culture models offers a novel platform
to study diseases and test new drugs. dECM products also
provide therapeutic alternatives for the repair of injured or
pathological tissues during tissue reconstruction. Com-
pared with C-ECM, emerging evidence suggests that TS-
ECM as a scaffold needs to be improved due to its unique
biochemical, biological, and biophysical properties. This
review highlights the physiologic roles of ECM in 3D
organoid formation and tissue repair and presents the
currently recognized applications of C-ECM and TS-ECM
in modulating cellular construction development and
organ-healing processes following tissue injury. To date,
TS-ECM products have advanced to several formats such
as powder, hydrogel, cell sheet, and decellularized tissue

and organ for in vitro 3D structure culture models.
Inevitably, tissue repair for wound healing will be refined
in future applications.
The past few decades have witnessed substantial

progress in TS-ECM or C-ECM developments. However,
major hurdles remain in understanding the accurate and
specific key ECM proteins and the ratio of these molecules
for cell proliferation and targeted cell differentiation for 3D
organoid culture and tissue repair. Thus, further basic
research and preclinical testing are necessary before
clinical translation.
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