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Abstract The current standard of care in hematological malignancies has brought considerable clinical benefits
to patients. However, important bottlenecks still limit optimal achievements following a current medical practice.
The genetic complexity of the diseases and the heterogeneity of tumor clones cause difficulty in ensuring long-term
efficacy of conventional treatments for most hematological disorders. Consequently, new treatment strategies are
necessary to improve clinical outcomes. Chimeric antigen receptor T-cell (CAR T) immunotherapy opens a new
path for targeted therapy of hematological malignancies. In this review, through a representative case study, we
summarize the current experience of CAR T-cell therapy, the management of common side effects, the causative
mechanisms of therapy resistance, and new strategies to improve the efficacy of CAR T-cell therapy.
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Case

A 57-year-old Chinese man presented with worsening pain
in the bones of his chest and waist. A chest computerized
tomography (CT) scan revealed severe damage on the
bones widely involving the ribs, scapulae, clavicles,
sternum, and thoracic vertebra. In addition, a pathological
fracture on the T7 lumbar vertebra was observed by
magnetic resonance imaging. Subsequent tests showed an
increase in the level of monoclonal immunoglobulin IgD
and λ in serum and a 34% increase in the number of
plasmablasts in the bone marrow (BM). He was diagnosed
with multiple myeloma (MM) and stratified to be ISS III
stage. This patient was initially administrated with a
standard induction therapy, which included bortezomib,
doxorubicin, and dexamethasone (PAD). Four cycles of
this regimen did not bring the disease to full control
because not only M protein and BM plasma cells reduced

moderately, but also his forehead presented a growing
plasmacytoma as confirmed by pathological examination.
Thus, a second scheme, in which bortezomib was
combined with lenalidomide, cyclophosphamide, and
dexamethasone (VRCD), was applied. The patient
obtained partial remission with four cycles of VRCD,
which was continued for an additional 7 cycles, followed
by a 6-month oral administration of lenalidomide. One
year after his best response to VRCD, the disease
progressed. He tried several salvage treatments, including
VRCD with the addition of etoposide, melphalan plus
lenalidomide, and dexamethasone, but the effects were
limited (BM plasma accounted for 22% and M spike level
was 11 g/L). Meanwhile, his forehead plasmacytoma was
even bigger. In 2016, several US Food and Drug
Administration (FDA) approved drugs such as daratumu-
mab, pomalidomide, and ixazomib were considered, yet
they had not been in the market of the Chinese mainland.
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by a rapid development of novel therapeutic modalities,
such as oncoprotein-targeting drugs, immune modulating
agents, and epigenetic adjusting medicine. However, we
are still distant from achieving a cure because a number of
patients still face relapsed/refractory (r/r) dilemma. The
above-mentioned case typically represents a current
bottleneck in treating highly aggressive blood disease,
which fails to respond to or is highly compromised with
standard of care. Therefore, developing a precise and
curative medical approach is necessary.
With the comprehensive understanding in tumorigenesis

and the evolution in biological technologies, immunother-
apy rapidly grows to be a cancer-killing power, which
might get over the hurdle of therapy resistance. This type
of approach makes use of innate functionality of immune
cells to eliminate cancer cells by targeting tumor antigen
on malignant populations or inhibiting immune checkpoint
on immune cells [1]. The pioneer product, monoclonal
antibody, has successfully prolonged the life span of non-
Hodgkin lymphoma (NHL) and MM; thus, it was included
in the clinical practice guidelines [2]. With this advance-
ment, chimeric antigen receptor T-cell (CAR T) therapy, a
new concept to train patient self-immune cells to be a
“living drug” by incorporating the variable domain of a
monoclonal antibody onto T lymphocyte [3], is emerging
to draw a revolutionized landscape of cancer immunother-
apy.

Clinical practice of anti-CD19 or anti-BCMA CAR T
cells

The initial success of this gene-modified therapeutic
approach mostly comes from CD19, BCMA targeting
CAR-transduced T cells.
By using CD19 CAR T cells, a number of patients with

r/r B cell lineage malignancies, such as chronic lymphoid
leukemia (CLL), acute lymphoblastic leukemia (ALL), and
NHL, acquired a second chance of lives, and some
obtained a durable remission without detectable tumor
cells [4–15]. These clinical trial data are summarized in
Tables 1 and 2. Given the outstanding efficacious and
tolerated features, four anti-CD19 CAR T-cell products,
including tisagenlecleucel, axicabtagene ciloleucel, brex-
ucabtagene autoleucel, and lisocabtagene maraleucel, have
received FDA designations for the treatment of r/r B-cell
precursors, namely, ALL and/or B-cell NHL. Tisagenle-
cleucel, a currently unique product for the treatment of
pediatric ALL, can achieve 80% complete remission at its
early response [5]. In addition, tisagenlecleucel and
axicabtagene ciloleucel showed 40%–50% durable
response in the long-term follow-up studies of r/r NHL
patients [12,13]. The other two authorized agents have a
distinct manufacturing from the routine approach used in
the two above-mentioned products. Lisocabtagene mar-

aleucel, a second approved CAR T-cell product developed
by Kite Pharma, shares the same construct as axicabtagene
ciloleucel, but during T cell processing, the circulating
tumor cells are removed, which decreases the risk of
activation and exhaustion of CAR T cells before infusion.
This improvement is necessary for leukemia and mantle
cell lymphoma [15]. Moreover, brexucabtagene autoleucel
developed by Juno Therapeutics adopts an innovative
manufacturing process, which yields a final CAR T-cell
product with a defined ratio of CD4+ and CD8+ T cells
[14].
In the BCMA CAR T-cell setting, many manufacturers

are involved in the innovation of an appropriate product for
treating MM, a commonly recognized incurable hemato-
logical disease that universally expresses BCMA antigen
on its plasmablasts. Remarkable achievements of anti-
BCMA CART-cell therapy have brought a curable hope to
MM [16–26]. The clinical trial results are collectively
shown in Table 3. Two leading products, idecabtagene
vicleucel (Bluebird Bio/Celgene) and ciltacabtagene auto-
leucel (Nanjing Legend/Janssen), have accomplished
multi-institutional trials with a remarkable overall response
of 73%–95% [22,24]. Recently, idecabtagene vicleucel
was authorized by the US FDA for the treatment of adult
patients with r/r MM after four or more prior lines of
therapy, being the first product to be on the market in the
class of CAR-redirected cellular therapy against BCMA.

Studies of CAR T cells against other targets

The CAR T cells targeting to other novel antigens are
explored to evaluate their efficacy and safety in lymphoid
malignancies. Anti-CD22 CAR T cells were highly
efficacious in anti-CD19 CAR T-cell-resistant B-ALL
and large B cell lymphoma patients, particularly in those
with CD19 antigen reduced or lost on tumor cells [27,28].
CD20- and CD30-targeting CAR T agents have good
tolerance and substantial anti-lymphoma activity [29,30].
κ.CAR T cells, which were investigated in patients with r/r
κ+ NHL/CLL, also showed some tumor killing capacity
[31]. In MM, CAR T cells directed against CD44v6,
APRIL, CD56, CD229, CD70, and GPRC5D are evaluated
in preclinical studies, whereas clinical trials on CAR Ts
targeting CD38, light chain, SLAMF7 (also known as
CS1), CD138, and integrin 7 are underway. Remarkable
results have been obtained with anti-GPRC5D, -SLAMF7,
and -integrin 7 CAR T cells [32–34].
Tumor antigens targeted by the above-mentioned

conventional CAR T-cell therapy are “cell-surface” anti-
gens. However, many potential tumor-associated antigens
(TAA), such as tissue differentiation antigens, cancer-
germline antigens, and neoantigens, are located in the
intracellular compartment [35]. Recently, the development
of T cell receptor (TCR)-like CAR T cells, which bear a
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TCR-like antibody moiety, aims to target antigenic
peptides restricted by the major histocompatibility com-
plex (pMHC) on tumor cells [35,36]. This therapeutic
approach faces two major challenges that limit its clinical
application. First, target cells often express a low density of
pMHC, thereby resulting in low TCR-like-CAR–pMHC
interaction. The second issue is the requirement for fine
tuning the affinity of TCR-like CAR T cells to avoid over-
stimulation [35]. Studies have been designed to optimize
TCR-like affinity for a better antigenic specificity [36].

Case (continued)

This patient was enrolled in Legend-2 phase I trial
(NCT03090659) in April 2017. The screening examina-
tions showed a high BCMA frequency of 93.2% on BM
plasmablasts by flow cytometry, a high-risk cytogenetics
of del(17p) by FISH testing, and extramedullary involve-
ment on the forehead by whole-body PET-CT scanning.
Autologous leukocyte apheresis was performed for the
manufacture of CAR T cells. After 1 month, three splitting
infusions of ciltacabtagene autoleucel (a total of
1.05 � 106/kg body weight) were administrated on day
0, 2, and 6, following to a three consecutive lymphodeple-
tion therapy of fludarabine and cyclophosphamide from

day – 5 to day – 3. On day 7, patient’s temperature started
to rise, reaching the highest of 40.9 °C on day 10. The
oxygen saturation was 97%, but the systolic blood pressure
was only 84 mmHg. In addition, laboratory tests indicated
a grade 3 hepatic impairment with an increase of
transaminitis and grade 3 leukopenia. Moreover, circulat-
ing CAR T cells demonstrated robust expansion with a
dramatic increase in the level of IL-6 and IL-2R in serum.
His acute side reaction was categorized as grade 3 cytokine
release syndrome (CRS). He received tocilizumab and
other essential supporting care and recovered 2 days later,
in which the symptoms were relieved, and the positive
parameters gradually turned normal. One month after the
onset of CAR T-cell infusion, flow-based BM minimal
residual disease (MRD) and serum/urine M-protein
immunofixation were negative. The forehead plasmacy-
toma shrank significantly. PET-CT showed no soft tissue
tumor involvement around day 120. In the following 8
months, this case maintained a stringent complete response
(CR) status. Circulating CART cells persisted for at least 9
months. Meanwhile, his serum polyclonal immunoglobu-
lins persisted in low levels. This long-term adverse event
caused him to be vulnerable to infectious diseases. Thus,
he was intravenously supplemented with gammaglobulin
once a month.

Table 2 Outstanding clinical trials of anti-CD19 CAR T-cell therapy for B cell NHL

　 ZUMA-1 JULIET TRANSCEND NHL001 ZUMA-2

Product Axicabtagene ciloleucel
(Yescarta)

Tisagenlecleucel
(CTL019)

Lisocabtagene
maraleucel

Brexucabtagene
autoleucel

(KTE-C19) (JCAR017) (KTE-X19)

Costimulatory CD28 4-1BB 4-1BB CD28

NCT number NCT02348216 NCT02445248 NCT02631044 NCT02601313

Reference [12] [13] [14] [15]

Number of cases infused 108 111 269 74

Disease Cohort 1: DLBCL DLBCL, tFL DLBCL NOS, HGBCL,
tFL, transformed iNHL,
PMBCL

MCL

Cohort 2: PMBCL, tFL

Lymphodepletion Flu/Cy Flu/Cy Flu/Cy Flu/Cy

Bendamustine

Dose infused 2�106 cells/kg (0.1–6)�108 cells DL1: 0.5�108 cells 2�106 cells/kg

DL2: 1�108 cells

DL3: 1.5�108 cells

CD4:CD8 Not specified Not specified 1:1 Not specified

Number of complete
response (evaluable cases)

59 (101) 37 (93) 136 (256) 40 (60)

Median follow-up (month) 27.1 14 12 12.3

High-grade/severe CRS 11% 22% 2% 15%

High-grade/severe
neurotoxicity

32% 12% 10% 31%

NHL, non-Hodgkin lymphoma; DLBCL, diffuse large B-cell lymphoma; PMBCL, primary mediastinal B-cell lymphoma; tFL, transformed follicular
lymphoma; NOS, not otherwise specified; HGBCL, high-grade B-cell lymphoma; iNHL, indolent NHL; MCL, mantle cell lymphoma; DL, dose level; Flu,
fludarabine; Cy, cyclophosphamide.

786 CAR T-cell therapy in hematological B-cell malignancies
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Conditioning regimen

Similar to other trials, this case received a combination
preconditioning therapy before CAR T-cell infusion.
Lymphodepletion therapy prior to adoptive T-cell transfer
can promote the reaction against tumors because it can
enhance antitumor activity through removing endogenous
cellular elements and setting free cytokines to augment T
cell function [37]. The available data from many clinical
trials further demonstrated the importance of lymphocyte
depletion before the infusion of CAR T cells and showed
that lymphocyte depletion enhanced in vivo activity and
persistence of CAR T cells. At present, fludarabine plus
cyclophosphamide is a commonly used regimen, but
compared with the therapeutic efficacy of the group
having cyclophosphamide alone, the addition of fludar-
abine or the absence of conditioning application did not
show a significant difference [17,21]. This finding
indicated that fludarabine, even the lymphodepletion
regimen, might not be absolutely required for CAR T-cell
clinical activity.

Cytokine release syndrome

In clinical trials, the occurrence of an immune activation
resulting in broad clinical manifestations associated with
elevated inflammatory cytokines, known as CRS, is the
most prevalent adverse event following CAR T-cell
infusion [38]. Tumor burden and pre-existing infection
before CAR T-cell therapy are key factors associated with
increased risk of CRS [39]. After CAR T-cell infusion,
other important factors, such as a peak of CAR T-cell
expansion, cytokine levels, and endothelial activation,
contribute to the occurrence and severity of CRS [39,40].
The assessment and grading of this toxicity vary
considerably across clinical trials and institutions. The
American Society for Transplantation and Cellular Ther-
apy recently proposed a consensus grading for CRS and
neurotoxicity [41]. Clinical symptoms of CRS vary from
mild signs, such as fever to life-threatening systemic
manifestations, for example, multiorgan dysfunction.
In the management of CRS, cytokine blockade by

antibody is the key measure to effectively reverse the acute
systemic inflammatory reaction. Tocilizumab and siltux-
imab, targeting to IL-6 receptor and IL-6, are recom-
mended by NCCN for CRS treatment [42]. In patients who
are resistant to anti-IL-6 agent, etanercept, a tumor necrosis
factor-α inhibitor, has been clinically proven to be highly
effective without interfering with CAR T-cell response
[43]. Recent experiments have revealed that monoclonal
antibody targeting other cytokines, for example, anakinra
for IL-1 [44] and lenzilumab for GM-CSF [45], could be
efficient in preventing CAR T-related CRS in murine
models. Apart from cytokine inhibitors, corticosteroids are
also recommended for severe CRS.

Immune effector cell-associated neurotoxicity
syndrome

Clinical experience with anti-CD19 CAR T cells shows
that neurotoxicity (formerly known as cytokine-related
encephalopathy and currently designated as immune
effector cell-associated neurotoxicity syndrome (ICANS))
represents another major adverse effect of CAR T-cell
therapy. High mortality caused by neurotoxicity resulted in
a halt of the phase II ROCKET trial and a discontinuation
of JCAR015 by the FDA. The frequency of ICANS varied
across studies, ranging from 13% [5] to 78% [46] in BCP-
ALL, from 21% [13] to 67% [12] in NHL, and
approximately 35% in CLL [10,11]. In anti-BCMA CAR
T-cell therapies in MM, the frequency of neurotoxicity was
significantly different between ciltacabtagene autoleucel
(2%) [20] and idecabtagene vicleucel (18%) [24]. The
causative pathophysiology of ICANS was unclear, but this
syndrome might be related to endothelial injuries induced
by inflammatory cytokines resulting from CNS invasion
by CART cells [47]. CD19-expressing human brain mural
cells, which help maintain blood–brain barrier integrity,
were recently considered as a key contributor to neuro-
toxicity of CAR T-cell therapy [48]. This finding provided
insights into the high incidence of CNS invasion in B-cell
ALL patients. The design, manufacturing [49], and dose
[50] of infused CAR T cells might also be related to
ICANS.
Therefore, recipients of CAR T-cell therapy with a

central nervous system (CNS) disease or a history of
seizures should receive antiseizure prophylaxis with
levetiracetam. Treatment of ICANS is basically supportive.
Anti-IL-6 therapy is administered if ICANS occurs
concomitantly with CRS. Patients with ≥ grade 2
ICANS, not associated with CRS, or who are refractory
to prior tocilizumab, require corticosteroids [41]. Accord-
ing to evidence-based guidelines [41,47] and our clinical
experience, immediate administration of small and
repeated doses of methylprednisolone (0.5 mg/kg) or
dexamethasone (5 mg) intravenously every 8 or 12 h is
beneficial. At present, the treatment of corticosteroid-
refractory cases has no therapeutic consensus. Treatment
with siltuximab and anakinra might be effective because of
their direct effects on circulating cytokines.

Other adverse events related to CAR T-cell therapy

Hemophagocytic lymphohistiocytosis (HLH) is a rare
hyperinflammatory syndrome characterized by massive
immune cell activation leading to severe multi-organ
injury, severe infection associated with agranulocytosis,
and hemorrhage caused by thrombocytopenia (less than
20 000/µL) [51]. An early detection is crucial for effective
treatment of HLH. Tocilizumab and corticosteroids should
be promptly administered, but if this treatment fails in 48–
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72 h, then immunosuppressive therapy, in accordance with
the HLH-2004 protocol, should be initiated [47].
In rare cases of MM with high tumor burden or

extramedullary plasmacytoma, effective CAR T-cell treat-
ment could cause tumor lysis syndrome (TLS). The clinical
presentation of TLS ranges from typical signs of acute
renal injury to atypical tumor bleeding caused by rupture of
vessels within the tumor or a respiratory distress syndrome,
which results from tumor lysis in the chest cavity [21].
Multi-disciplinary emergency care is needed for patients at
high risk for TLS.
In addition, late adverse events have been identified,

which must be given attention. Common late adverse
events are prolonged cytopenia and iatrogenic immuno-
globulin deficiency, which make patients prone to repeated
serious infections, particularly pulmonary infections.
Therefore, supportive care with granulocyte colony-
stimulating factor (for patients with neutrophils less than
800/µL) and regular immunoglobulin infusion are impor-
tant in the first 6 months after CAR T-cell treatment [21].
Other long-term adverse events, such as secondary
malignancies, immune-related phenomenon, and graft-
versus-host disease (GVHD) in patients with previous
allogeneic hematopoietic stem cell transplantation
(HSCT), have also been described [52]. Physicians
experienced in treating hematologic malignancies can
usually handle these long-term complications. However,
late-onset neurologic/psychiatric disorders are difficult to
identify and address [53]. A systematic follow-up is
needed for evidence-based therapy.
The advances in our understanding and the treatment of

CAR T-cell-related adverse events, particularly CRS and
ICANS, have led to improved outcomes. However, in
some cases, the health deterioration caused by these
adverse events can be fast. Fatal CRS and neurotoxicities
have occurred during almost all stages in CAR T-cell
therapy. Further understanding of the events at the
molecular, cellular, and organism levels, careful monitor-
ing of patients and early intervention are essential to
minimize these risks.

Case (continued)

In June 2018, this patient proceeded with his 1-year
follow-up examination. He did not present any symptoms
at that time. However, immunofixation detected mono-
clonal immunoglobulin IgD and λ in serum, which was the
same as it was before. M spike was 1.7 g/L. Flow-based
BM MRD turned positive, showing 0.6% plasmablasts
with a group of original immunophenotypic markers
(CD38+CD138+CD56–CD19–). Whole-body PET-CT
found a localized soft tissue plasmacytoma on the left
chest wall, and no other extramedullary lesions were
observed. Anti-CAR T-cell antibody was negative in

serum. BCMA density on the tumor cells was 84.6%.
Therefore, this case was diagnosed as BCMA-positive
relapse. In addition, he received another anti-MM CAR T-
cell agent as salvage in August 2018. However, highly
severe and toxic effects occurred on the 16th day after drug
infusion. The patient eventually died of pulmonary
hemorrhage and respiratory failure.

Mechanisms of CAR T-cell resistance

CAR T cells have demonstrated their therapeutic benefits
in patients with high-risk hematological malignancies.
However, therapy resistance is rising as a major obstacle.
Based on our current knowledge, three main causative
mechanisms of resistance have been identified:
(1) impaired T-cell function, (2) tumor microenvironment
“barrier,” and (3) tumor antigen modulation (Fig. 1).

Impaired T cell function

A number of studies have identified critical quality
attributes in apheresed T cells, which impact response to
CAR T-cell therapy in hematologic malignancies [54–57].
Autologous T cells in these patients display a wide
variability in anti-tumor potency, which not only poses a
challenge in the treatment of various indications, but also
offers an opportunity to extract critical parameters
separating effective from ineffective products, even at the
pre-manufacturing stage. Uncovering the uncertain activity
of T cells possessed in each case must ensure a good-
quality product. Analysis among patients with B-cell
leukemia demonstrated that T cells, which were more
enriched in early memory phenotype, tended to be more
proliferative and cytotoxic [54–58]. In particular, a high
proportion of CD8+ early memory T lymphocyte popula-
tion in aphereses of CLL cases predicted a durable
remission [55]. Notably, CD8+ T cells from CLL patients
were considered as a functional defect attributed to T cell
exhaustion compared with healthy donors [59]. Altered
cytokine production and high expression of inhibitory
receptors largely contributed to the reconstruction of T
cells in CLL patients [59–61]. In addition, CLL cells
downregulated CD40 ligand on CD4+ T cells. CD40
ligand was considered as an enhancer for tumor-targeting
capability of T cells [62].
Apart from innate function, antigen dose, and homing,

the foreign species of origin of the antigen recognition
domain in the CAR construct provides an extrinsic way of
inhibiting CAR T cells. The humoral or cellular immuno-
genicity was reported in a number of clinical trials using
CAR T cells with either murine-derived scFv fragment
[51,63–65] or alpaca-derived receptor [20,21]. Anti-CAR
antibodies or cellular-type response induced by host

Jian-Qing Mi et al. 789



immune rejection may limit efficacy of CAR T-cell
response, leading to relapse after initial infusion and
resistance to reinfusion [21,65]. Fully human CAR is
developed to overcome the issues of transgene immuno-
genicity, showing a positive trend of CAR T-cell function
enhancement [25,66,67] and safety improvement [68].
Methods to remove ADA-secreting cells in CAR T-cell
treatment are also being considered [21].

Tumor microenvironment “barrier”

Multiple cellular components, including tumor cells,
mesenchymal stroma cells (MSCs), endothelial cells
(ECs), regulatory T cells (Tregs), myeloid-derived sup-
pressor cells (MDSCs), and tumor-associated macrophages
(TAMs), cooperate and function collectively in the manner
of cell-to-cell binding or growth factor/cytokine secretion,
thereby constituting a hostile immunosuppressive circum-
stance for T cells. For instance, the interplay between MM
cells and marrow MSCs triggers secretion of IL-6 [69],
which, in turn, enhances vascular endothelial growth factor
(VEGF) production by MM cells [70,71]. VEGF secretion
increases BM angiogenesis via activating ECs and
maintaining its survival [72]. This finding also holds true
for lymphoma. High VEGF expression was measured in

lymphoma and related to a worse prognosis [73]. In
addition, VEGF blockade by the tyrosine kinase inhibitor
(sunitinib) upregulated chemokines, which was followed
by an increased T-cell infiltration [74]. Anti-angiogenic
therapy targeting VEGF could normalize tumor vascula-
ture and could be used to modulate CAR T cells to tumor
infiltration [75].
Apart from VEGF, inhibitory substances such as the

TGFβ, IL-10, and PD-1/PD-L1 axis are produced, and they
contribute in this milieu by lowering cytotoxic activity of
CAR T cells [76]. TGFβ plays a crucial role in promoting
differentiation of naive T cells into Tregs and activating
MDSCs. In addition, Tregs and MDSCs suppress the
effector T cells with more TGFβ and IL-10 [77,78]. IL-10
promotes differentiation of TAMs, which attracts Tregs via
producing CCL22, and further expresses PD-L1 to inhibit
activated PD-1+ T cells [79]. In the clinical evaluation
setting, the increased number of IL-10-inducible CD8+

Tregs was identified in MM, contributing to tumor immune
escape [80]. The presence of MDSCs and TAMs in B cell
lymphoma lesions is correlated to a poor overall survival
[81–83]. Substantial effectiveness of PD-1 blocking
antibodies has been observed in Hodgkin’s lymphoma
[84,85]. However, PD-1 blockade alone or combined with
other immunomodulating agents could not achieve

Fig. 1 Graphic illustrations depict the underlying mechanisms of CAR T-cell therapy resistance. From the immune effector perspective, T-cell
quality is a key determinant of CAR T-cell cytotoxicity. A number of cases failed in receiving infusion or favorable outcome because of impaired T
lymphocyte, which is attributable to T-cell exhaustion or CAR immunogenicity. In tumor setting, the interplay of cellular and non-cellular substances
in tumor microenvironment is considered as a barrier in solid tumor CAR T-cell treatment. The variability of tumor antigen expression in cancer cell
equally causes difficulties in CAR T-cell recognition and targeting.
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favorable response in MM [86–88], suggesting a compli-
cated immune disturbance in MM microenvironment
hardly reversed by a checkpoint inhibitor, although a
significant efficacy of inhibiting PD-L1 in murine MM has
been demonstrated in preclinical studies [89,90].
Apart from cellular compartment, extracellular compart-

ment accounts for a high proportion leading to a blockade
of T-cell trafficking. Genes associated with extracellular
matrix remodeling had high expression in patients with
diffuse large B cell lymphoma (DLBCL) who achieved
cure compared with poor responders. A high number of
infiltrating T cells were also evaluated in DLBCL with
persistent remission [91]. Other elements such as cancer-
associated fibroblasts (CAFs), which can produce cyto-
kines/chemokines and release proinflammatory and proan-
giogenic factors, create a supportive MM microenviron-
ment [92,93]. Consequently, targeting fibroblast activation
protein in tumor stroma with CARTcells can inhibit tumor
growth and augment host immunity [94].

Tumor antigen modulation

Tumor antigen loss or downregulation was considered as
the major cause of relapse after CAR T-cell therapy.
Antigen modulation can occur in several ways. First,
genetic abnormality of target antigen. Mutations of the
CD19 gene were identified in a group of post-CAR T-cell
relapse of ALL cases, whose CD19 regions were normal
before treatment [95]. Those variations all occurred in the
CD19 extracellular transmembrane, thereby leading to a
loss of function or loss of binding site of CD19 antigen. In
addition, the loss of heterozygosity and alternative splicing
of CD19 transcript in the relapsed tumor cells were
observed [95,96]. Genetic abnormalities were also found in
MM after BCMA CAR T-cell therapy as the underlying
mechanism of immune escape. Such abnormalities were
acquired by a MM patient by deletion of one allele and a
mutation that creates an early stop codon on the second
allele following his second infusion [97]. Homozygous
deletion of BCMAwas identified in another case after anti-
BCMA CAR T-cell therapy. Both variations led to
irreversible BCMA loss and lack of CAR T-cell prolifera-
tion [98]. Second, low-antigen density on tumor cells.
Experience from CD22 CART-cell therapy implicated that
diminished CD22 expression hindered the killing of
malignant lymphocytes [27]. Based on the mechanism,
trogocytosis was evaluated as a process of reducing tumor
antigen and promoting CAR T-cell fratricide by transfer-
ring antigen from tumor to T cells [99]. Third, tumor
antigen masking. Manufacturing could introduce CAR
gene into the contaminating tumor cells unintentionally;
thus, exogenous CD19 receptor on B leukemic cells bound
to and masked the CD19 epitope, resulting in a tumor
escape from CAR T-cell surveillance [100]. Fourth, tumor

lineage marker switch. Some B-ALL cases acquired
myeloid lineage leukemic cells at the time of relapse
after CD19 CART-cell therapy in the presence of the same
genetic clone, suggesting a partial or complete tumor
phenotypic switch under CD19 CAR T-cell selective
pressure [101,102]. Fifth, antigen expression regulated
by γ-secretase. In MM cells, γ-secretase can directly cleave
BCMA and release soluble BCMA (sBCMA), resulting in
the decreased expression of BCMA on MM cells and high
levels of sBCMA in the blood of MM patients particularly
those with RR disease. Meanwhile, the soluble BCMA
may serve as a decoy neutralizing BCMA CAR and block
the interactions between CAR T cells and BCMA on MM
cells, leading to impaired function of CAR T cells [103].

Strategies to improve the therapeutic effect of CAR T

The questions that have arisen from the existing results of
CAR T cells motivate scientists to pay considerable
attention to the study of efficacy improvement. Given the
clinical outcomes in hematological lymphoid malignan-
cies, the current solutions to the limitations of CAR T-cell
utilization are obtained from two key aspects: (1) T
lymphocyte-directed manufacturing and (2) tumor setting-
directed modulation.

T lymphocyte-directed manufacturing

CAR construct

All existing CAR constructs utilize the CD3 cytoplasmic
domain as a fixed module to deliver a major activation
signal. Recent studies identified that increasing CD3
diversity of CAR, that is, incorporation of the CD3ε
cytoplasmic domain, yielded a CAR with improved
signaling profile and tumor control [104]. The CD3
subunits all contain immunoreceptor tyrosine-based acti-
vation motifs and use tyrosine phosphorylation as a
functional switch to trigger downstream signaling. Mod-
ified ITAM configuration in some CD3 subunits favors
persistence of highly functional CARs, balancing the
replicative capacity of long-lived memory cells and the
acquisition of effective antitumor function [105].
Incorporating cytokine elements into the CAR construct

is a potential strategy to enhance engineered T-cell activity.
These tumor-targeting cytokines, such as IL-7, IL-12, IL-
15, and IL-18, can improve memory T-cell formation and
maximize an effective clearance of malignant cells [106–
109]. Furthermore, an immunosuppressive tumor micro-
environment could be addressed by using CAR T, which
secretes IL-12 to enhance the cytotoxic capability of CD8+

T cells, recruit macrophages, and prompt antigen cross-
presentation [110].
In targeting different tumor antigens simultaneously or
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successively, new CARs are designed to split from the
signaling domain of a conventional CAR and combine it
with an intermediate molecule to form a universal CAR
(UniCAR) [111]. At present, several UniCAR modules
have been reported. For example, biotin-binding immune
receptor (BBIR) CAR is composed of an extracellular
avidin motif linked to an intracellular signaling domain.
The switch molecule is a biotinylated antigen-binding
motif, that is, a monoclonal antibody (even scFv) or other
tumor-specific ligands that selectively bind to avidin
within the BBIR [112] (Fig. 2).
A further modified UniCAR is a split, universal, and

programmable (SUPRA) CAR system with two compo-
nents: a leucine zipper-containing universal receptor
(zipCAR) linked to the intracellular signaling domain
and a separate switch molecule with a cognate leucine
zipper linked to an antigen-specific scFv (zipFv) [113]
(Fig. 2). In addition, the advantage of these UniCARs
resides on their modulability to deal with adverse events
during CAR T-cell therapy. In case of severe CRS,
withdrawal of the switch molecule can control the off-
target effect.
Furthermore, fragment constant gamma-chimeric recep-

tor (Fcγ-CR) is designed for binding to specific TAA-
directed mAb [114]. In this system, T cells are engineered
to express IgG Fc receptor fragments. Interaction between
the Fcγ-CR on T cells and the anti-tumor antibody triggers
perforin/granzyme-dependent target cell lysis (Fig. 2).

T-cell subpopulation

To date, most CAR T-cell trials use infused products
generated from unselected T cells. Studies have high-
lighted the importance of distinct T-cell functional subsets
(memory and effector) and patient’s individual T-cell
profile in CART-cell therapy [115]. A high CD4:CD8 ratio
at the time of leukapheresis induced a clinical response in a
phase 1 trial of anti-BCMA CAR T cells for MM [116].

Recently, inhibitors against Akt [117], PI3K [118],
bromodomain proteins [119], and glycolysis [55] and the
genetic ablation of the key epigenetic regulator TET2
[120] could increase the memory function of CAR Ts,
which could enhance the persistence of CAR T cells and
improve the overall response rate (ORR) and/or the
durability of response.

Source of T cells

The primary determinant to successful CAR T-cell
application is the intrinsic fitness of the T cells.
Transcriptomic profiling of premanufactured T cells from
CLL patients who poorly responded to CART-cell therapy
revealed signatures of T-cell exhaustion, activation,
glycolysis, and apoptosis [55], which might be due to
immunosenescence by aging, persistent tumor antigen
exposure, and heavy lines of prior chemotherapy
[121,122]. Considering that poorly functioning T cells
would limit CAR T-cell potential, an alternative strategy
would explore the use of healthy, universal donor-derived
CAR T cell as an alternative option to address T-cell
malfunction and produce effective tumor killers.
Collection and cryopreservation before salvage che-

motherapy are recommended in many CAR T-cell centers
to obtain autologous healthy lymphocytes.
One alternative approach is the use of healthy UCAR T.

Anti-CD19 UCARTcells achieved molecular remission in
two infants with r/r BCP-ALL, who subsequently received
allogeneic HSCT [123]. It is crucial to ensure that the
TCR/HLA class I loci of allogeneic T cells are fully
disrupted by genome-editing technologies using zinc
finger nuclease, transcription activator-like effector nucle-
ase, or the CRISPR-Cas9 system. However, UCAR T-cell
therapy is still at an early stage with many issues to be
resolved.
CAR modification of immune effector cells other than T

cells has been developed. Natural killer (NK) cells are

Fig. 2 Structural improvements in newly developed CARs. These innovations aim to guide CAR to target to different tumor antigens simultaneously
or successively, thereby getting over the obstacles of antigen escape and targeting failure.
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considered as prime candidates, which have innate
lymphocytes with an inherent ability to detect and target
infected or malignant celles [124,125]. NK cells can be an
allogenic treatment, which do not require strict MHC
matching, and such cells have no risk of GVHD. The NK
cell line NK92 has been used in clinic because it can
expand easily and indefinitely. However, its potential in
vivo tumorigenicity and alloimmune responses limit its
application [126,127]. Although the majority of clinical
studies of NK cell immunotherapy have used peripheral
blood NK cells, several alternative sources of NK cells
exist, including BM, human embryonic stem cells (hESCs)
[128], induced pluripotent stem cells (iPCSs) [127], and
umbilical cord blood [125]. Cord blood NK cells have
already entered into clinical trials and demonstrated
feasibility and initial efficacy without any major toxic
events [125].

Early line treatment

As CAR T-cell production becomes more efficient and
safer, it is reasonable to consider ranking this strategy in
priority among existing treatment options in B-cell
malignancies. The optimal sequence of the use of
traditional chemotherapy, targeting agents, monoclonal
antibody immune therapies, HSCT, and CAR T-cell
therapy remains to be determined. We propose that in
patients achieving hematological CR and remaining
MRD+ after reinduction, a treatment using CAR T cells
could be considered because of its potentially important
clinical benefits and relatively moderate CRS risk with low
tumor burden.

Tumor setting-directed modulation

Multi-antigen-specific CAR T cells

A dual-targeting/“cocktail” approach may enhance the
initial treatment effects while minimizing the risk of
relapse [129]. Dual-targeting CAR T-cell therapy refers to
a single CAR that is composed of two different scFvs
“hand-in-hand” (TanCAR) or two distinct CARs with
different scFvs on one single T cell (dual-signaling CAR)
[130,131]. An example of the former was the CD19/
CD133-TanCAR, which showed a robust cytotoxic effect
against CD19+CD133+ mixed lineage leukemia cells but
with only minor activity against normal hematopoietic
stem and progenitor cells (HSPCs) in vivo [132]. As for
dual-signaling CARs, a phase 1 trial of anti-CD19/CD22
CAR T for the treatment of r/r BCP-ALL showed that
MRD-negative CR was achieved in all six enrolled patients
[133]. Recently, the results of a “cocktail” CAR T
approach, in which two single-specific CAR Ts were
sequentially infused, were reported. In this study, the

sequential infusion of anti-CD19/CD22 third-generation
CAR T demonstrated efficacy in 89 patients with r/r B-cell
malignancies [134]. In a recent phase 2 trial, 21 patients
with r/r MM received an infusion of humanized anti-
CD19/BCMA CAR T, and 20 patients had an overall
response at a median follow-up of 179 days [135]. Major
clinical trial data of dual-targeting/“cocktail” approach are
summarized in Table 4 [136–140].
The safety of this approach was also confirmed. Notably,

TanCAR may be hindered by the mutual interference
between the two divergent receptor structures [141,142]
and immunogenicity [141], whereas dual-signaling CAR
Ts may encounter problems with viral vector packaging
and transduction efficiency [143,144]. Hence, these two
approaches need further optimization. By contrast, the
“cocktail CART”may be a favorable current option, albeit
with a relatively high cost. If technical obstacles can be
overcome by using approaches such as a rational construct
design to eliminate interference, then dual or triple
targeting may become an optimal approach.
Tri-specific CAR T cells, a single engineered T cell with

three CARs targeting validated antigens, have been
developed to broaden the antigen coverage and treat
hematologic malignancies. Recently, two variants of a tri-
specific CAR targeting BCP-ALL-associated antigens
CD19, CD20, and CD22 were designed [145]. The first
variant (TriCAR) expressed three monovalent second-
generation CARs targeting each antigen individually,
whereas the second variant (SideCAR) expressed a
monovalent second-generation CD19 CAR and a bivalent
CAR containing scFvs targeting CD20/CD22. Both
variants demonstrated an improved in vitro cytotoxicity
against triple-positive ALL cells and reduced CD19-
negative relapse when compared with the monovalent
CD19 CAR.
Considerable evidence highlights the crucial role of

cancer stem cells (CSC) in the evolution and chemoresis-
tance of hematological lymphoid malignancies. Their
therapeutic targeting and killing are necessary to overcome
relapse from CSC. Comprehensive characterization of
CSC might need several specific biomarkers to define this
heterogeneous subset in hematological malignancies. If
these antigens can be identified, then simultaneously
targeting antigens expressed on CSC when targeting the
numerous tumor cells could potentially lead to deep
remissions and reduce rates of relapse. To date, several
investigators have suggested CD19, CD20, or CD38 as a
potential stem cell antigen in MM.

Combination of CAR T with other therapeutic modalities

Immune checkpoint inhibitors, particularly PD-1 blocking
antibodies, could potentiate the effect of CAR T because
the latter increases the expression of inhibitory receptors
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(iRs), primarily, PD-1 and Tim-3, after adoptive transfer
[146,147]. Recent experiments demonstrated that PD-1
blockade could be safely used with CARTcells, increasing
the efficiency and persistence of CAR T cells [148],
whereas modified CAR T cells that secrete PD-1-blocking
scFv increased anti-tumor efficacy in vivo [149]. In a study
of 11 patients with r/r B-NHLs, anti-CD19 CAR T
combined with a PD-1 inhibitor was found to be safe,
with no dose-limiting toxicities. The ORR and CR rates
were 81.8% (9/11) and 45.5% (5/11), respectively [150].
The combination of CAR T with lenalidomide, an

immunomodulatory drug that potentiates T cell function
and abrogates the suppressive microenvironment, might
also bring therapeutic benefits. Lenalidomide induces
transcriptional and epigenetic changes in CAR T, leading
to increased cell number and Th1 cytokine production,
enhanced immunologic synapse formation, and cytotoxi-
city [151,152]. These properties could directly increase T-
cell function even in patients who are refractory to
immunomodulatory drugs [153–155].
A recent study in CLL evaluated the combination of

ibrutinib, a Bruton’s tyrosine kinase inhibitor effective in
CLL frontline therapy [156], with a CART-cell expressing
humanized anti-CD19. This combination achieved CR in
43% of patients and MRD negativity in 78% of patients.
This result was more encouraging than those from prior
tisagenlecleucel studies in progressive CLL.
Remarkably, the three above-mentioned combinations

can restore T-cell function with normalized CD4:CD8
ratios and increase memory T cells, indicating that the
synergistic effects of CAR T-cell therapy might be

obtained by abrogating the immunosuppressive tumor
microenvironment [157].
In reducing the relapse after CART treatment caused by

the loss or modulation of the antigens on tumor cells
targeted by CAR T [95,96,102,158], enhancement of
tumor antigen density and CAR-binding affinity can be
envisaged [159–161]. Thus, all-trans retinoic acid, inter-
feron-α, and γ-secretase inhibitors can increase the surface
expression of target antigens on tumor cells of CART-cell-
targeted diseases [162,163]. A trial with anti-CD22 CAR
T-cell reported that bryostatin-1 could increase CD22
expression, resulting in an improved response [164]. These
findings indicated that CART in combination with relevant
small-molecule drugs may lead to rapid responses and
reduce antigen modulation-associated relapse.

Conclusions

CAR T-cell therapy for r/r B-cell malignancies has shown
great potential. Several new strategies are emerging to
enhance its efficacy and improve control of adverse events
(Fig. 3). The most appropriate target antigens should be
those selectively expressed on the surface of tumor cells
but not on cells of vital organs. In the future, carefully
selecting antigen/CAR matches and improving engineer-
ing and manufacturing processes should optimize CAR T-
cell products to achieve high affinity binding and increase
killing power with less adverse effects. In addition, the use
of CAR T therapy in a proactive manner, such as in newly
diagnosed patients with BCP-ALL, NHL, and MM, may

Fig. 3 Current strategies of improving CAR T-cell practical application. From CAR construct optimization to clinical management on adverse
events, CART-cell immunotherapy is rapidly being advanced to make it more available and accessible to lymphoid hematological malignancies. CRS,
cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; HLH, hemophagocytic lymphohisticytosis; TLS, tumor
lysis syndrome.
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lead to more therapeutic benefits while avoiding acute and
chronic complications. For BCP-ALL, such a strategy may
prompt the transition of CAR T-cell therapy from a
“bridging” therapy to a decisive one; thus, many more
patients with BCP-ALL can be cured. The approximately
50% long-term survival of patients with r/r NHL treated
with CART has justified its extension to early-phase cases.
In MM, CAR T-cell therapy may challenge the position of
auto-HSCT or be sequentially associated with auto-HSCT
for patients with poor prognosis to make the disease
curable.
In the near future, with the application of CAR T-cell

therapy, the adverse effects of CAR T-cell therapy seem to
be unavoidable. Therefore, a comprehensive training of
interdisciplinary staff, an effective communication, and an
appropriate infrastructure are required to ensure safety.
These measures should also ensure that research protocols
and standard care are appropriately executed, and adequate
resources are available to achieve optimal outcomes. Early
diagnosis and appropriate management of severe adverse
events are key to the success of CART-cell therapy. Severe
adverse events are largely associated with tumor burden
and antigen sensitivity. Based on previously reported
clinical experiments, multiply infusion of CAR T cells
might be well tolerated and applied to avoid severe CRS
compared with a single infusion [21,165]. However,
further evaluation of a larger cohort is necessary to
determine optimal infusion mode and attenuate infusion-
associated SAEs. These findings and our continued
evaluation of patients receiving multiple infusions will
ensure the dose per infusion and frequency when
administering multiple doses of CAR T cells in the future
to achieve efficiency.
CAR T-cell treatment should not be considered as an

exclusive treatment but rather a weapon that can be
integrated into the current standard of care or new
treatment modalities in combination with other immune
therapies and gene-targeting agents. CAR T-cell therapy
may synergize with these treatments to cover heteroge-
neous clones and provide long-term control or even cure.
Finally, the basic concept of CARs could be further

developed for broader use in clinical settings, such as in
myeloid malignancies or even some types of solid tumors,
by armoring other immune components, including NK
cells, B cells, and macrophages. New experimental
research and preclinical and prospective clinical trials
will explore these possibilities. We strongly believe that
CAR T-cell therapy will soon be viewed as a milestone on
the road of defeating cancer.
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