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Abstract Cardiovascular diseases account for approximately 80% of deaths among individuals with diabetes
mellitus, with diabetic cardiomyopathy as the major diabetic cardiovascular complication. Hyperglycemia is a
symptom that abnormally activates multiple downstream pathways and contributes to cardiac hypertrophy,
fibrosis, apoptosis, and other pathophysiological changes. Although glycemic control has long been at the center of
diabetes therapy, multicenter randomized clinical studies have revealed that intensive glycemic control fails to
reduce heart failure-associated hospitalization and mortality in patients with diabetes. This finding indicates that
hyperglycemic stress persists in the cardiovascular system of patients with diabetes even if blood glucose level is
tightly controlled to the normal level. This process is now referred to as hyperglycemic memory (HGM)
phenomenon. We briefly reviewed herein the current advances that have been achieved in research on the
underlying mechanisms of HGM in diabetic cardiomyopathy.
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Introduction

Diabetes is one of the major diseases that threaten human
health, with a global prevalence of 4%–17%. According to
a 2019 report of the International Diabetes Federation,
351.7 million people of working age (20–64 years) had
diagnosed or undiagnosed diabetes worldwide. This
number is expected to increase to 417.3 million by 2030,
bringing a heavy medical and economic burden to the
society. A recent epidemiological research showed that the
prevalence of diabetes among Chinese adults has reached
11.6%. Diabetes can cause various severe complications
involving many vital organs, such as heart, brain, kidneys,
and eyes. Among them, cardiovascular complications
result in the highest rate of disability and mortality,
accounting for nearly 80% of deaths due to diabetes
complications. Framingham et al. have demonstrated that
the incidence of heart failure is substantially higher in
patients with diabetes than that in patients without this
disease, with a twofold increase in males and a fivefold
increase in females compared with age-matched indivi-

duals. In fact, diabetes can indirectly lead to heart failure
by promoting hypertension and coronary heart disease [1].
Although diabetic vascular dysfunction is considered as
the leading cause of heart failure in patients with diabetes
[2], recent studies have established that diabetes is an
independent risk factor of heart failure, even after
controlling for coronary artery disease and hypertension
[3–5].
The concept of diabetic cardiomyopathy was proposed

as early as 1974 by Robert I. Hamby. It was defined as the
appearance of abnormal myocardial structure and perfor-
mance in the absence of hypertension, coronary heart
disease, severe valvular disease, and other conventional
cardiovascular risk factors in individuals with diabetes [6].
Subsequent studies have found that diabetic cardiomyo-
pathy is characterized by cardiac diastolic dysfunction and
vascular/microvascular function impairment in the early
stage, systolic dysfunction in the later stage, and clinical
heart failure, with pathological features that include cardiac
hypertrophy, interstitial fibrosis, increased capillary base-
ment membrane thickness, capillary microangioma, and
decreased capillary density in the end stage [7–9]. Notably,
the typical definition of diabetic cardiomyopathy com-
prises structural and functional abnormalities of the
myocardium in patients with diabetes without coronary
artery disease or hypertension [10]. Obviously, this type of
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cardiomyopathy should also be present in patients with
diabetes with coronary artery disease and/or hypertension,
although separately assessing the contribution of diabetic
cardiomyopathy to overall ventricular dysfunction in such
cases is difficult [11]. Clinically, requiring the absence of
coronary artery disease, hypertension, or any other form of
cardiac disease when a diagnosis of diabetic cardiomyo-
pathy is made seems unrealistic. Therefore, researchers
have recently proposed that “diabetic cardiomyopathy”
should be defined as “cardiac abnormalities not wholly
explained by other cardiovascular or non-cardiovascular
causes and likely to be due to diabetes” [12,13].
Although the pathological mechanisms underlying

diabetic cardiomyopathy has not been precisely described
thus far, several mechanisms have been speculated to
account for the progress of diabetic cardiomyopathy,
including decreased mitochondrial respiration and pyru-
vate dehydrogenase activity, accumulation of free radical
species, and malfunction of cardiac contractile and
intracellular Ca2+ regulatory proteins [14]. Interestingly,
diabetes seems to abolish the effect of “female advantage”
in cardiovascular system, and it is presented as a more
serious impairment of myocardial electromechanical func-
tion and more prominent neuroregulatory system disorders
in women patients suffering from diabetic cardiomyopathy
compared with age-matched men [14]. The prevalence of
diabetic cardiomyopathy is increasing in parallel with the
increase in the number of patients with diabetes around the
world, but no effective or targeted treatment specific for
diabetic cardiomyopathy has been developed to date,
prompting the research community to devise new therapies
that target different pathways [15,16].
Hyperglycemia has long been believed to be a major

factor that contributes to the development and progression
of diabetic cardiomyopathy by activating multiple signal-
ing pathways, such as the protein kinase C (PKC), MAPK,
NF-κB, SGLT2, O-GlcNAc, and CREM signaling path-
ways, which subsequently leads to cardiac structural
remodeling, cardiomyocyte apoptosis, and activation of
systemic and tissue RAAS [8,17]. Thus, glycemic control
has been considered as one of the most important
therapeutic approaches in the prevention and treatment of
diabetes complications [18–23]. However, multiple recent
large-scale studies have revealed that intensive glycemic
control fails to improve the overall cardiovascular out-
comes in patients with diabetes. A meta-analysis con-
ducted by Turnbull et al. analyzed several clinical trials
(ACCORD, ADVANCE, VADT, and UKPDS) and con-
cluded that intensive glycemic control does not reduce
myocardial infarction events and is insufficient to lower the
risk of heart failure in patients with diabetes [24,25]. These
studies suggested that patients with diabetes are still prone
to cardiovascular complications even after intensive blood
glucose control, indicating that transient hyperglycemia
stress persists, a condition that is now referred to as

“hyperglycemic memory” (HGM) phenomenon. In this
review, we will summarize the underlying mechanisms of
HGM that have been recently revealed. Thus, this study
will provide a theoretical and experimental basis for the
development of new strategies for diabetic cardiomyo-
pathy.

Advanced glycation end products

Advanced glycation end products (AGEs) are a hetero-
geneous group of molecules produced by Maillard
reaction, in which the reactive carbonyls in glucose,
fructose, or their metabolites, such as methylglyoxal and
deoxyglucosone, nonenzymatically react with the amine
groups in proteins, nucleotide bases, or fatty acids,
followed by further modification, such as dehydration,
oxidation, rearrangement, or other reactions, to finally
form AGEs [26,27]. Accumulation of AGEs and upregula-
tion of AGE receptors (RAGEs) promote the onset of
diabetic cardiomyopathy in streptozocin (STZ)-induced
diabetic mice, whereas treatment with the AGE formation
inhibitor benfotiamine ameliorates cardiac dysfunction
[28]. AGEs induced by hyperglycemia might alter the
functional properties of many important proteins, includ-
ing vital matrix components. For example, AGE formation
in type IV collagen induces an irregular crosslink of these
molecules instead of generating the normal network-like
structure by enzyme lysyl oxidase [29]. AGE formation in
laminin decreases its binding to type IV collagen and
heparan sulfate proteoglycan (HSPG), resulting in the
absence of HSPG in the basement membrane of glomeruli
and a compensatory overproduction of other matrix
components in diabetic rats [29]. These alterations in
extracellular matrix together reduces the compliance of the
heart, leading to diastolic dysfunction. Aside from matrix
components, AGEs can further directly activate multiple
signaling pathways or bind to specific cell-surface
receptors, such as RAGEs, a process that subsequently
promotes the progress of various pathological changes,
such as inflammation, production of reactive oxygen
species (ROS), autophagy, or apoptosis, leading to cardiac
remodeling and cardiac dysfunction [29].
Accumulated AGEs contribute to different pathological

changes in diverse cell types and organs. Oldfield et al.
[30] found that in fibroblasts, AGE/RAGE signals
stimulate the expression of the inflammation-related gene
TGF-β and promote the proliferation of fibroblasts and the
synthesis of matrix proteins. Excessive collagen deposition
leads to myocardial fibrosis and a decrease in cardiac
compliance and function [30]. Jin et al. [31] suggested that
AGE stimulation remarkably increases RAGE expression
in macrophages, promotes macrophage differentiation to
M1 phenotype, and enhances the expression of several
proinflammatory mediators, such as IL-6, TNF, and the
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NF-κB pathway. Notably, by secreting multiple proin-
flammatory cytokines and via intercellular interactions,
activated macrophages can further promote the prolifera-
tion and secretion of fibroblasts. Bucala et al. [32] found
that AGEs can quench nitric oxide (NO), the major active
constituent of endothelium-derived relaxing factor, both
in vitro and in vivo. They further confirmed that
endothelium-dependent relaxation of ascending aorta in
diabetic rats is damaged by the accumulation of AGEs in
endothelial cells. Accordingly, inhibition of AGE forma-
tion by aminoguanidine, a hydrazine-like compound,
ameliorates vasodilatory impairment by preserving
endothelium-derived NO [32]. Schmidt et al. [33] found
that the exposure of cultured human endothelial cells to
AGEs can induce the expression of vascular cell adhesion
molecule-1 (VCAM-1). Therefore, it might accelerate
atherogenesis by enhancing the interactions between
endothelium and circulating monocytes.
With regard to AGEs in cardiomyocytes, a recent study

revealed that AGE exposure impairs the binding of FK506
binding protein 12.6 to ryanodine receptor 2 (RyR2),
causing elevated intracellular calcium concentration,
decreasing mitochondrial membrane potential, and indu-
cing cell apoptosis in myocardium and cultured myocytes
[34]. The expression levels of cytochrome c and active
caspase-3 in rat myocardium and primary myocytes are
also elevated by AGE exposure, which together with
calcium imbalance, result in cardiac dysfunction [34].
Similarly, glycations of RyR2 and sarco(endo)plasmic
reticulum Ca2+-ATPase (SERCA2a) are increased in the
hearts of patients and rats with diabetes, leading to
perturbed SR Ca2+ cycling and cardiac dysfunction
[35,36]. Moreover, AGE accumulation activates PKC in

an ROS-dependent manner, triggering mitochondrial
dysfunction and subsequent cardiac cell death [37].
Additionally, the AGE-modified form of low density

lipoprotein (LDL) reportedly considerably impairs plasma
clearance in patients with diabetes in line with decreased
LDL receptor binding activity, leading to an elevated
circulating LDL level, which is an important mechanism
for dyslipidemia, endothelial dysfunction, and accelerated
atherogenesis [38]. Zoltowska et al. [39] demonstrated that
AGE-modified LDL remarkably enhances platelet aggre-
gation by 32%–44% in response to aggregating agents,
such as thrombin, collagen, and ADP, and stimulates
cholesterol esterification in monocytes, thereby further
contributing to intravascular thrombosis and endothelial
dysfunction.
The late stages of Maillard reaction to form AGEs are

reportedly irreversible [40], whereas multiple AGE-
modified proteins, such as glycated fibrinogen and
collagen, are stiffer and less susceptible to biological
degradation [41,42]. Therefore, the persistence of accu-
mulated AGEs even after glucose normalization may at
least partially explain the HGM phenomenon via various
pathways in multiple cell types (Fig. 1), and further studies
should attempt to increase the turnover of these abnormally
accumulated AGEs and AGE-modified proteins to restore
intracellular and circulating physiologic environment.

MicroRNAs

MicroRNAs are a class of small noncoding RNAs that are
19–25 nucleotides in size that commonly regulate the post-
transcriptional silencing of target genes [43]. Mature

Fig. 1 AGEs promote the process of diabetic cardiomyopathy via various pathways in multiple cell types.
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microRNAs usually mediate the silencing of target genes
by binding to the 3′ untranslated region of the target
mRNA within RNA-induced silencing complexes, result-
ing in mRNA degradation or translation inhibition [44]. A
single microRNA can target hundreds of mRNAs and
influence the expression of numerous genes that might be
functionally related [45]. In cardiovascular diseases,
microRNAs are reportedly involved in the pathological
processes of fibrosis/antifibrosis, hypertrophy, mitochon-
drial fission, apoptosis, lipid deposition, and oxidative
stress [46–48].
Several studies have attempted to identify the roles of

miRNAs in the HGM phenomenon. Zhong et al. [46]
distinguished three differentially expressed microRNAs
(miR-125b, miR-29a-3p, and miR-146a-5p) in the aortas
of diabetic rat, regardless of insulin treatment. They further
revealed the direct regulatory effects of miR-125b on TNF-
induced protein 3 (TNFAIP3) and those of miR-146a-5p
on TNF receptor-associated factor 6 (TRAF6) and IL-1
receptor-associated kinase 1 (IRAK1) in human aortic
endothelial cells (HAECs). Consistently, the protein levels
of these three target genes (TNFAIP3, TRAF6, and
IRAK1) are persistently altered in response to transient
hyperglycemia, but these changes can be restored by miR-
125b inhibition or miR-146a-5p overexpression [46].
Strycharz et al. [49] suggested that even a transient
exposure to high glucose levels during adipogenesis might
induce changes in miRNA expression in mature adipo-
cytes, and the expression profiles are similar to those
exposed to chronically high glucose levels. Peng et al. [50]
found that high glucose levels induce sustained upregula-
tion of miR-204 and downregulation of sirtuin1 lysine
deacetylase (SIRT1) in retinal pigment epithelial cells,
both of which contribute to endoplasmic reticulum stress
and subsequently to cell apoptosis. These changes can last
after replacement with normal glucose levels.
Costantino et al. [51] discovered that 316 microRNAs

are dysregulated in the heart of STZ-induced diabetic mice
compared with those in the controls, among which 209 are
upregulated and 107 are downregulated by > 2.0-fold.
Interestingly, 268 of those dysregulated microRNAs
remain altered even after reverting to normoglycemia by
insulin treatment. Subsequent ingenuity pathway analysis
revealed that a large proportion of these persistently
dysregulated miRNAs are involved in processes related to
apoptosis (miR-320b, miR-378, and miR-34a), fibrosis
(miR-125b, miR-150, miR-199a, miR-29b, and miR30a),
hypertrophic growth (miR-1, miR-150, miR-199a, miR-
133a, miR-214, miR-29a, miR-125b, miR-221, and miR-
212), autophagy (miR-133a, miR-221, miR-212, and miR-
30a), oxidative stress (miR-221, miR-146a, miR-34a, miR-
210, miR-19b, miR-125b, miR27a, and miR-155), and
heart failure (miR-423, miR-499, and miR-199a) [51].
These results indicated that glycemic control is insufficient
to completely revert the alteration of miRNAs in diabetes,

providing a new mechanistic insight into the HGM
phenomenon in diabetic cardiomyopathy. Costantino et al.
[52] recently confirmed the protective role of JunD, a
member of the activated protein-1 family of transcription
factors that act as a major gatekeeper against oxidative stress
in the pathogenesis of hyperglycemia- or ROS-induced
myocardial dysfunction. Furthermore, they revealed that
the expression of JunD is epigenetically regulated by
hypermethylation in the gene promoter region, as well as by
translational repression via miRNA-673, suggesting a
complex regulatory mechanism involving microRNAs and
epigenetic modifications of critical genes in diabetic
cardiomyopathy.
Our previous study revealed that miR-320 expression is

elevated in the heart of diabetic mice compared with that in
the controls, and this elevation promotes CD36 transcrip-
tion by facilitating the association of argonaute 2 (Ago2)
with RNA polymerase II (Fig. 2). Given that CD36 is
known to contribute to fatty acid (FA) uptake, upregulated
CD36 results in myocardial lipid deposition and cell
apoptosis, subsequently triggering cardiac dysfunction and
diabetic myocardiopathy [43]. Sadoshima [53] commented
that “the selective upregulation of CD36 transcription by
miR-320 shown by Li et al represents a novel mechanism
by which lipid uptake is enhanced in the absence of
increases in FA oxidation.” Sadoshima added that “inter-
estingly, miR-320 forms an RNA-induced silencing
complex with Ago2 to promote RNA interference in the
cytosol but miR-320 and Ago2 also form a distinct
complex, called a RITA complex, in the nucleus, thereby
activating transcription” [53]. Moreover, miR-320 is one of
those microRNAs that persistently dysregulate in transient
hyperglycemia. The lipotoxicity mediated by miRNAs
might be one of the underlying mechanisms of the HGM
phenomenon in diabetic cardiomyopathy. The issue of
whether other miRNA-mediated factors are involved in
lipotoxicity and “hyperglycemic memory” is largely
unknown and remains to be addressed.

Persistent mitochondrial oxidation stress

Overproduction of superoxide by the mitochondrial
electron-transport chain, which is then converted to other
more reactive oxygen free radical species, is another
important mechanism in diabetic cardiovascular complica-
tions [54–56]. In fact, myocardial glucose-derived pyr-
uvate oxidation is markedly decreased in diabetes because
of impaired glucose uptake and cardiomyocyte oxidation
[57]. Therefore, the energy fuel in myocytes is mainly
derived from FA oxidation. This energy substrate alteration
leads to increased β-oxidation of fatty acyl-coenzyme A
(CoA) within the mitochondria and subsequent over-
production of acyl-CoA [58]. However, owing to the
uncoupling of mitochondrial enzymes, the tricarboxylic
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acid (TCA) cycle is insufficient to oxidize excessive acyl-
CoA, leading to the production of toxic intermediates,
including ROS [59,60].
By comparison, an increase in acyl-CoA oxidation in the

TCA cycle increases the flux of electron donors (NADH
and FADH2) into the electron transport chain and
consequently elevates the voltage gradient across the
mitochondrial membrane. As the voltage gradient reaches
a critical threshold, the electron transfer within complex III
is blocked, and the electrons would return to coenzyme Q,
which donates the electrons to molecular oxygen, thus
forming superoxide [61]. Previous studies have determined
superoxide as the initial oxygen free radical formed by the
mitochondria, which is then converted to other types of
ROS [62]. Most importantly, the mitochondria have been
demonstrated to be required for the initiation of hypergly-
cemia-induced superoxide production, which in turn could
activate other superoxide production pathways and
amplify the original detrimental effects of hyperglycemia,
including redox changes, NADPH oxidases, and
uncoupled eNOS [63]. In fact, some researchers have
even considered enhanced mitochondrial superoxide over-
production as the common step of various mechanisms that
underlie hyperglycemia-induced injuries, such as elevated
aldose reductase activity, PKC activation, hexosamine
pathway flux, AGE formation, and RAGE ligand binding
[63,64].
With regard to the HGM phenomenon, the adverse

impact of mitochondrial oxidation stress on targeted
organs in diabetes displays an enormous potential to
persist even after normoglycemia. Ihnat et al. [65] found
that multiple markers of oxidative stress, such as BCL-2-

associated X protein, NAD(P)H oxidase subunit p47phox,
and 3-nitrotyrosine, which are induced by high glucose
treatment, can remain elevated for 1 week after glucose
level is normalized in human endothelial cells and ARPE-
19 retinal cells, which can be interrupted by the blockade
of reactive species [65]. Furthermore, the mammalian Shc
(Src homology 2 domain containing) gene encodes three
different adaptor protein isoforms (p46Shc, p52Shc, and
p66Shc), but only p66Shc is involved in mitochondrial ROS
generation [66]. Targeted mutation of p66Shc reduces the
production of intracellular oxidants and increases the
resistance to oxidative stress [66], whereas p66Shc–/– mice
are protected against vascular and cardiac injuries induced
by diabetes by reducing ROS generation and ameliorating
hyperglycemia-induced endothelial impairment [67].
Cosentino et al. [68] indicated that in the aortas of diabetic
mice and high glucose-treated HAECs, the activation of
p66Shc would persist even after reverting to normoglyce-
mia. Specifically, PKC enhances p66Shc expression,
whereas p66Shc upregulates PKC in response to high
glucose levels, leading to a detrimental cycle despite the
restoration of normoglycemia [68]. Moreover, persistent
activation of p66Shc results in ROS overproduction,
reduced NO bioavailability, and subsequent cell apoptosis,
all of which drives HGM-related cardiovascular complica-
tions [68]. Accordingly, gene silencing of p66Shc can
inhibit ROS production, restore endothelium-dependent
vasorelaxation, and prevent cell apoptosis both in vivo and
in vitro, thereby attenuating endothelial dysfunction in
diabetes [69]. These studies indicated that persistently
activated p66Shc has a critical role in the HGM phenom-
enon.

Fig. 2 Elevated miR-320 in the heart of diabetic mice acts in the nucleus to promote CD36 transcription by facilitating the association of
argonaute 2 (Ago2) with RNA polymerase II, which increases the FFA uptake of cardiomyocytes and results in myocardial lipid
deposition, causing cell apoptosis and cardiac dysfunction. Adapted from reference [37] with permission (OA related license).
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Lee et al. [70] recently revealed a vicious cycle
involving transglutaminase 2 activation and ROS genera-
tion in the aortic endothelium of mice exposed to transient
hyperglycemia, and this cycle can be disrupted by oral
administration of either Cys (a type of TGase inhibitor) or
N-acetylcysteine, an ROS scavenger.
NADPH oxidase is remarkably activated in the

cardiomyocytes of diabetic Wistar rats, leading to ROS
overproduction and myocardial apoptosis [71]. Our recent
study also found that the excessive ROS generated in the
mitochondria is regulated by miR-92a-2-5p and let-7b-5p
in the heart of diabetic mice. Specifically, a decrease in
miR-92a-2-5p and let-7b-5p in the mitochondria down-
regulates the expression of mitochondrial gene cyto-
chrome-b (mt-Cytb), a critical protein in the process of
ROS generation, and consequently increases mitochon-
drion-derived ROS under diabetes conditions, which can
be rescued by the re-expression of miR-92a-2-5p and let-
7b-5p in cardiomyocytes [72]. Interestingly, the let-7
family has also been demonstrated to be involved in the
HGM phenomenon [51]. In fact, ROS overproduction and
disrupted redox balance have been extensively reported to
mediate the expression of various microRNAs [73]. Kim
et al. [74] indicated that miR-210 is upregulated by various
sources of ROS in adipose-derived stem cells, whereas He
et al. [75] revealed that miR-199a and miR-125b are
inhibited by ROS via hypermethylation in their promoter
regions. Therefore, mitochondrion-derived ROS along
with microRNAs might possibly constitute a vicious
cycle that can persist even after restoration of normogly-
cemia, thereby contributing to the pathogenesis of HGM in
diabetic cardiomyopathy.
Importantly, mitochondrial DNA (mtDNA) is prone to

enhanced oxidative damage because it lacks a DNA repair
mechanism and owing to its special subcellular location
wherein it is too close to the electron transport chain [76].
Given that mtDNA encodes several essential protein
subunits of the oxidative phosphorylation system, persis-
tently impaired mtDNA as induced by hyperglycemia-
derived superoxide would result in further ROS produc-
tion, which might be the potential mechanisms underlying
sustained diabetic cardiomyopathy.

DNA methylation and histone protein
modification

DNA methylation and histone protein modification also
play an important role in the HGM phenomenon in diabetic
cardiomyopathy [77,78]. Cytosine–phosphate–guanine
(CpG) hypomethylation in the promoter region of
protein-coding genes generally results in transcriptional
activation. By contrast, methylation of CpG sites by DNA
methyl transferase (DNMT) promotes the binding of

promoter regions with methyl-CpG binding domain
proteins instead of transcription factors, and the former
in turn recruits histone deacetylases, leading to transcrip-
tional repression [77]. Metabolism plays a central role in
DNA methylation. Demethylation is regulated by ten-
eleven translocation (TET) family enzymes, which utilize
the TCA cycle intermediate α-ketoglutarate to remove
methyl groups [79]. Succinate acts as a competitor of α-
ketoglutarate to inhibit TET activity [80]. Succinate levels
are increased in type 2 diabetes [81]. Therefore, metabolic
perturbations regulate the activity of enzymes involved in
the balance between DNA methylation and demethylation
[82].
Histones are subject to diverse post-translational

modifications, which include acetylation and methylation
of lysines and arginines, phosphorylation of serines and
threonines, and ubiquitylation and sumoylation of lysines
[83]. Foremost among them are acetylation and methyla-
tion. In general, acetylation of histones (H2A, H2B, H3,
and H4) in different lysine sites is usually associated with
transcriptional activation [84]. Numerous studies have
revealed that in diabetes, the expression levels of various
genes are regulated by acetylation, but these can be
reversed by the application of histone acetyltransferases
(HATs) or histone deacetylases (HDACs), thus attenuating
cardiac dysfunction [85–87]. Hyperglycemia decreases the
activity of glucose-6-phophate dehydrogenase [88], which
results in increased global levels of H3 and H4 acetylation
[89]. An altered metabolic environment and an abnormal
accumulation of intermediates (such as CoA derivatives,
free CoA, NAD+, and NADH) would stimulate or inhibit
the activity of HATs or HDACs, thereby changing the
states of histone acetylation. The enzymes that regulate
histone acetylation are HATs and HDACs, and these
enzymes can also directly acetylate or deacetylate various
transcription factors and regulatory proteins aside from
histones [90]. Yu et al. [91] recently found that STZ-
induced diabetes in mice and high glucose environment for
neonatal mouse cardiomyocytes can suppress Sirt3 (a
member of HDACs), thereby reducing Foxo3A deacetyla-
tion and subsequent Parkin expression. Suppressed Sirt3-
Foxo3A-Parkin expression leads to impaired mitophagy
and cardiac contractile dysfunction [91].
A global analysis of histone code modifications in

cardiac mesenchymal cells (CMSCs) derived from patients
with diabetes revealed a greater reduction in histone 3
lysine 9 acetylation (H3K9Ac) and histone 3 lysine 14
acetylation—compared with the CMSCs derived from
patients without diabetes [92]. Given that the CMSCs used
in this study were cultured in the presence of normal
glucose levels, sustained alteration of histone acetylation
state might be involved in the HGM phenomenon [92].
Moreover, an increase in β-oxidation of FAs leads to

upregulated acetyl-CoA levels within the mitochondria.
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Although acetyl-CoA is the only known substrate for
acetylation in most eukaryotes, abundant acetyl-CoA and
high pH (which has been shown to enhance the ratio of
neutral and nucleophilic forms of lysine residues) lead to
substantial spontaneous mitochondrial protein acetylation
via both enzymatic and nonenzymatic mechanisms [93].
Irregular hyperacetylation reportedly inhibits many cata-
lytic activities of mitochondrial enzymes [94]. Hyperace-
tylation of some cytoplasmic proteins, such as p66Shc, has
been demonstrated to promote its phosphorylation at Ser36
and its translocation to the mitochondria, which then
increase ROS production through the generation of
hydrogen peroxide [95]. However, the question of whether
nonnuclear proteins are acetylated requires further study.
Methylation in the lysine residue of histone is a

considerably more complex process as it involves diverse
conserved lysine loci, such as lysine 4 of H3 (H3K4),
lysine 9 of H3 (H3K9), and lysine 20 of H4 (H4K20), as
well as different methylation patterns, including mono-,
di-, or tri-methylation, all of which usually cluster within
specific regions and lead to the reorganization of chromo-
somes into different structural and functional domains
[77]. Moreover, histone methylation processes are regu-
lated by multiple enzymes, including histone methyltrans-
ferases (HMTs) and histone demethylases (HDMs or
HDMTs). Recent studies have found that high glucose
levels decrease lysine methyltransferase 5A (KMT5A) and
cAMP response element binding protein. Thus, high
glucose levels reduce histone H4 lysine 20 methylation
(H4K20me1, a downstream target of KMT5A) in protein
tyrosine phosphatase 1B promoter, which then augments
expressional activity in human umbilical vein endothelial
cells (HUVECs) [96]. Wang et al. [97] also revealed that
high glucose levels inhibit SET8 (a methyltransferase)
expression and H4K20me1 in the microtubule affinity
regulating kinase 4 (MARK4) promoter region, resulting
in induced MARK4 expression and NLRP3 inflammasome
activation. Of note, SET8, along with LSD1 (one of the
HDMs), controls the protein stability of DNMT1 via
methylation-mediated, ubiquitin-dependent degradation,
consequently influencing DNA methylation [98]. In
conclusion, a high glucose level itself can alter the
expression and activity of multiple histone modification
enzymes and accordingly influence DNA and histone
methylation states.
Miao et al. [99] utilized the samples from The Diabetes

Control and Complications Trial (DCCT) to profile
H3K9Ac-, H3K4Me3-, and H3K9Me2-linked gene pro-
moter regions in blood monocytes obtained from 30 DCCT
conventional treatment group subjects (case subjects) and
30 DCCT intensive treatment group subjects (control
subjects). They found that the case subjects had a
substantially higher average number of regions enriched
with H3K9Ac than the control subjects. Of note, the genes

universally hyperacetylated in promoter regions were
found to be enriched to diabetes-related pathways,
including ROS, apoptosis, and macrophage and dendritic
cell functions [99]. Chen et al. [100] compared the DNA-
me profiles in genomic DNA of whole blood isolated at
EDIC Study baseline from 32 cases (previous DCCT
conventional therapy group subjects) with those of 31
controls (previous DCCT intensive therapy group). They
found a set of differentially methylated loci despite the lack
of notable difference in HbA1c levels between cases and
controls [100]. Olsen et al. [101] used zebrafish, which can
spontaneously recover from diabetes via pancreatic β-cell
regeneration, to perform CpG island methylation and
genome-wide microarray expression analysis with daugh-
ter tissues that were never exposed to hyperglycemia.
Interestingly, they discovered the persistence of hypergly-
cemia-induced global DNA hypomethylation in a subset of
loci associated with abnormally expressed genes in these
daughter tissues, and this hypomethylation might explain
the impaired caudal fin regeneration to the same extent as
that of diabetic zebrafish [101], implicating DNA methyla-
tion as a potential contributor to the HGM phenomenon.
El-Osta et al. [102] found that in aortic endothelial cells,

exposure to transient and prior hyperglycemia causes
sustained epigenetic changes in the NF-κB subunit p65
(NF-κB-p65) promoter, resulting in persistent NF-κB-p65
gene expression. Specifically, transient hyperglycemia
results in ROS overproduction by the mitochondrial
electron transport chain, thereby increasing H3K4 mono-
methylation (H3K4me) in the NF-κB-p65 promoter via
recruitment of histone methyltransferase Set7 [103].
Another important epigenetic mechanism that underlies
sustained NF-κB-p65 activation is the distinct and
persistent H3K9 demethylation (including dimethylation
and trimethylation) in proximal p65 promoter, which is
mediated by hyperglycemia-induced recruitment of the
methyl-lysine eraser LSD1 [102]. H3K4me appears to be
a crucial post-translational modification that triggers
gene expression. Hyperglycemic stress increases H3K4
monomethylation in NF-κB-p65 promoter, driving
proinflammatory gene expression (such as monocyte
chemoattractant protein-1 and VCAM-1, both of which
play a major role in the pathogenesis of atherosclerosis),
and these alterations cannot be restored by removing from
hyperglycemic environment [104–106].
Histone 3 lysine-9 trimethylation (H3K9me3) also

appears to be involved in the inflammation process induced
by hyperglycemia and the HGM phenomenon [107]. In
cardiomyocytes incubated with high glucose levels, the
protein levels of the H3K9me3 methyltransferase Suv39h1
are considerably reduced in accordance with the decreased
association of Suv39h1 with IL-6 promoter. As a result, a
reduction in H3K9me3 in the IL-6 promoter region leads to
the transcriptional activation of IL-6 [107]. Interestingly, in
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contrast to sustained inflammatory phenotype and epige-
netic histone modification, high glucose level-induced
myocardial apoptosis and mitochondrial dysfunction are
reversible [107]. In high glucose level-treated human THP-
1 monocytic cells, the transcription factor NF-κB, along
with its transcriptional coactivators, including HATs, such
as CBP/p300 and p/CAF, are recruited to TNF-α and COX-
2 promoters, which increase the concomitant acetylation of
histone H3 and histone H4 in the promoter regions, leading
to chromosome remodeling and the expression of these
proinflammatory genes [108]. Via chromatin immunopre-
cipitation linked to microarray, Miao et al. [109] unveiled
genome-wide H3K9me2 patterns in the blood lymphocytes
and monocytes from patients with diabetes versus healthy
control subjects. They found substantially increased
expression of the promoter H3K9me2 in autoimmune-
and inflammation-related genes, such as p38 mitogen-
activated protein kinase, Toll-like receptor, and IL-6 [109].
An aspect that should not be ignored is that the

expression levels of epigenetic modification enzymes
also reportedly persistently change in response to transient
high glucose stimulus. Zheng et al. [110] uncovered that
hyperglycemia downregulates NAD-dependent deacety-
lase sirtuin-1 levels in bovine retinal capillary endothelial
cells and returning to normoglycemia fails to rescue SIRT1
reduction. Moreover, elevated glucose levels reduce lysine
methyltransferase SET8 proteins in HUVECs, which
remain at a low level after switching to normoglycemia
[111].
Methylation of histone lysine residues is a class of

reasonably stable epigenetic modifications despite a certain
degree of reversibility, and it might partly explain the
persistent epigenetic changes in the promoter of critical
genes after intensive blood glucose control in diabetes. In
fact, methylation at different lysine residues in histones has
been extensively demonstrated to display differential
turnover rates, some of which (such as H3K27me3,
H4K20me3, and others) are considerably slower than
many other post-translational modifications [112,113].
Previous studies have also shown that histone modification
enzymes (such as HATs, HDACs, and HMTs) are
associated with histones of the type that they can produce,
suggesting a positive feedback where modified nucleo-
somes recruit enzymes that similarly modify nearby
nucleosomes, which make it possible for a cluster of
nucleosomes to maintain a specific stable modification
state, thus causing an “epigenetic memory” [114–116].
Dodd et al. [117] adopted a simplified stochastic model of
dynamic nucleosome modification to confirm this mechan-
ism. They found that this mechanism endows a strong
bistability to the modification state of a cluster of
nucleosomes despite multiple changes in the modification
status for each nucleosome. These characteristics of
histone modifications suggested that they have a critical

role in the mechanisms that underlie the HGM phenom-
enon.

Other mechanisms

Patients with diabetes mellitus are often accompanied by
multiple metabolic disorders, including abnormal lipid
metabolism, obesity, and insulin resistance, all of which
cannot be rescued by simple hypoglycemic therapy. For
instance, our previous studies have revealed that hyper-
glycemia increases the myocardial uptake of free FAs by
miR-320 by elevating the expression of the FA transporter
protein CD36. Lipid deposition results in lipotoxicity in
myocytes and consequently induces cell apoptosis, which
in turn accelerates the pathogenic progress of diabetic
cardiomyopathy [43,53]. Interestingly, miR-320 has been
demonstrated to be one of the microRNAs that are
persistently altered despite normoglycemia [51]. There-
fore, the lipotoxicity mediated by miR-320 might provide
novel insights into the HGM phenomenon in diabetic
cardiomyopathy. Other factors that contribute to cardiac
lipotoxicity in diabetes, such as FA transporting proteins
other than CD36, elevated glycerol-3-phosphate acyltrans-
ferase (GPAT) activity, increased diglyceride acyltransfer-
ase, and other cellular pathways that participate in
lipotoxic mechanisms, are indeed involved in diabetic
cardiomyopathy, but their functions in the HGM phenom-
enon are yet to be studied.
Low-grade inflammation is commonly observed in

various tissues in response to lipid overload, and this
condition appears to promote diabetes development via
insulin resistance [118,119]. Adipose tissues, especially
enlarged or dysfunctional adipocytes, are considered the
main source of inflammatory factors in obesity, and they
attract immune cells and subsequently induce their
polarization into a proinflammatory phenotype [118].
The HGM phenomenon has also been observed in

clinical settings. Intensive glucose control has been found
to have a little effect on reducing the overall risk of
cardiovascular complications in individuals with diabetes,
and it might be associated with the side effects of
hypoglycemic drugs that are extensively used in diabetes
therapy [25]. All antihyperglycemic drug therapies can
potentially mechanically exert detrimental effects on
cardiac dysfunction, thereby precipitating heart failure in
patients with diabetes. Moreover, drug-induced hypogly-
cemia has been shown to cause the activation of
sympathetic nervous system and increase the heart rate,
both of which contribute to thrombus formation and
arrhythmia, thereby further aggravating ventricular remo-
deling and cardiac dysfunction. For example, insulin can
reportedly stimulate the activity of a wide range of sodium
transporters, including NHE3, sodium–potassium (Na/K)
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ATPase, and the sodium bicarbonate cotransporter
(NBCe1) in proximal tubules; sodium–potassium–chloride
(NKCC2) cotransporter and Na/K ATPase in the loop of
Henle; and amiloride-sensitive sodium channel (ENaC) in
distal tubules, all of which increases sodium reabsorption
in the kidneys, causing water–sodium retention and
subsequent cardiac dysfunction [25]. Therefore, aside
from the cellular memory properties induced by high
glucose stimulation, the side effects of hypoglycemic drugs
may also play a role in the HGM phenomenon in diabetic
cardiomyopathy.

Conclusions and perspectives

The mechanisms that underlie the HGM phenomenon has
not been fully understood thus far. Numerous studies have
suggested that multiple molecular pathways, such as
AGEs, oxidative stress, and epigenetic modification,
might be involved in this process. However, these
mechanisms do not seem to exist in isolation but form a
complex network in which these components exert mutual
regulatory effects, forming various vicious cycles (Fig. 3).
The abnormal metabolism caused by high glucose levels
causes mitochondrial oxidative stress. For example, ROS
overproduction inhibits the activity of glyceraldehyde-3-
phosphate dehydrogenase and leads to the accumulation of
glycolytic intermediates, which then activate the polyol
and hexosamine pathways, causing the activation of the
protein kinase C-β (PKC-β) pathway and the formation of
AGEs [120,121]. AGEs promote ROS production in
myocytes, thus forming a vicious cycle between ROS

and AGEs. In addition, ROS can induce various post-
translational modifications of histones, such as acetylation,
methylation, phosphorylation, and ubiquitination. Even if
hypoglycemic treatment is able to restore the glucose
metabolism pathway to its normal state and leads to ROS
production, most epigenetic modifications are irreversible,
causing persistent abnormal expression patterns of multi-
ple genes (including ROS-related genes), and ultimately
contributing to the progressive worsening of myocardial
function [103,122]. The abnormal expression of miRNAs
can also further lead to mitochondrial dysfunction and
ROS overproduction [72].
The pathogenic molecules mentioned above form a

complex interlocking network. However, which molecules
in these pathogenetic processes are the most critical and
initiating factors remain unclear. Therefore, further time
point studies are warranted to unveil the earliest signal
molecule and the key abnormal pathways in diabetic
cardiomyopathy. Other important pathways are also
involved in diabetic cardiomyopathy. For instance,
although the glucose within diabetic cardiomyocytes
shows reduced flux through glycolysis, it actually
participates in more than one carbon cycling pathways,
as well as in multiple glycolytic side branch pathways,
such as the polyol pathway, the hexosamine biosynthetic
pathway, and the pentose phosphate pathway [58]. These
pathways are crucial to the O-17 GlcNAc modification of
proteins and alteration of relative protein function or
stability [123–126]. However, compared with the well-
studied irreversible AGE modifications, the role of
dynamic and enzymatic O-GlcNAcylation in hyperglyce-
mic memory remains unclear and requires further study.
Sustained high glucose stress despite subsequent

normoglycemia is not limited to diabetic cardiomyopathy.
The HGM phenomenon is a common phenomenon in
various diabetic complications, such as nephropathy and
retinopathy [127,128], which were not included in this
review because our focus was on cardiovascular complica-
tions. Diabetic damages in various target organs and cell
types have been indicated to be quite different. For
instance, in diabetic nephropathy and retinopathy, persis-
tent hyperglycemic stress on endothelial cells plays a
pivotal role. By comparison, in diabetic cardiomyopathy,
various cells, such as cardiomyocytes, myocardial micro-
vascular endothelial cells, fibroblasts, and immune cells,
may jointly participate in the pathogenesis of the HGM
phenomenon. Previous studies have also revealed that
intensive glucose control effectively lowers the risk of
myocardial infarction/coronary artery disease, further
supporting different pathogenesis in different target
organs/cells suffering from the HGM phenomenon.
Although the HGM phenomenon has been confirmed by

substantial clinical and experimental studies, intensive
glucose control at the early stage can indeed be able to

Fig. 3 Various pathogenic mechanisms by which diabetic
cardiomyopathy (DCM) forms a complex network.
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bring benefits for diabetic complications. For instance, the
incidence of cardiovascular diseases in type 1 diabetes
patients is reduced if intensive glycemic control is
provided soon after diagnosis [129]. Preclinical experi-
ments have also suggested that good control of blood
glucose soon after the induction of diabetes offers
protective effects against retinopathy, neuropathy, or
oxidative and nitrative stress [130–132]. These findings
highlighted the concept of “point of no return,” which
occurs during the process of diabetes mellitus and related
complications, beyond which the onset of good glycemic
control would be no longer sufficient to revert pathological
changes in target cells and organs, leading to failure in
preventing some of the diabetic end point events.
Future studies should focus on exploring the unique

mechanism of the HGM phenomenon in different organs/
cells, as well as in cell–cell interactions. A profound
elucidation of the temporal and spatial changes in this
process would assist in providing novel insights into the
prevention and treatment of diabetes complications.
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