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ABSTRACT When free-floating space robots perform space tasks, the satellite base attitude is disturbed by the
dynamic coupling. The disturbance of the base orientation may affect the communication between the space robot and
the control center on earth. In this paper, the enhanced bidirectional approach is proposed to plan the manipulator
trajectory and eliminate the final base attitude variation. A novel acceleration level state equation for the nonholonomic
problem is proposed, and a new intermediate variable-based Lyapunov function is derived and solved for smooth joint
trajectory and restorable base trajectories. In the method, the state equation is first proposed for dual-arm robots with and
without end constraints, and the system stability is analyzed to obtain the system input. The input modification further
increases the system stability and simplifies the calculation complexity. Simulations are carried out in the end, and the
proposed method is validated in minimizing final base attitude change and trajectory smoothness. Moreover, the minute
internal force during the coordinated operation and the considerable computing efficiency increases the feasibility of the
method during space tasks.

KEYWORDS free-floating space robot, dual arm, coordinated operation, base attitude restoration, bidirectional

approach

1 Introduction

Extra vehicular activity plays an important role in space
exploration and has been studied by many researchers. It
mainly includes large space structure construction,
satellite refurbishment and refueling, and space debris
removal [1,2]. These tasks are dangerous and laborious
for astronauts. As an alternative solution, the space robot
attracts attention as a feasible, safe way for on-orbit tasks
[3.4].

Among different varieties of space robots, the free-
floating space robot (FFSR) stands out for the advantage
of fuel saving [5,6]. During space tasks, the FFSR suffers
from dynamic coupling that may result in satellite pose
disturbance. The disturbance affects robot end positioning
accuracy and may interfere with ground communication
[7,8]. The end positioning problem can be well solved by
the generalized Jacobian matrix-based control. Attentions

Received May 21, 2021, accepted August 18, 2021

are focused on minimizing satellite attitude disturbance
because ground communication is remarkably influenced
by satellite angular motion rather than translation motion
[9].

To eliminate satellite base disturbance during trajectory
planning, the reactionless null space method [10,11] and
the null reaction force method [12,13] were exploited.
The former plans trajectories with zero base angular
velocity, whereas the latter minimizes the force exerted
on the satellite base. Both methods are effective but can
only be implemented for manipulators with sufficient
redundant degrees of freedom (DOFs). The disturbance
map method was proposed to plan low-disturbance paths
[14], and the zero-reaction manipulator was designed to
decouple the motion between the satellite and the
manipulator [8]. However, these two methods cannot be
expanded to high-DOF manipulators. The attitude control
method was developed to control the base pose by
adjusting the manipulators, but the method does not
consider end tasks [15]. Free-falling cat was studied, and
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the near-optimal control approach was applied to find a
minimum disturbance trajectory in joint space, but the
method suffers from the velocity discontinuity and low
computing efficiency [16]. Nakamura and Mukherjee
[17] proposed the bidirectional approach (BA) to solve
the nonholonomic problem. The method employs a
virtual space robot as an assistant in trajectory planning
and can reduce base attitude error while ensuring accurate
joint positions. However, jumping joint velocities
decrease the reliability and the feasibility.

In the aforementioned studies, researchers mainly focus
on single-arm space robots that are fit for simple tasks.
For complex tasks in space, multiarm space robots show
better extensibility [18]. Multiarm space robots can
accomplish tasks in more dexterous ways, such as
coordinated operation, parallel task, and target clamping
[1]. Studies on multiarm FFSR are also being carried out
these years, including capturing tool designs [19],
capturing strategies during coordinate operations [20],
and satellite—manipulator decoupling strategies of free-
flying and free-floating robots [1,21]. To eliminate base
disturbance with the decoupling strategy, the rapidly
exploring random trees-based method was applied [22].
However, this method needs additional DOFs and does
not consider end tasks. Abdul Hafez et al. [1] optimized
the satellite base movement of dual-arm robot with the
quadratic optimization method. However, the velocity
jumps conflict with the real manipulator control. The
reactionless null space method was also applied to
multiarm space robot to eliminate satellite base attitude
disturbance [2,23]. However, additional DOFs or
manipulators are needed to balance satellite base
disturbance. The same problem was also met by Xie et al.
[24], who tried to compensate the base disturbance with
balance manipulator. These works mainly pay attention to
dual-arm parallel tasks where the robot ends the
movement in free space. Scenarios of coordinated
operation with dual-arm FFSR are more complicated.
Extra constraints are imposed to robot ends in
coordinated operation, and the available DOFs are further
reduced. As a result, more challenges are encountered for
satellite base disturbance minimization.

The studies above show two ideas of solving the
base—manipulator coupling problem: The first one tries to
keep the base attitude stable in the whole dynamic
process, which is mainly used in online trajectory
planning, and the second one just focuses on the unity of
the initial and final base attitude, which is mainly used in
offline trajectory planning. Based on the second idea, this
paper proposes a method named enhanced bidirectional
approach (EBA) to solve the nonholonomic problem of
dual-arm FFSR with limited redundant DOFs. The
method aims to keep the satellite attitude the same at the
initial and final moment when the dual-arm FFSR works
in free space, and minimize the final attitude disturbance
when the robot works with additional constraints. As an

extension of BA, the method proposed in this paper aims
to overcome velocity jumps in BA and ensure a velocity-
level continuous trajectory. In the EBA, the trajectory is
planned in two situations: free end dual-arm robot and
dual-arm robot with end constraints. The model of robot
motion in free space is analyzed first, and a general state
equation is then determined. A stable control law is
introduced based on the analysis of the state equation, and
the minimum disturbance trajectory is finally obtained.
For tasks with end constraints, the constraint equations
are integrated into the robot motion model, and the stable
control law can be obtained directly in analogy with the
situation of free end control. The EBA aims to decrease
base disturbance effectively and ensures smooth joint
trajectories. The smooth trajectory can avoid additional
base attitude error and internal force in robot control.

The contents of this paper are organized as follows. The
tasks and the FFSR analyzed are described in Section 2.
The derivations of the EBA with and without end
constraints are shown in Section 3. Simulations to
validate the reliability and feasibility of the theory are
carried out in Section 4. Finally, the paper is concluded in
Section 5.

2 Problem description and robot model

2.1 Problem description

The dual-arm space robot is mainly composed of two
space manipulators and a satellite base. When the space
robot carries out on-orbit tasks, it usually runs into two
scenarios, as shown in Fig. 1. In both figures, the opaque
robot stays at the initial robot state, and the transparent
pose is the final state. In Fig. 1(a), the two manipulators
accomplish parallel tasks. Two manipulators are given
separate, independent positioning tasks without contact,
and the robot motion is planned in free space, similar to
single-arm planning. In Fig. 1(b), the two manipulators
accomplish tasks in a coordinated manner, such as
capturing or recycling an object. In this situation, extra
geometry and force constraints are imposed to
manipulator ends; thus, further analysis is needed in
motion planning.

The robot redundant DOFs are usually limited for
satellite base disturbance elimination; thus, a real-time
reactionless strategy is challenging. A reasonable solution
is to plan the robot motion offline. In this manner, the
concern is more about the initial and final states. Then,
the planning goal becomes minimizing the final satellite
attitude variation and ensuring precise positioning of the
robot joints or ends.

In this paper, the task in free space is assumed to
position the robot in the desired working pose, and the
coordinated task is to capture and drag an object to the
designated position. In both cases, the initial and final
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Fig. 1 Task scenarios of free-floating space robot: (a) robot with free ends; (b) robot with end constraints.

robot configurations (joint angles and satellite base
attitude) are predefined, and our planning is to design
smooth joint trajectories with eliminated final base
attitude variation.

2.2 Robot model

The robot model and the corresponding D-H coordinate
system are illustrated in Fig.2. The robot contains a
satellite base supporting two same-structured 7-DOF
manipulators. The base coordinate system is located at the
mass center of the satellite, and the installation coordinate
systems of the manipulators are positioned at the opposite
sides of the satellite. The D-H and installation parameters
are listed in Table 1, and the inertia parameters are
presented in Table 2. The mass centers of the links are
measured with respect to the D-H coordinate systems,
and the inertia is measured with respect to the
corresponding mass centers.

3 Enhanced bidirectional approach

The EBA is proposed to find a smooth trajectory with
restorable base attitude. In the method, the initial and
final robot configurations are given first, and the
trajectory is planned offline. To find a trajectory between
the two configurations, a considerable idea is to seek
trajectories from the two configurations simultaneously
until the two trajectories meet each other. Suppose the
trajectory starting from the initial state is T1 and the
trajectory sought from the final one is T2. The planned
trajectory can be defined as a combination T1 and the
inverse of T2. In this manner, trajectory planning can be
modelled as a convergence problem of the error between

Satellite base

Fig.2 D-H coordinate systems of dual-arm free-floating space
robot.

T1 and T2.

To propose a base attitude restoration method for dual-
arm FFSR, the dual-arm system is analyzed in two
scenarios: dual-arm robot moving in free space and dual-
arm robot with end constraints. Moreover, the traditional
BA method is introduced briefly in the section for a better
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understanding of the EBA method.

3.1 Overview of the traditional bidirectional approach

Based on the said basic idea, trajectory planning can be
equivalent to a “meeting motion” of the real robot and a
virtual robot. The real robot is located at the initial
configuration at the initial time as the opaque manipulator
shown in Fig. 1, and the virtual robot stays at the final
configuration at the initial time as the transparent one in
Fig. 1. When the planning progress begins, the two robots
start moving toward each other, and the process
terminates when the state variables of the two robots
coincide halfway. Then, T1 and T2 can be defined as the
trajectories of the real and virtual robots, respectively.

To find the trajectory error between T1 and T2, the
state equation is derived first. Based on the law of
conservation of momentum, the satellite angular velocity
of FFSR can be calculated as in Eq. (1):

&, cosa tane, sine.tana, 1
a=|a, |=J,0=| -sine, cosa, 0(J,.9,
Q, cosa.seca, sina.seca, 0

(D
where « is the roll-pitch-yaw (RPY) angle of satellite
base, ay, a,, and a; are respectively x, y, and z terms of
the satellite base RPY angle, @; and @; are corresponding

Table 1 D-H parameters of free-floating space robot system

Joint 6/(°) ai/(°) a;j/m di/m
1 0 0 0 0.225
2 0 90 0 0.240
3 -90 -90 0 0.240
4 0 0 0.56 0.200
5 90 0 0.5 0.195
6 0 90 0 0.180
7 0 -90 0 0.476

Note: To align O, with Oga, translate Oy, by a vector of (0.3, 0.51, 0.83) m, and
rotate with an roll-pitch-yaw (RPY) angle of (90°, 26°, 0°); to align Oy, with
Ogg, translate O, by a vector of (0.3, —0.51, —0.83) m, and rotate with an RPY
angle of (—90°, —26°, —180°).

terms of & and e, respectively, J,, and J,, are the
analytical Base-Jacobian and geometric Base-Jacobian,
respectively, and @ is the joint angle.

The robot configuration is defined as the state variable,
that is, x = [T, T]T, and the input is defined by u = .
The state equation can be stated as follows:

d JS(I

9] = [INXN}u = Wu,
where N is the number of robot joints, Iyxy is the identity
matrix with N dimension, and W is the input matrix of the
robot system in the BA.

To calculate trajectory error, the state equations of the
real and virtual robots are established based on Eq. (3). If
the states of the real and virtual robots are noted by x; and
Xy, respectively, the following state equations can be
obtained:

X =

@

X, =Wu,

{xz =Wou,, )

where W) and W, are the input matrices of the real and

virtual robots in the BA, respectively, and #; and u, are

the inputs of the real and virtual robots in the BA,

respectively

To find a convergent trajectory error, the state error

Ax = x| — x; is selected to build the Lyapunov function,

as shown in Eq. (4). The input ensuring a convergent

trajectory error is derived as Eq. (5). With the input, the
corresponding time-derivative of 7 is shown in Eq. (6).

V= %AxTQAx =(x,—-x,)'Q(x; - x,), 4)
it = [u]T ul ]T = —(QW)TAx, %)
V =-Ax"Ax, (6)

where V is the Lyapunov function of the system, Ax =
X1 — x, is the state error between the real and virtual
robots, @ is an arbitrary symmetric positive-definite
matrix, @ is the augmented input composed by u; and u5,
W = [W), —=W>], and (-)' means the pseudoinverse of
corresponding matrix. Equations (4) and (6) show that the

Table 2 Inertia parameters of free-floating space robot system

Mass center coordinate
Robotlink  Masskg —— = o belkgm?) - Loftkgm?)  Lo/kgm?) - Dyf(kgm?)  Lo/(kgm?) Lo/ (kgm?)
Base 510.00 0 0 0 625.00 —4.95 6.58 452.50 -2.39 450.00
Bodyl 6.34 0 —0.07 —-0.05 0.09 0 0 0.05 0.02 0.07
Body2 6.34 0 0.07 —0.05 0.09 0 0 0.05 0.02 0.07
Body3 7.93 0.23 0 —0.03 0.08 0 0.12 0.57 0 0.53
Body4 5.67 0.24 0 0 0.03 0 0.05 0.33 0 0.31
Body5 2.80 0 -0.03 —0.03 0.01 0 0 0.01 0 0.01
Body6 2.70 —0.03 0.02 0 0.01 0 0 0.01 0 0.01
Body7 10.01 0 -0.01 —0.20 0.15 0 0 0.20 0.01 0.10
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Lyapunov function ¥ = 0, the corresponding time-
derivative V < 0, and the equal sign holds if and only if
Ax = 0. Thus, the system is asymptotically stable, and the
steady-state value of V' is zero.

The BA plans the trajectories of the real and virtual
manipulators simultaneously. Supposing the two robot
states coincide at meeting time #n, the real system input is
combined as follows:

_ ul([)’
u(r) = {—u2<2tm ~ ),

0<r<t,
t, <1t<2t,.

(N

The derivation and simulation results of the BA show
the following: 1) The desired joint angular velocities u(0)
and u(2t,) are nonzero, which results in velocity jumps at
the initial and final time. 2) When state error Ax
approaches zero, W, asymptotically equals W,. Thus, W
asymptotically tends to be singular. The simulation
results show that though i is the product of W' and Ax, in
most cases, # is divergent resulting from the singularity
of W. Then, the joint angular velocity jumps at time #y.
3) Owing to the velocity jumps above, when the BA is
implemented in real robot control, the difference between
the actual and desired trajectories results in extra base
attitude variation.

3.2 Enhanced bidirectional approach for dual-arm robots
without end constraints

The BA was proposed for the single-arm space robot. In
practice, the BA can also be applied to dual-arm system
without end constraints because both systems can plan the
manipulator joint trajectories freely, that is, no additional
constraint equations are needed if the BA is applied to the
dual-arm system without end constraints. The EBA
improves the BA by planning a smoother joint trajectory,
and the situation of Fig. 1(a) is studied first. In the EBA,
the system state equation is reconstructed, a new
acceleration-level state equation is proposed first, and the
corresponding system input is calculated and optimized
for system stability and computing efficiency.

3.2.1 System model and input

The angular velocity discontinuities in the BA at time 0
(initial time), #, (meeting time), and 2¢, (final time)
suggest that only convergent Ax is not sufficient for
successful robot control. Zero velocity is also needed at
time 0, #,, and 2¢,. Thus, an acceleration-level state
equation is proposed in the EBA.

Joint angular acceleration is selected as input U, and
then the new acceleration-level state equation for the
FFSR can be defined as follows:

Y Z 0N><N
| %

0N><(N+3) IN><N

X+ U=AX+BU,
0(N+3)><(N+3) 0(N-¢-3)><N

®)

where X = [z, xT]T is the state variable of robot in the
EBA, and z =  is the joint angular velocity, x = [aT, §T]T
represents a combination of the satellite RPY angle and
robot joint angle, 4 and B are the state and input matrices
of the system in the EBA, respectively, and W can be
obtained by Eq. (2).

Based on Eq. (8), the state equations of the real and
virtual robots are listed as follows:

{Xl =A X\+B\U,,
X, = A,X,+B,U,,
where A}, A; and B, B, are the state and input matrices
of the real and virtual robots in the free-end system in the
EBA, respectively, X;, X, and U, U, are the state
variables and the inputs of the real and virtual robots,
respectively.

To ensure the trajectory error between the real and
virtual robots converging with zero joint velocities,
trajectory error and joint velocity are combined to build
the Lyapunov function. The combined variable s € R is
introduced in Eq. (10), and the Lyapunov function is
defined in Eq. (11).

)

s=P(t)Ax+z, (10)
Vv L (11)
==5s,
2

where P ¢ R?MVt3) is an undetermined intermediate
matrix that unifies the dimensions of Ax and z, and will
be determined in the next section.

Taking a time derivative of Eq. (11) gives

V=s"=5"(P()Ax+P()Wz+U). (12)

Equations (11) and (12) show that if the system input is
calculated as in Eq. (13), V is not larger than zero, as
shown in Eq. (14).

U=[Ur U] =-POAx-POWz—ks,  (13)

V =—ks"s <0, (14)

where k is an arbitrary positive number, and U is the

augmented input composed by U, and U,. The equal sign

holds if and only if s = 0. Thus, the system is

asymptotically stable, and the steady-state value of V is
Zero.

3.2.2 Calculation of undetermined matrix P

Input U calculated by Eq. (13) ensures that s converges to
0. Then Eq. (10) is reformulated as

z=-P()Ax. (15)

Substituting the joint angular velocity z into Eq. (2)
gives

Ax =Wz =-WPAx. (16)
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P = mWT" is assumed, where m is an arbitrary positive
number. Equation (16) is rewritten as

Ax=—mAx. (17)

Define A as the base RPY angle error and A as the
joint angle error, then Eq. (17) shows that Ax = [AaT,
AOT]T decays exponentially until around zero. If W is a
nonsingular matrix, z = @ will also converge to zero
according to Eq. (15). However, similar to the BA, W
will gradually become singular as Ax approaches zero;
thus, further input modification is required to keep the

system stable.

3.3 System input modification and parameter analysis

3.3.1 System input modification

Substituting P = mW" into Eq. (13) gives

U=—(mW' +kmW")Ax = (mW'W + L)z, (18)

where W' is the time derivative of W' and can be
determined by Eq. (19). W' is a high-order term of W'
and is more susceptible to singularity [25].

- - T

W= -WWW + (I-WW)W (W) W', (19)

To eliminate the singularity influence on the system

stability, W is neglected in the paper, and the

Moore—Penrose inverse is substituted by the damped least
square inverse [26]. Then, Eq. (20) is obtained:

o=|Ur U ]T = —kmW' Ax = (mW'"W + kI ) 2. (20)
where W' is the damped least square inverse of W and
defined as

W' = (W'W+ ALy) W, @1

where A is the damping factor, if 1 = 0, W' = W', Then,
the system input is derived as

_ (U,
v = { U2ty 1),

0<t<t,,

tn <t<2t,. (22)

3.3.2 Influence of neglecting w

The absence of W in Eq. (22) may affect the convergence
of s or even invalidate the algorithm. To decrease the
influence of neglecting W, a proper selection of the
coefficient set is required. The analysis of Eq. (18) shows
that when & >> m, W would have much less effect than W
on the system and confines the neglection effect.

3.3.3 Influence of damped least square term W'

The damped least square term may influence the system
in two ways. A small damping factor A has a minimal

influence on the system in the inception phase; thus, Ax
still converges to zero. Though W' approaches infinity,
Wt still stays finite; hence, the first term in Eq. (20)
converges to zero. The following Lyapunov function is
considered:

1

V==zz 23
5% (23)

Taking a time derivative gives
V=22 =—2" (mW"'W+kLy)z, (24)

where if k >> m, mW™W + kI, is positive definite, thus,
V' is asymptotic stable, and z gradually converges to zero.

When damping factor A is large, a large damping factor
has a greater effect on the Base-Jacobian because W is
mainly composed of the Base-Jacobian matrix and the
identity matrix, where the former has a much lower order
than the latter. The greater influence on the Base-Jacobian
then leads to a fluctuated A@. As a combination of A«
and A@, Ax no longer approaches zero, and z fluctuates
around 0 at time fp,.

To sum up, a small damping factor causes overlarge
joint angular acceleration and velocity, whereas a large
damping factor results in large tracking errors. In
practice, the damping factor should be selected according
to the actual scenario.

3.4 Enhanced bidirectional approach for dual-arm robots
with end constraints

The former section introduced the method for the single-
arm or dual-arm space robot without end constraints. In
this section, the trajectory planning problem in the dual-
arm coordinated operation is addressed. In this situation,
the EBA is integrated with geometric constraints, and the
corresponding input is modified.

The dual-arm FFSR system is schematically illustrated
in Fig. 3. O, is the inertial coordinate system; r, and ry, are
the end vectors of arms A and B, respectively; ryp is the
vector pointing from arm B end to arm A end; v,, vy, ®,,

Arm A

Capturing
object

Satellite
base

Fig. 3 Structure of dual-arm free-floating space robot system.
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and w, are the end velocities and the end angular
velocities of arms A and B, respectively. All vectors are
presented with respect to Og.

When the dual-arm robot is performing a coordinated
operation, the velocities and angular velocities of the two
arm ends satisfy the following constraints:

(25)

V.=V, + @, XTIy,
), = Wy.

According to robot inverse kinematics, the constraints
can be transformed into
b T va T (Fap X wa
Jth JG ( b )JG (26)
J Gwb ™ J Gowa
where H is the coefficient of the geometric constraints in
coordinated operation, Jgya, Jovb and Jgea, Jce» are the
traditional end velocity and the angular velocity Jacobians
of arms A and B, respectively, rX is the skew-symmetric
matrix and is defined as
0 -r. r
r. 0 -—r/|.

-1, I 0

]9=H9:0,

rx = 27

Equation (26) shows that @ is located in the null space
of H and

0= (I.w-H'H)E=LE, (28)

where L is the null space of H, and £ is an arbitrary
vector. U = £ is selected, and then Eq. (8) can be

transformed into
o Z _ 0N><N _
X—[x]—[WL }U—ALX+BLU,
(29)
where W, is the mapping matrix from the variable z to
variable x in the constraint-end robot system and is
defined by W, = W-L, Ay is the state matrices of
constraint-end system in the EBA and By is the input

matrices of the constraint-end system in the EBA.
Corresponding complete state equations are

{Xl =A,X,+B,U,
X, = ApX,+B LU,
where A7, and A, are the state matrices of the real and
virtual robots in the constraint-end system in the EBA,
and By, and By, are the input matrices of the real and
virtual robots in the constraint-end system in the EBA.

Then, in analogy with Eq. (20), the input can be derived
as Eq. (31):

0N><(N+3) IN><N

X+

0(N+3)><(N+3) 0(N+3)><N

(30)

U = ~kmW['Ax—(mW]' W, +klya)z, G

where W, is the augmented mapping matrix in the
constraint-end system, and can be calculated in analogy
with Eq. (5).

As anull space of H, L is not rank full; thus, W, = W-L
is a singular matrix. To limit the robot joint velocities, a

large damping factor A is needed in W,, and this factor
selection results in the fluctuated Aa and z. To tackle this
problem, a further modification is introduced to Eq. (31)
to ensure the convergence of z:

U =-m[k+Sig(t,1)(Sig(t,t,) — 1)]
-Sig(t,1,) Wi Ax — (mWFWL + kINxN) z,

where Sig(t, tp) is the Sigmoid function and can be
obtained by Eq. (33), and ¢, is the time when velocities
are desired to be zero. In practice, #, can be selected as the
time when A@ is located near zero.

(32)

1

Sig(t,t)) =1— ———.
lg( 0) 1+e—t+ru

(33)

4 Simulation and verification

The EBA aims to plan joint trajectories satisfying the
joint angle demands and satellite base attitude demands.
In this paper, two simulations are carried out: One aims to
verify the control of the FFSR in the free space, and the
other aims to validate the control of the dual-arm robot
system with end constraints.

Each simulation is composed of two processes:
planning and controlling. In planning, the initial and final
conditions are first determined, and then the joint
trajectories are planned. In controlling, the planned
trajectories work as the joint controller inputs, and the
joint space torque control method (closed-loop inverse
dynamic control method for free space moving and
master—slave for coordinated operation) is implemented
for robot control.

4.1 Simulation of the free-floating space robot without end
constraints

The experimental and controlled groups are set in the
simulation to validate the EBA methods. The BA, the 5-
degree-polynomial planning method, and the near-
optimal control approach are employed in the controlled
group. The 5-degree-polynomial planning method is an
offline method, and it plans the joint trajectory with 5-
degree-polynomial from the initial joint angle to the aim
joint angle, as shown in Eq. (34). The near-optimal
control approach is also an offline method, and it is
proposed to optimize the final base attitude variation. In
the method, the system state equation is also described by
Eq. (2), and the system input is designed by a
combination of finite number of Fourier orthogonal basis,
as shown in Eq. (35). The coefficients of the orthogonal
basis are solved by modified quasi-Newton algorithm
during optimization [16]. In the controlling simulation,
the traditional closed-loop proportional-differential (PD)
inverse dynamic control method [27] is applied for robot
control.
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0, =k0 + kl(t - t*) + kz(t - t*)z + kg(t - l‘*)’s
+h,(t—1) + kst —1), (34)
where ¢* is the initial time of trajectory planning, and the

coefficients are calculated by the boundary condition of
the trajectory.

h

[k 2mi 2mi
%+ 2 [kc()icos %lt + k; sin %lt
k h 2 . 2 .
U k.,;cos llt + kg; sin llt
2 T T

u= = , (39

kvo w 2mi (2w
7 %0 + ; [ch,- cos(Tt) + kgy; Sin (Tt)} 7
where / is the number of the Fourier orthogonal basis, k;;
and kg;; are the coefficients of the ji terms of the Fourier
orthogonal basis, and T is the total planning time of the
near-optimal method.

4.1.1 Simulation parameter setting

The joint trajectory is planned according to the joint
angles and the base attitudes at the initial and final times.
The initial joint angles are defined as [(—23.44°, —90°,
12.51°, 104.8°, —27.33°, 66.56°, —38°), (—23.44°, —90°,
12.51°, 104.8°, —27.33°, 66.56°, —38°)], the final joint
angles are defined as [(—23.44°, —80°, —17.49°, 134.8°,
—12.33°, 111.56°, =38°), (—23.44°, —180°, 47.51°, 144.8°,
7.67°, 86.56°, —38°)], and the initial and final RPY angles
are defined as [0°, 0°, 0°].

Four methods are applied in the planning simulation,
and the parameters are selected as follows. For the EBA,
the parameters are set as k = 1.3, and m = 0.125. Given
that £ is larger than 10m, it is in accordance with k >> m
and meets the demand of Eq. (20). Moreover, to eliminate
the influence of the Sigmoid function and the damped
least square term, fp = 1000 s and A = 0 are set. For the
BA, the effect of @1 on the system is similar to m in the
EBA. Thus, @ = 8I is selected. For the near-optimal
control approach, the number of Fourier orthogonal basis
is 98 (=14%7), and the penalty factor is 10000.

The simulation time of planning is determined as
follows. For BA and EBA, the time is determined by the
value of Ax. The simulation time of 5-degree-polynomial
planning method and the near-optimal control approach is
affected by the joint velocity and joint acceleration. The
unlimited-time simulation results show that the velocities
of the BA are divergent, whereas the EBA works with a
fine convergence and preferable stability. For an effective
comparison, the simulation time of the planning simula-
tion is set as 300 s. Within this period, meeting velocities
of the EBA converge to 0.001°/s while the condition of
the BA is acceptable. The simulation time of the two

other controlled groups is set as 20 s, which limits the
joint velocity and joint acceleration within 10°/s and
10°/s2.

In the controlling simulation, the traditional closed-loop
PD inverse dynamic control method is applied. In the
method, the PD parameters are selected according to the
joint acceleration. For the feasibility of the control
system, excessively large acceleration should be
eliminated to enable motor driving. In the BA method and
near-optimal control approach, small PD parameters are
selected to limit joint acceleration because the velocities
are discontinuous. In the EBA and the 5-degree-
polynomial planning method, continuous velocities
permit much larger PD parameters. In the simulation, the
acceleration is limited by 10°/s2; thus, PD parameters are
selected as proportional parameter K, = 0.15, differential
parameter Kg = 0.6 for the velocity jumping group, and
K, =10, K4 = 40 for the continuous velocity group. In the
controlling simulation, the simulation time is extended to
show the step response process at the velocity jumping
moment.

4.1.2 Simulation results and analysis

Though the simulation time of the 5-degree-polynomial
planning method and the near-optimal control approach is
shorter than that of BA and EBA, the actual calculation
time of BA and EBA is approximately 370 s, and the
actual run time of the 5-degree-polynomial planning
method and the near-optimal control approach are
approximately 0.42 and 6300 s, respectively. The run
time of the 5-degree-polynomial planning method is
much less than that of the others because the calculation
is achieved only by a polynomial computation. This
process is fast, but the method does not optimize the base
attitude. For the other methods, the BA and the EBA have
higher calculation efficiency than the near-optimal
control approach.

The joint angular velocities of simulations are
illustrated in Fig. 4. Figures 4(a)-4(d) are the joint
angular velocities of the EBA, the BA, the 5-degree-
polynomial planning method, and the near-optimal
control approach, respectively. To compare the BA and
the EBA clearly, their joint angular velocities are
dispersed along the axis labelled as “Robot joint order,”
as shown in Figs. 4(a) and 4(b). In both figures, joint
orders 1-7 represents the joints 1-7 of arm A, and orders
8-14 mean the joints 1-7 of arm B. The controlling
simulation time for the BA, the EBA, and the near-
optimal control approach is extended. For the BA and the
near-optimal control approach, extensions are used to
show the complete the step response process, and the
extension of the EBA is used as a comparison of BA.

In Fig. 4, the desired joint angular velocity provided by
the planning simulation is plotted by dashed lines, and the
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Fig. 4 Joint angular velocity of free-floating space robot without end constraints: (a) joint angular velocity in the enhanced bidirectional
approach, (b) joint angular velocity in the bidirectional approach, (c) joint angular velocity in the 5-degree-polynomial planning method,

and (d) joint angular velocity in the near-optimal control approach.

real joint angular velocity obtained from the controlling
simulation is depicted by solid lines. Figure 4(a) shows
that the real joint angular velocity of the EBA fits the
desired values well. The velocities at the initial and final
times of all joints are zero, and at the meeting time, the
joint velocities are also near zero. Moreover, the “meeting
points” are marked by filled circle in the figure, the
curves before the points are trajectory T1, and the curves
after the point are the trajectory T2. In Fig. 4(b), the
desired joint angular velocity of BA jumps at 1 =0s, t =
150 s, and ¢ = 300 s. These sudden changes occur at the
initial, meeting, and final times, and induce step
responses to real curves. For the 5-degree-polynomial
planning method shown in Fig. 4(c), the real curves
coincide with the desired curves well. As a well-known
second-order continuous method, the controlling
simulation time is not expanded, and the results prove
that the robot will stop moving at the final time without
step response. Figure 4(d) shows that the desired joint
angular velocity is continuous during the planning except
at the initial and final times. The discontinuity of the
desired trajectory causes a step response and tracking
error in the real trajectory and decreases the reliability of
the method. In the figure, the real (solid lines) and desired
curves (dashed lines) are plotted to show the complete
responses in the real robot control (especially the step
response for the discontinuous desired trajectory). The

step response introduces tracking errors to the system;
thus, the final base attitude deviates from its theoretical
value.

The joint angles of simulations are illustrated in Fig. 5
to show the robot working state, and the real and desired
trajectories are plotted for a complete response
presentation. Figures 5(a)-5(d) are the joint angles of the
EBA, the BA, the 5-degree-polynomial planning method,
and the near-optimal control approach, respectively. As in
Fig. 4(a), the “meeting points” are marked in Figs. 5(a)
and 5(b) to distinguish the trajectory of “real robot” and
“virtual robot.” In Figs. 5(a)-5(c), the initial and end joint
angles are all [(—23.44°, —90°, 12.51°, 104.8°, —27.33°,
66.56°, —38°), (—23.44°, —90°, 12.51°, 104.8°, —27.33°,
66.56°, —38°)] and [(—23.44°, —80°, —17.49°, 134.8°,
—12.33°, 111.56°, —=38°), (—23.44°, —180°, 47.51°, 144.8°,
7.67°, 86.56°, —38°)]. In Fig. 5(d), the initial angles are
the same while the final joint angle is [(—23.43°, -90.01°,
—17.49°, 134.81°, —12.33°, 111.57°, —38°), (—23.43°,
—90.01°, 47.52°, 144.81°, 7.68°, 86.56°, —38°)]. Though
the final state error of the near-optimal control approach
is slightly larger than those of the three other methods, it
is still located in the neighbor of the required angle and
satisfies the initial and final conditions. For BA, the curve
peaks of Fig. 5(b) suggest that the method works with
less controlling precision than the three other methods.
The figures show that all the methods meet the general
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requirement of ensuring precise robot arm positioning.
The advantage and disadvantage of the methods can be
concluded from the trajectory continuity, final base
attitude change, and computing efficiency.

The trajectories of satellite base attitudes are plotted in
Fig. 6. Figures 6(a), 6(b), and 6(d) are the base RPY
angles of the EBA, the BA, the 5-degree-polynomial
planning method, and the near-optimal control approach,
respectively. For the EBA, the final desired and real base
RPY angles are [0°, 0°, 0°] and [—0.01°, 0°, 0.01°]. The
final desired and real RPY angles of BA are [0°, 0°, 0°]

Front. Mech. Eng. 2022, 17(1): 2

and [—0.07°, 0.02°, 0.13°]. For the 5-degree-polynomial
planning method, the final desired and real base RPY
angles are [—0.81°, 0.53°, 0.78°] and [—0.82°, 0.52°,
0.79°]. The final desired and real base RPY angles of the
near-optimal control approach are [0°, 0°, 0°] and [0.01°,
0.00°, —0.04°]. The figures show that for the BA and the
near-optimal control approach, though the desired final
base attitudes are zero, the real values are much larger
due to the trajectory discontinuity and the trajectory
tracking errors shown in Figs. 4 and 5. The final base
attitude of the 5-degree-polynomial planning method is
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Fig. 5 Joint angle of free-floating space robot without end constraints: (a) joint angle in the enhanced bidirectional approach, (b) joint
angle in the bidirectional approach, (c) joint angle in the 5-degree-polynomial planning method, and (d) joint angle in the near-optimal

control approach.
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Fig. 6 Satellite base attitude of free-floating space robot without end constraints: (a) RPY angle in the enhanced bidirectional approach,
(b) RPY angle in the bidirectional approach, (c) RPY angle in the 5-degree-polynomial planning method, and (d) RPY angle in the

near-optimal control approach.
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the largest one because no optimization is applied in this
method. This phenomenon also suggests the effectiveness
of the other optimization methods. For the EBA, the real
and desired final base attitudes are the smallest. It proves
that the method can decrease the final base attitude
variation effectively, and the smooth trajectory has a
minimal perturbation on the system.

4.2 Simulation of free-floating space robot with end
constraints

The experimental and controlled groups are set in the
simulation to validate the EBA method. The last section
proved that the trajectories planned by the BA perform
worst in robot control. If the method is applied to robot
tasks with end constraints, the situation is even worse.
Thus, in the section, BA is not selected in the controlled
group. To fit the coordinated operation, the leader—
follower method is applied instead of the S5-degree-
polynomial planning method [28]. In the method, one arm
(leader) is planned by the 5-degree polynomial as in Eq.
(34), and the other one (follower) is planned by velocity-
level inverse kinematics with Jacobian matrix, that is, the
controlled group consists of the leader—follower method
and the near-optimal control approach.

4.2.1 Simulation parameter setting

In the dual-arm coordinated operation, the relative poses
of the two arm ends are kept constant during the whole
process. At the initial time, the joint angles are set as
[(—23.44°, —90°, 12.51°, 104.8°, —27.33°, 66.56°, —38°),
(—23.44°, -90°, 12.51°, 104.8°, —27.33°, 66.56°, —38°)].
To apply the leader—follower method, the end pose is also
given: The end positions are [(0.543, 0.793, 1.888),
(1.529, —0.268, —1.332)] m, and the end RPY angles are
[(—97.38°, —62.71°, 73.34°), (87.72°, —38.51°, 65.24°)].
At the final time, the joint angles are calculated as
[(—23.44°, —141.29°, 16.92°, 168.53°, —110.15°, 75.40°,
16.68°), (—23.44°, —84.38°, 66.04°, 95.38°, —71.42°,
63.47°, —41.08°)], and the corresponding end pose is
[(0.104, 0.648, 1.992), (—0.119, —0.147, —2.264)] m, and
[(-61.17°, =76.93°, —0.46°), (—14.49°, 29.30°, 167.12°)].
The satellite base RPY angles at the initial and final times
are both [0°, 0°, 0°].

In the planning simulation, the simulation time of the
EBA is 200 s, and the parameters are selected as k= 1.1,
m=0.1, o = 95 s, and 1 = 107>. When ¢, is 95 s, the
meeting angles converge to 0.01°, which is in accordance
with the requirement in Eq. (32). For the near-optimal
control approach and the leader—follower method, the
simulation time is 20 s, the number of Fourier orthogonal
basis is 98 (=14x7), and the penalty factor is 10000. As
mentioned above, the simulation time and parameters are
selected based on the joint velocity and the acceleration

limits.

In the controlling simulation, additional position and
force constraints are imposed. The position constraints
are satisfied by the planning method, and the force
constraints are satisfied by the master—slave method [29].
Given that the EBA plans the robot motion in the joint
space, joint space impedance control is applied to the
slave arm, and the impedance parameters are selected as
M = 1000, B = 400000, and K = 10. Moreover, the PD
parameters in the master—slave method affect the end
positioning precision. To obtain a precise relative end
pose, the PD parameters for the EBA and the
leader—follower method are K, = 1000 and K¢ = 800. For
the near-optimal control approach, as a result of velocity
discontinuity, the parameters are selected as K, = 0.15
and K4 = 0.6.

4.2.2 Simulation results and analysis

The actual run time of the leader—follower method, the
EBA, and the near-optimal control approach are
approximately 22, 270, and 6200 s, respectively. The
planning efficiency of the EBA is lower than that of the
leader—follower method but higher than that of the near-
optimal control approach.

Figures 7(a)-7(c) are the joint angular velocities of the
EBA, the leader—follower method, and the near-optimal
control approach, respectively. The real and desired
curves are plotted to indicate the complete system
responses. In Fig. 7(a), the real joint angular velocity of
the EBA coincides with the desired one, and both start
from zero and end at zero. Morecover, the transition
velocity of the EBA is also zero, and the transition period
is marked by the filled circles in the figure. For the
leader—follower method, the initial and final velocities are
also zeros. The joint velocities of the two arms show
different performances because the leader arm and the
follower arm are planned in different ways. In the near-
optimal control approach, the desired initial and final
velocities are not zero, and step responses exist in the
curves. As a result, the real velocity does not fit the
desired one well, and the controlling simulation time is
extended to 25 s to show the step response. In the
coordinated operation, the step responses also introduce
trajectory tracking error, and it not only results in
additional variation to the base attitude control but also
has an influence on the system internal force.

The joint angles of the simulations are shown in Fig. 8.
The angles are plotted here to show the working state of
the different methods, and “meeting points” are plotted in
the figures. The initial joint angles of all figures are
[(—23.44°, —90°, 12.51°, 104.8°, —27.33°, 66.56°, —38°),
(—23.44°, —90°, 12.51°, 104.8°, —27.33°, 66.56°, —38°)].
In Fig. 8(a), the final joint angle is [(—23.44°, —141.29°,
16.92°, 168.53°, —110.15°, 75.40°, 16.68°), (—23.44°,
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Fig. 8 Joint angle of free-floating space robot with end constraints: (a) joint angle of the enhanced bidirectional approach, (b) joint angle
of the leader—follower method, and (c) joint angle of the near-optimal control approach.

—84.38°, 66.04°, 95.38°, —71.42°, 63.47°, —41.08°)]. In

Fig. 8(b), the final joint

angle is [(—23.44°, —141.29°,

16.92°, 168.53°, —110.15°, 75.40°, 16.68°), (3.15°,

—89.45°, 33.67°, 109.37°, —=55.55°, 90.16°, —36.61°)]. In

Fig. 8(c), the final joint angle is [(—23.46, —141.29, 16.97,

168.50, —110.14, 75.43,

66.05, 95.40°, —71.46°, 63.49°, —41.08°)]. For the EBA
and the near-optimal control approach, the initial and

16.66), (—23.3547, —84.39,

final angles are all located in the neighbor of the required
values (though the error of the near-optimal control
approach is slightly larger than that of the EBA). For the
leader—follower method, because the joint motion of arm
A is planned by the 5-degree polynomial and joint motion
of arm B are planned by the Jacobian-based method, the
final joint angle of arm A satisfies the initial and final
conditions, whereas the joint angle of arm B does not.
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However, the end pose of the two arms are the same as
those of the other methods. The angles in Fig. 8 show that
the robot ends are located at the neighbor of the desired
pose relative to the base at the final time.

The satellite base RPY angles are plotted in Figs. 9(a)—
9(c). The desired and real RPY angles of the
leader—follower method at the end time are [0.32°, 0.67°,
1.75°] and [0.33°, 0.66°, 1.76°]. The desired and real base
RPY angles of the near-optimal control approach at the
end time are [0°, 0°, 0°] and [-0.02°, —0.05°, —0.18°]. For
the EBA, the desired and real base RPY angles at the end
time are [0.11°, 0.01°, —0.05°] and [0.08°, 0.00°, —0.04°].
Further simulation results show that the base attitude of
the EBA can be reduced more when a smaller damping
factor A is selected. However, the motion range would

further expand and eventually exceed the defined joint
angle scope with a smaller 4. The base attitude of the
leader—follower method becomes largest because the
method does not have the ability of optimization. Though
the desired final base attitude of the near-optimal control
approach is zero, the trajectory tracking error greatly
increases the real value. As a result, the real final attitude
of EBA is still the smallest one.

For the coordinated operation, a large internal force
may damage the robot system; thus, the force control
results are focused here as an important item under
supervision to show the influence of tracking error on the
system thoroughly. In this paper, the master—slave
method is applied to decrease the robot internal force. In
the method, the master arm is controlled by the rigid body
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Fig. 9 Satellite base attitude of free-floating space robot with end constraints: (a) RPY angle in the enhanced bidirectional approach,
(b) RPY angle in the leader—follower method, and (c) RPY angle in the near-optimal control approach.
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inverse dynamics, and the slave arm is controlled by the
joint space impedance control method. The internal
impedance torque of the slave arm is shown in Fig. 10.
For the EBA, the internal torques are all below 0.6 N'm,
and the values can be even limited within 0.1 N'm if the
start and end moments are excluded. In Fig. 10(b), the
internal joint impedance torques are slightly larger, and
the upper limits of the torques are approximately 2 N-m.
Simulations show that increased planning time decreases
internal torque. For example, if planning time is 35 s, the
upper limit of the internal torque will be 0.25 N-m.
Compared with the two other methods, the internal joint
impedance torques of the near-optimal control approach
are much larger, and the upper limit is more than 10 N-m.
The internal force of the near-optimal control approach is
the largest one, and this phenomenon results from step
responses in the tracking trajectories during the
controlling.

In summary, the EBA is compared with the four
methods in the whole simulations: the BA, the 5-degree-
polynomial planning method, the Ileader—follower
method, and the near-optimal control approach. The EBA
shows the best performance in final base attitude
optimization and joint trajectory tracking, and has the
minimum internal force in the coordinated operation. The
5-degree-polynomial planning method and the leader—
follower method work worst because they plan the joint
trajectory without optimization. The trajectory disconti-
nuity of the BA and the near-optimal control approach
introduce additional attitude variation and internal force,
thus proving the necessity of the improvement of the BA
on velocity-level continuous trajectory. Moreover,
compared with the other methods, the EBA has a
considerable computing efficiency and is suitable for base
attitude restoration in space tasks.

5 Conclusions

To enable the FFSR to start and end with a desired
configuration while restoring the base attitude, the EBA
is investigated in this paper. By reformulating the joint
trajectory planning into an acceleration-level “meeting
problem”, a robust system model is proposed. The EBA
is an off-line planning method that aims to achieve robot
free-space tasks and dual-arm robot coordinated opera-
tions. Simulations are carried out with and without end
constraints. The results verify that compared with the
other methods, the EBA decreases the final base variation
effectively and ensures smooth joint trajectories when
generating robot joint trajectories. The smooth trajectories
avoid additional base attitude error and internal force in
the robot control; thus, it ensures positioning accuracy
and control stability, and benefits the robot in system

control, end positioning, and communication. Moreover,
the high computing efficiency makes the method practical
in real space tasks.

Nomenclature

Abbreviations

BA Bidirectional approach

DOF Degree of freedom

EBA Enhanced bidirectional approach

FFSR Free-floating space robot

RPY Roll-pitch-yaw

Variables

A, A State matrices of the free-end system and constraint-end system
in the EBA

Ay, Ay State matrices of the real and virtual robots in the free-end
system in the EBA

A1, A, State matrices of the real and virtual robots in the constraint-end
system in the EBA

B, B, Input matrices of the free-end system and constraint-end system
in the EBA

B\, B, Input matrices of the real and virtual robots in the free-end
system in the EBA

B, B, Input matrices of the real and virtual robots in the constraint-end
system in the EBA

h Number of the Fourier orthogonal basis

H Coefficient of the geometric constraints in coordinated operation

1 Identity matrix

JGva, Jaw  Velocity general-Jacobian matrix of arms A and B

JGoas Jen Angular velocity general-Jacobian matrix of arm i

Jsor o

k Arbitrary positive number

Analytical and geometric Base-Jacobian

kij, keij, ksij Coeficients of the near-optimal control approach

ki Coeftficients of the 5-degree-polynomial

K, Proportional parameter in the closed-loop PD inverse dynamic
control method

Ky Differential parameter in the closed-loop PD inverse dynamic

control method

L Null space of H

m Arbitrary positive number

N Joint number of space robot

O, Inertial coordinate system

P Undetermined intermediate matrix that unifies the dimensions of
Axand z

(] Arbitrary symmetric positive-definite matrix

Fa, I End vectors of arms A and B, respectively
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Fab Vector pointing from arm B end to arm A end

s Combined variable used for Lyapunov function

t Time when the joint velocities are desired to be zero

tm Meeting time

t Initial time of trajectory planning

T Total planning time of the near-optimal method

u System input in the BA

uy, u Inputs of the real and virtual robots in the BA, respectively

it Augmented input composed by u; and u,, and @' = [uT, ul]T

U System input in the EBA

U, U, Inputs of the real and virtual robots in the EBA, respectively

U Augmented input composed by U, and U,, and U = [UT, UIT

Va, Vb End velocity of arms A and B, respectively

14 Lyapunov function of the system

w Input matrix of the robot system in the BA

Wy, W, Input matrices of the real and virtual robot systems in the BA,
respectively

w Augmented input matrix of the robot system in BA, and W =
(W, —W2]

WL Mapping matrix from variable z to variable X of the constraint-
end robot system

W, Augmented mapping matrix in the constraint-end system

x State variable of robot in the BA

X1, X2 System state variables of the real and virtual robots in the BA,
respectively

Ax System state error defined by Ax =x; —x,

X State variable of robot in the EBA

X, X5 System state variable of the real and virtual robots in the EBA,
respectively

z Joint angular velocity in the EBA and is a component of the
system state variable in the EBA

@ Vector of satellite base roll-pitch-yaw (RPY) angle, rad

ayx, @y, @; X, y, z terms of the satellite base RPY angle, respectively

Aa Base RPY angle error, rad

0 Vector of joint angle, rad

A Joint angle error, rad

®,,®, End angular velocities of arms A and B, respectively

a4 Damping factor

'3 Arbitrary vector
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